
OpenID Connect 1.0 Guide
/ AM 5.0.0

Latest update: 5.0.0

ForgeRock AS
201 Mission St, Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide showing you how to use ForgeRock Access Management with OpenID Connect 1.0.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
https://opensource.org/licenses/OFL-1.1

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Introducing OpenID Connect 1.0 ... 1

1.1. OpenID Connect Scopes and Claims ... 2
1.2. OpenID Connect Authorization Code Flow .. 3
1.3. OpenID Connect Implicit Flow .. 4
1.4. OpenID Connect Discovery ... 5
1.5. OpenID Connect Relying Party Registration ... 5
1.6. OpenID Connect Session Management ... 6
1.7. Security Considerations .. 6

2. Implementing OpenID Connect 1.0 .. 7
2.1. Configuring as an OpenID Connect Provider .. 7
2.2. Configuring for OpenID Connect Discovery .. 9
2.3. Configuring the Base URL Source Service .. 13
2.4. Registering OpenID Connect Relying Parties .. 14
2.5. Managing OpenID Connect User Sessions .. 15
2.6. Stateless OpenID Connect 1.0 Access and Refresh Tokens 16
2.7. Configuring for GSMA Mobile Connect ... 19
2.8. Encrypting OpenID Connect ID Tokens ... 24
2.9. Configuring Digital Signatures ... 25

3. Using OpenID Connect 1.0 .. 29
3.1. Authorizing OpenID Connect 1.0 Relying Parties .. 29

4. Customizing OpenID Connect 1.0 .. 36
4.1. Scripting OpenID Connect 1.0 Claims ... 36

5. Reference .. 40
5.1. OpenID Connect 1.0 Standards .. 40
5.2. OpenID Connect 1.0 Claims API Functionality .. 41
5.3. OAuth2 Provider ... 42
5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings 55

A. About Scripting ... 64
A.1. The Scripting Environment ... 64
A.2. Global Scripting API Functionality .. 67
A.3. Managing Scripts ... 69
A.4. Scripting .. 81

B. Getting Support .. 85
B.1. Accessing Documentation Online .. 85
B.2. Using the ForgeRock.org Site .. 85
B.3. Getting Support and Contacting ForgeRock ... 86

Glossary ... 87

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

Preface
This guide covers concepts, configuration, and usage procedures for working with OpenID Connect
1.0 and AM.

This guide is written for anyone using OpenID Connect 1.0 with AM to manage and federate access to
web applications and web-based resources.

About ForgeRock Identity Platform™ Software
ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

https://www.forgerock.com

Introducing OpenID Connect 1.0

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Introducing OpenID Connect 1.0
This chapter covers OpenAM support for OpenID Connect 1.0.

OpenID Connect 1.0 is an authentication layer built on OAuth 2.0. OpenID Connect 1.0 is a specific
implementation of OAuth 2.0 where the identity provider that runs the authorization server also holds
the protected resource that the third-party application aims to access. This resource is the UserInfo,
information about the authenticated end user expressed in a standard format. In this way, OpenID
Connect 1.0 allows relying parties both to verify the identity of the end user and also to obtain
user information using REST. This contrasts with OAuth 2.0, which only defines the authorization
mechanism.

The names used in OpenID Connect 1.0 differ from those used in OAuth 2.0. In OpenID Connect 1.0,
the key entities are the following:

• The end user (OAuth 2.0 resource owner) whose user information the application needs to access.

The end user wants to use an application through existing identity provider account without signing
up to and creating credentials for yet another web service.

• The Relying Party (RP) (OAuth 2.0 client) needs access to the end user's protected user
information.

For example, an online mail application needs to know which end user is accessing the application
in order to present the correct inbox.

As another example, an online shopping site needs to know which end user is accessing the site in
order to present the right offerings, account, and shopping cart.

• The OpenID Provider (OP) (OAuth 2.0 authorization server and also resource server) that holds the
user information and grants access.

OpenAM can play this role in an OpenID Connect deployment.

The OP effectively has the end user's consent to providing the RP with access to some of its user
information. As OpenID Connect 1.0 defines unique identification for an account (subject identifier
+ issuer identifier), the RP can use this as a key to its own user profile.

In the case of the online mail application, this key could be used to access the mailboxes and
related account information. In the case of the online shopping site, this key could be used to
access the offerings, account, shopping cart and so forth. The key makes it possible to serve users
as if they had local accounts.

http://openid.net/connect/

Introducing OpenID Connect 1.0
OpenID Connect Scopes and Claims

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

In OpenID Connect, the relying party can verify claims about the identity of the end user, and log
the user out at the end of a session. OpenID Connect also makes it possible to discover the OpenID
Provider for an end user, and to register relying party client applications dynamically. OpenID
connect services are built on OAuth 2.0, JSON Web Token (JWT), WebFinger and Well-Known URIs.

In its role as OpenID Provider, OpenAM lets OpenID Connect relying parties (clients) discover
its capabilities, handles both dynamic and static registration of OpenID Connect relying parties,
responds to relying party requests with authorization codes, access tokens, and user information
according to the Authorization Code and Implicit flows of OpenID Connect, and manages sessions.

This section describes how OpenAM fits into the OpenID Connect picture in terms of the roles that it
plays in the authorization code and implicit flows, provider discovery, client registration, and session
management.

1.1. OpenID Connect Scopes and Claims
This section explains how scopes and claims can be used when OpenAM is acting as an OpenID
Connect provider.

When OpenAM is configured as an OAuth 2.0 provider, a scope is considered to be a concept, rather
than directly relating to a piece of data in the user profile. For example, Facebook has an OAuth 2.0
scope named read_stream. OpenAM returns whether the scope is allowed or not, with no associated
data.

When OpenAM is configured as an OpenID Connect provider, scopes can relate to data in a user
profile by making use of one or more claims. Each claim maps directly to an attribute in the user
profile.

For example, OpenAM supports a scope named profile when configured as an OpenID Connect
provider, which by default is made up of the following claims:

OpenID Connect Scope Default Claim Mappings

Claim User profile attribute
given_name givenname

zoneinfo preferredtimezone

family_name sn

locale preferredlocale

name cn

The mappings between scopes, claims, and user profile attributes are controlled by the OIDC Claims
Script specified in the OAuth 2.0 provider. For more information, see "Scripting OpenID Connect 1.0
Claims" and "OAuth2 Provider".

As each claim represents a piece of information from the user profile, OpenAM displays the actual
data the relying party is given if the user clicks Allow:

Introducing OpenID Connect 1.0
OpenID Connect Authorization Code Flow

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

OpenID Connect Consent Page

You can configure OpenAM to support requests for individual claims as query parameters,
as described in section 5.5 of the OpenID Connect specification, by enabling the
claims_parameter_supported option.

In section 5.6 of the specification, AM supports Normal Claims. The optional Aggregated Claims and
Distributed Claims representations are not supported by AM.

For more information, see "OAuth2 Provider".

1.2. OpenID Connect Authorization Code Flow
The OpenID Connect Authorization Code Flow specifies how the relying party interacts with the
OpenID Provider, in this case OpenAM, based on use of the OAuth 2.0 authorization grant. The
following sequence diagram shows successful processing from the authorization request, through
grant of the authorization code, access token, and ID token, and optional use of the access token to
get information about the end user.

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

Introducing OpenID Connect 1.0
OpenID Connect Implicit Flow

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

OpenID Connect Authorization Code Flow

In addition to what OAuth 2.0 specifies, OpenID Connect uses an ID token so the relying party can
validate claims about the end user. It also defines how to get user information, such as profile, email,
address, and phone details from the UserInfo endpoint with a valid access token.

1.3. OpenID Connect Implicit Flow
The OpenID Connect Implicit Flow specifies how the relying party interacts with the OpenID
Provider, in this case OpenAM, based on use of the OAuth 2.0 implicit grant. The following sequence
diagram shows successful processing from the authorization request, through grant of the access and
ID tokens, and optional use of the access token to get information about the end user.

Introducing OpenID Connect 1.0
OpenID Connect Discovery

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

OpenID Connect Implicit Flow

As for the Authorization Code Flow, the Implicit Flow specifies an ID token so that the relying party
can validate claims about the end user. It also defines how to get user information, such as profile,
email, address, and phone details from the UserInfo endpoint with a valid access token.

1.4. OpenID Connect Discovery
OpenID Connect defines how a relying party can discover the OpenID Provider and corresponding
OpenID Connect configuration for an end user. The discovery mechanism relies on WebFinger to
get the information based on the end user's identifier. The server returns the information in JSON
Resource Descriptor (JRD) format.

1.5. OpenID Connect Relying Party Registration
OpenID Connect relying parties register OAuth 2.0 client profiles with OpenAM. Relying parties
can register with OpenAM as a provider both statically, as for other OAuth 2.0 clients, and also
dynamically, as specified by OpenID Connect Discovery. To allow dynamic registration, you register
an initial OAuth 2.0 client that other relying parties can use to get access tokens for registration.

You can also enable OpenID Connect relying parties to register dynamically without having to provide
an access token. For details, see the documentation on the advanced server property, org.forgerock

Introducing OpenID Connect 1.0
OpenID Connect Session Management

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

.openam.openidconnect.allow.open.dynamic.registration, in "Advanced Properties" in the Reference. Take
care to limit or throttle dynamic registration if you enable this capability on production systems.

1.6. OpenID Connect Session Management
OpenID Connect lets the relying party track whether the end user is logged in at the provider, and
also initiate end user logout at the provider. The specification has the relying party monitor session
state using an invisible iframe and communicate status using the HTML 5 postMessage API.

OpenAM currently supports draft 10 of the OpenID Connect Session Management 1.0 specification.

1.7. Security Considerations
OpenAM provides security mechanisms to ensure that OpenID Connect 1.0 ID tokens are properly
protected against malicious attackers: TLS, digital signatures, and token encryption.

While designing a security mechanism, you can also take into account the points developed in the
section on Security Considerations in the OpenID Connect Core 1.0 incorporating errata set 1
specification.

OpenID Connect 1.0 requires the protection of network messages with Transport Layer Security
(TLS). For information about protecting traffic to and from the web container in which OpenAM runs,
see "Setting Up Keys and Keystores" in the Setup and Maintenance Guide.

OpenAM supports digital signatures for OAuth 2.0 and OpenID Connect 1.0 tokens. To configure the
signatures, see "Configuring Digital Signatures".

http://openid.net/specs/openid-connect-session-1_0-10.html
http://openid.net/specs/openid-connect-core-1_0.html#Security

Implementing OpenID Connect 1.0
Configuring as an OpenID Connect Provider

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

Chapter 2

Implementing OpenID Connect 1.0
This chapter covers implementing and configuring OpenAM support for OpenID Connect 1.0.

2.1. Configuring as an OpenID Connect Provider
You can configure OpenAM's OAuth 2.0 provider service to double as an OpenID Connect provider
service.

To Set Up the OAuth 2.0 Provider Service for OpenID Connect

Follow the steps in this procedure to set up the OAuth2 provider service with OpenID Connect
defaults by using the Configure OAuth Provider wizard:

When you create the service with the Configure OAuth Provider wizard, the wizard also creates a
standard policy in the Top Level Realm (/) to protect the authorization endpoint. In this configuration,
OpenAM serves the resources to protect, and no separate application is involved. OpenAM therefore
acts both as the policy decision point and policy enforcement point that protects the OAuth 2.0
authorization endpoint used by OpenID Connect.

There is no requirement to use the wizard or to create the policy in the Top Level Realm. However,
if you create the OAuth 2.0 provider service without the wizard, then you must set up the policy
independently, if required. The policy must appear in a policy set of type iPlanetAMWebAgentService.
When configuring the policy allow all authenticated users to perform HTTP GET and POST requests
on the authorization endpoint. The authorization endpoint is described in "OAuth 2.0 Client
and Resource Server Endpoints" in the OAuth 2.0 Guide. For details on creating policies, see
"Implementing Authorization" in the Authorization Guide.

1. In the AM console, select Realms > Realm Name > Dashboard > Configure OAuth Provider >
Configure OpenID Connect.

2. On the Configure OAuth2/OpenID Connect Service page, select the Realm for the provider
service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes, access tokens, and refresh
tokens.

4. (Optional) Select Issue Refresh Tokens unless you do not want the authorization service to supply
a refresh token when returning an access token.

Implementing OpenID Connect 1.0
Configuring as an OpenID Connect Provider

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the authorization
service to supply a new refresh token when refreshing an access token.

6. (Optional) If you have a custom scope validator implementation, put it on the OpenAM classpath,
for example /path/to/tomcat/webapps/openam/WEB-INF/lib/, and specify the class name in the Scope
Implementation Class field. For an example, see "Customizing OAuth 2.0 Scope Handling" in the
OAuth 2.0 Guide.

7. Click Create to save your changes.

OpenAM creates an OAuth2 provider service, with OpenID Connect default parameter values, and
a policy to protect the OAuth2 authorization endpoints.

Warning

If an OAuth2 provider service already exists, it will be overwritten with the new OpenID Connect
parameter values.

8. To access the provider service configuration in the AM console, browse to Realms > Realm Name
> Services, and then click OAuth2 Provider.

For OpenID Connect providers you may want to configure the following settings:

• The optional Remote JSON Web Key URL field allows you to set a URL to a JSON web key set
with the public key(s) for the provider.

If this setting is not configured, then OpenAM provides a local URL to access the public key of
the private key used to sign ID tokens.

• The Subject Types supported map allows you to support pairwise subject types as described in
the OpenID Connect core specification section concerning Subject Identifier Types.

• The ID Token Signing Algorithms supported list allows you to change the list of algorithms used
to sign ID Tokens.

• The Supported Claims list allows you to restrict the claims supported by OpenAM's userinfo
endpoint.

For more information, see "OpenID Connect Scopes and Claims".

• The Alias of ID Token Signing Key alias allows you to set the key pair alias for the key used to
sign ID Tokens when using a signing algorithm that involves asymmetric keys.

For instructions on changing the key pair, see "To Change Default test Signing Key" in the
Setup and Maintenance Guide.

• The Allow Open Dynamic Client Registration checkbox enables relying parties to register
without using an access token.

https://tools.ietf.org/html/rfc7517
http://openid.net/specs/openid-connect-core-1_0.html#SubjectIDTypes

Implementing OpenID Connect 1.0
Configuring for OpenID Connect Discovery

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

• The Generate Registration Access Tokens checkbox has OpenAM generate Registration
Access Tokens for dynamic client registration when Allow Open Dynamic Client Registration is
enabled. This allows the client to view and update its registration.

9. Click Save to complete the process.

If your provider is part of a GSMA Mobile Connect deployment, see "Configuring as an OP for Mobile
Connect".

2.2. Configuring for OpenID Connect Discovery
In order to allow relying parties to discover the OpenID Connect Provider for an end user, OpenAM
supports OpenID Connect Discovery 1.0. In addition to discovering the OpenID Provider for an end
user, the relying party can also request the OpenID Provider configuration.

OpenAM exposes REST endpoints for discovering information about the provider configuration, and
about the provider for a given end user.

The following REST endpoints are available:

• /oauth2/.well-known/openid-configuration allows clients to retrieve OpenID Provider configuration by
HTTP GET as specified by OpenID Connect Discovery 1.0.

When the OpenID Connect provider is configured in a subrealm, relying parties can get the
configuration by passing in the full path to the realm in the URL. For example, if the OpenID
Connect provider is configured in a subrealm named subrealm1, which is a child of the top-level
realm, the URL would resemble the following: https://openam.example.com:8443/openam/oauth2/realms/
root/realms/subrealm1/.well-known/openid-configuration.

• /.well-known/webfinger allows clients to retrieve the provider URL for an end user by HTTP GET as
specified by OpenID Connect Discovery 1.0.

This endpoint does not support specifying a realm in the path, and is always located after the
deployment URI. For example, https://openam.example.com:8443/openam/.well-known/webfinger.

Note

OpenAM supports a provider service that allows the realm to have a configured option for obtaining the base
URL (including protocol) for components that need to return a URL to the client. This service is used to provide
the URL base that is used in the .well-known endpoints used in OpenID Connect 1.0 and UMA.

For more information, see "Configuring the Base URL Source Service".

A relying party needs to be able to discover the OpenID Connect provider for an end user. In this case
you should consider redirecting requests to URIs at the server root, such as http://www.example.com/

Implementing OpenID Connect 1.0
Configuring for OpenID Connect Discovery

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

.well-known/webfinger and http://www.example.com/.well-known/openid-configuration, to these Well-Known
URIs in OpenAM's space.

Discovery relies on WebFinger, a protocol to discover information about people and other entities
using standard HTTP methods. WebFinger uses Well-Known URIs, which defines the path prefix /
.well-known/ for the URLs defined by OpenID Connect Discovery.

Unless you deploy OpenAM in the root context of a container listening on port 80 on the primary host
for your domain, relying parties need to find the right host:port/deployment-uri combination to locate
the well-known endpoints. Therefore you must manage the redirection to OpenAM. If you are using
WebFinger for something else than OpenID Connect Discovery, then you probably also need proxy
logic to route the requests.

OpenID Connect Discovery requires an OAuth 2.0 provider service to be configured within OpenAM.
The service must have openid as a supported scope in order to use the /oauth2/.well-known/openid-
configuration endpoint. For information on configuring an OAuth 2.0 provider service for OpenID
Connect in OpenAM, see "Configuring as an OpenID Connect Provider".

To retrieve the OpenID Connect provider for an end user, the relying party needs the following:

host

The server where the relying party can access the WebFinger service.

Notice that this is a host name rather than a URL to the endpoint, which is why you might need to
redirect relying parties appropriately as described above.

resource

Identifies the end user that is the subject of the request.

The relying party must percent-encode the resource value when using it in the query string of the
request, so when using the acct URI scheme and the resource is acct:user@example.com, then the
value to use is acct%3Auser%40example.com.

rel

URI identifying the type of service whose location is requested.

In this case http://openid.net/specs/connect/1.0/issuer, which is http%3A%2F%2Fopenid.net%2Fspecs
%2Fconnect%2F1.0%2Fissuer.

If you have not set up the redirection to the root of the domain yet, you can test the endpoint for the
demo user account (output lines folded to make them easier to read):

http://tools.ietf.org/html/draft-ietf-appsawg-webfinger
http://tools.ietf.org/html/rfc5785

Implementing OpenID Connect 1.0
Configuring for OpenID Connect Discovery

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

$ curl \
 "https://openam.example.com:8443/openam/.well-known/webfinger
\
?resource=acct%3Ademo%40example.com\
&rel=http%3A%2F%2Fopenid.net%2Fspecs%2Fconnect%2F1.0%2Fissuer"
{
 "subject": "acct:demo@example.com",
 "links": [
 {
 "rel": "http://openid.net/specs/connect/1.0/issuer",
 "href": "https://openam.example.com:8443/openam/oauth2"
 }
]
}

This shows that the OpenID Connect provider for the OpenAM demo user is indeed the OpenAM
server.

The relying party can also discover the OpenID Connect provider configuration. If you have not set up
the redirection to the root of the domain yet, you can test this with the following curl command:

$ curl https://openam.example.com:8443/openam/.well-known/openid-configuration
 {
 "response_types_supported": [
 "code token id_token",
 "code",
 "code id_token",
 "device_code",
 "id_token",
 "code token",
 "token",
 "token id_token"
],
 "claims_parameter_supported": false,
 "introspection_endpoint": "https://openam.example.com:8443/openam/oauth2/introspect",
 "end_session_endpoint": "https://openam.example.com:8443/openam/oauth2/connect/endSession",
 "version": "3.0",
 "check_session_iframe": "https://openam.example.com:8443/openam/oauth2/connect/checkSession",
 "scopes_supported": [
 "address",
 "phone",
 "openid",
 "profile",
 "email"
],
 "issuer": "https://openam.example.com:8443/openam/oauth2",
 "id_token_encryption_enc_values_supported": [
 "A256GCM",
 "A192GCM",
 "A128GCM",
 "A128CBC-HS256",
 "A192CBC-HS384",
 "A256CBC-HS512"
],
 "acr_values_supported": [],

Implementing OpenID Connect 1.0
Configuring for OpenID Connect Discovery

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

 "authorization_endpoint": "https://openam.example.com:8443/openam/oauth2/authorize",
 "userinfo_endpoint": "https://openam.example.com:8443/openam/oauth2/userinfo",
 "claims_supported": [
 "zoneinfo",
 "address",
 "profile",
 "name",
 "phone_number",
 "given_name",
 "locale",
 "family_name",
 "email"
],
 "id_token_encryption_alg_values_supported": [
 "RSA-OAEP",
 "RSA-OAEP-256",
 "A128KW",
 "RSA1_5",
 "A256KW",
 "dir",
 "A192KW"
],
 "jwks_uri": "https://openam.example.com:8443/openam/oauth2/connect/jwk_uri",
 "subject_types_supported": [
 "public"
],
 "id_token_signing_alg_values_supported": [
 "ES384",
 "HS256",
 "HS512",
 "ES256",
 "RS256",
 "HS384",
 "ES512"
],
 "registration_endpoint": "https://openam.example.com:8443/openam/oauth2/connect/register",
 "token_endpoint_auth_methods_supported": [
 "client_secret_post",
 "private_key_jwt",
 "client_secret_basic"
],
 "token_endpoint": "https://openam.example.com:8443/openam/oauth2/access_token"
 }

When the OpenID Connect provider is configured in a subrealm, then relying parties can get the
configuration by passing in the realm in the URL.

When making a REST API call, specify the realm in the path component of the endpoint. You must
specify the entire hierarchy of the realm, starting at the top-level realm. Prefix each realm in the
hierarchy with the realms/ keyword. For example /realms/root/realms/customers/realms/europe.

For example, if the OpenID Connect provider is configured in a subrealm named subrealm1 which is
a child of the top-level realm, the URL would resemble the following: https://openam.example.com:8443/
oauth2/realms/root/realms/subrealm1/.well-known/openid-configuration.

Implementing OpenID Connect 1.0
Configuring the Base URL Source Service

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

2.3. Configuring the Base URL Source Service
In many deployments, OpenAM determines the base URL of a provider using the incoming HTTP
request. However, there are often cases when the base URL of a provider cannot be determined
from the incoming request alone, especially if the provider is behind some proxying application.
For example, if an OpenAM instance is part of a site where the external connection is over SSL
but the request to the OpenAM instance is over plain HTTP, then OpenAM would have difficulty in
reconstructing the base URL of the provider.

In these cases, OpenAM supports a provider service that allows a realm to have a configured option
for obtaining the base URL including protocol for components that need to return a URL to the client.

To Configure the Base URL Source Service

1. Log in to the AM console as an administrative user, such as amAdmin, and then navigate to Realms
> Realm Name > Services.

2. Click Add a Service, select Base URL Source, and then click Create.

3. For Base URL Source, select one of the following options:

Base URL Source Options

Option Description
Extension class Click the Extension class to return a base URL from a provided

HttpServletRequest object. In the Extension class name field,
enter org.forgerock.openam.services.baseurl.BaseURLProvider.

Fixed value Click Fixed value to enter a specific base URL value. In the
Fixed value base URL field, enter the base URL.

Forwarded header Click Forwarded header to retrieve the base URL from the
Forwarded header field in the HTTP request. The Forwarded
HTTP header field is standardized and specified in RFC 7239.

Host/protocol from incoming request
(default)

Click Host/protocol from incoming request to get the
hostname, server name, and port from the HTTP request.

X-Forwarded-* headers Click X-Forwarded-* headers to use non-standard header
fields, such as X-Forwarded-For, X-Forwarded-By, and X-
Forwarded-Proto.

4. In the Context path, enter the context path for the base URL. If provided, the base URL includes
the deployment context path appended to the calculated URL. For example, /openam.

5. Click Finish to save your configuration.

http://tools.ietf.org/html/rfc7239

Implementing OpenID Connect 1.0
Registering OpenID Connect Relying Parties

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

2.4. Registering OpenID Connect Relying Parties
OpenID Connect relying parties can register with OpenAM both statically through the AM console for
example, and also dynamically using OpenID Connect 1.0 Dynamic Registration.

To Register a Relying Party With the AM Console

Registering a relying party by using the AM console consists of first creating an OAuth 2.0 Client
agent profile, and then editing the profile for the settings pertinent to OpenID Connect 1.0.

1. In the AM console, navigate to Realms > Realm Name > Applications > OAuth 2.0, select New,
provide the client identifier and client password, and finally click Create to create the profile.

2. To edit the profile to match the relying party configuration, follow the hints in "OAuth 2.0 and
OpenID Connect 1.0 Client Settings" .

In order to read and edit the relying party profile dynamically later without using The AM
console, be sure to set an access token in the Access Token field.

To Register a Relying Party Dynamically

For dynamic registration you need the relying party profile data, and an access token to write
the configuration to OpenAM by HTTP POST. To obtain the access token, register an initial client
statically after creating the provider, as described in "To Register a Relying Party With the AM
Console". Relying parties can then use that client to obtain the access token needed to perform
dynamic registration.

Tip

As described in "OpenID Connect Relying Party Registration", you can allow relying parties to register without
having an access token by setting the advanced server property, org.forgerock.openam.openidconnect.allow
.open.dynamic.registration, to true. When using that setting in production systems, take care to limit or
throttle dynamic registration.

On successful registration, OpenAM responds with information including an access token to allow the
relying party subsequently to read and edit its profile.

1. Create an OAuth 2.0 provider service in the relevant realm, by following the steps in "To Set Up
the OAuth 2.0 Provider Service for OpenID Connect".

2. Register an initial OAuth 2.0 client statically with a client ID, such as masterClient and client
secret like password.

Add at least one scope to the list of supported scopes, for example cn.

3. Obtain an access token using the client you registered.

Implementing OpenID Connect 1.0
Managing OpenID Connect User Sessions

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

For example, if you created the client as described in the previous step, and OpenAM
administrator amadmin has password password, you can use the OAuth 2.0 resource owner password
grant as in the following example:

$ curl \
 --request POST \
 --user "masterClient:password" \
 --data "grant_type=password&username=amadmin&password=password&scope=cn" \
 https://openam.example.com:8443/openam/oauth2/realms/root/access_token
{
 "expires_in": 59,
 "token_type": "Bearer",
 "refresh_token": "26938cd0-6870-4e31-ade9-df31afc37ee1",
 "access_token": "515d6551-4512-4279-98b6-c0ef3f03a722"
}

4. HTTP POST the relying party registration profile to the /oauth2/connect/register endpoint, using
bearer token authorization with the access token you obtained from OpenAM.

Ensure that you provide a client_name when registering the client. Without the client_name value
the auto-generated client_id will be used on consent screens. The client ID is a UUID string and
may not be desirable on end-user facing pages.

For an example written in JavaScript, see the registration page in the OpenID Connect examples.
Successful registration shows a response that includes the client ID and client secret. Lines are
folded in the following example:

{
 "issued_at": 1392364349,
 "expires_at": 0,
 "client_secret": "7f446ca9-3f1f-48fb-bf8c-150b9e643f29",
 "client_name": "Example.com OpenID Connect Client",
 "redirect_uris": [
 "https://openam.example.com:8443/openid/cb-basic.html",
 "https://openam.example.com:8443/openid/cb-implicit.html"
],
 "registration_access_token": "515d6551-4512-4279-98b6-c0ef3f03a722",
 "client_id": "6e4abd50-3f03-41dc-b807-c6705c3e45d7",
 "registration_client_uri":
 "https://openam.example.com:8443/openam/oauth2/realms/root/connect/register
 ?client_id=6e4abd50-3f03-41dc-b807-c6705c3e45d7"
}

2.5. Managing OpenID Connect User Sessions
OpenID Connect Session Management 1.0 allows the relying party to manage OpenID Connect
sessions, making it possible to know when the end user should be logged out.

Registered clients can use OpenID Connect Session Management 1.0 to handle end user logout
actions.

https://stash.forgerock.org/projects/COM/repos/openid/browse

Implementing OpenID Connect 1.0
Stateless OpenID Connect 1.0 Access and Refresh Tokens

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

• /oauth2/connect/checkSession allows clients to retrieve session status notifications.

• /oauth2/connect/endSession allows clients to terminate end user sessions.

As described in the OpenID Connect Session Management 1.0 - Draft 10 specification, OpenAM's
OpenID Provider exposes both a check_session_iframe URL that allows the relying party to
receive notifications when the end user's session state changes at the provider, and also an
end_session_endpoint URL to which to redirect an end user for logout.

When registering your relying party that uses session management, you set the OAuth 2.0 client
agent profile properties Post Logout Redirect URI and Client Session URI, described in "OAuth 2.0
and OpenID Connect 1.0 Client Settings". The Post Logout Redirect URI is used to redirect the end
user user-agent after logout. The Client Session URI is the relying party URI where OpenAM sends
notifications when the end user's session state changes.

2.6. Stateless OpenID Connect 1.0 Access and Refresh Tokens
OpenAM supports stateless access, refresh, and ID tokens for OpenID Connect 1.0 (OIDC). Stateless
tokens allow clients to directly validate the tokens by storing session information within the token
itself and bypassing storage in an external CTS data store. This feature also allows any OpenAM
instance in the issuing cluster to validate an OIDC tokens without cross-server communication.

To Configure Stateless OpenID Connect 1.0 Access and Refresh

1. Open the AM console.

2. Under Realms, select the realm that you are working with.

3. Click Services, and then select OAuth2 Provider.

4. Enable Use Stateless Access & Refresh Tokens.

5. Enable Issue Refresh Tokens.

6. Enable Issue Refresh Tokens on Refreshing Access Tokens.

7. Generate some OIDC tokens using the REST API. Notice how each token is larger than a non-
stateless example:

curl --request POST --user "MyClient:password" \
--data "grant_type=password&username=demo&password=changeit&scope=cn%20openid%20profile"\
http://openam.example.com:8080/openam/oauth2/realms/root/access_token
{
 "scope":"cn openid profile",
 "expires_in":5998,
 "token_type":"Bearer",
 "refresh_token":"eyAidHlwIjogIkpXVCIsICJhbGciOiAiSFMyNTYiIH0.eyAidG9rZW5OYW1l

https://openid.net/specs/openid-connect-session-1_0-10.html

Implementing OpenID Connect 1.0
Stateless OpenID Connect 1.0 Access and Refresh Tokens

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

 IjogInJlZnJlc2hfdG9rZW4iLCAic3ViIjogImRlbW8iLCAic2NvcGUiOiBbICJjbiIsICJvcGV
 uaWQiLCAicHJvZmlsZSIgXSwgImF1dGhHcmFudElkIjogIjU2Y2VhYzM2LTZjNTItNGQ2NS05MT
 hiLTY4ZmY3MThiOTAzMyIsICJuYmYiOiAxNDY1NDE4OTc5LCAiaXNzIjogImh0dHA6Ly9vcGVuY
 W0uZXhhbXBsZS5jb206ODA4MC9vcGVuYW0vb2F1dGgyIiwgImV4cGlyZXNfaW4iOiA2MDAwMDAw
 LCAiaWF0IjogMTQ2NTQxODk3OSwgImV4cCI6IDE0NjU0MjQ5NzksICJhdWRpdFRyYWNraW5nSWQ
 iOiAiZGU4NjM4ZDUtMzhjNC00N2E1LWE5ODMtZDBjNDMzMTQyYTRhIiwgInJlYWxtIjogIi8iLC
 AiYXVkIjogIk15Q2xpZW50IiwgImp0aSI6ICJlNjY0YjgwZS03ZmY0LTRjMGEtOGVlZC01ZTViM
 2QwNGU4YWEiLCAidG9rZW5fdHlwZSI6ICJCZWFyZXIiIH0.VhXDFhI7K7BhouirMNgWQbeQvtrJ
 9IZg4MUH4bAOO3M",
 "id_token":"eyAidHlwIjogIkpXVCIsICJhbGciOiAiUlMyNTYiLCAia2lkIjogIlN5bExDNk5qd
 DFLR1FrdEQ5TXQrMHpjZVFTVT0iIH0.eyAidG9rZW5OYW1lIjogImlkX3Rva2VuIiwgImF6cCI6
 ICJNeUNsaWVudCIsICJzdWIiOiAiZGVtbyIsICJhdF9oYXNoIjogIkNIb0VDUzF1V3VRUS1RM1F
 rMUdMdnciLCAiaXNzIjogImh0dHA6Ly9vcGVuYW0uZXhhbXBsZS5jb206ODA4MC9vcGVuYW0vb2
 F1dGgyIiwgIm9yZy5mb3JnZXJvY2sub3BlbmlkY29ubmVjdC5vcHMiOiAiNzE5MzVjNDUtOTk4Z
 S00NzBjLWFjMDQtMGMzNTM0NGRmYzNmIiwgImlhdCI6IDE0NjU0MTg5NzksICJhdXRoX3RpbWUi
 OiAxNDY1NDE4OTc5LCAiZXhwIjogMTQ2NTQyNDk3OSwgInRva2VuVHlwZSI6ICJKV1RUb2tlbiI
 sICJyZWFsbSI6ICIvIiwgIm5hbWUiOiAiZGVtbyIsICJhdWQiOiAiTXlDbGllbnQiLCAiZmFtaW
 x5X25hbWUiOiAiZGVtbyIgfQ.RpWyfifklukI_YmNASbexM-tLUw4-RGlDouo8vAe5BTQbYdjAC
 HPDfngq0iFFVUVnJHhCIlJeo7GBn459lNR7boefgkaglTz2Q9wYo7TGX-B7ioV0qMnkYsZniTvx
 X2qQc5le_BJnp_2BJOfzzK83WnW93d9A4JGEAKCrfojrXI",
 "access_token":"eyAidHlwIjogIkpXVCIsICJhbGciOiAiSFMyNTYiIH0.eyAidG9rZW5OYW1lI
 jogImFjY2Vzc190b2tlbiIsICJzdWIiOiAiZGVtbyIsICJzY29wZSI6IFsgImNuIiwgIm9wZW5p
 ZCIsICJwcm9maWxlIiBdLCAiYXV0aEdyYW50SWQiOiAiNTZjZWFjMzYtNmM1Mi00ZDY1LTkxOGI
 tNjhmZjcxOGI5MDMzIiwgIm5iZiI6IDE0NjU0MTg5NzksICJpc3MiOiAiaHR0cDovL29wZW5hbS
 5leGFtcGxlLmNvbTo4MDgwL29wZW5hbS9vYXV0aDIiLCAiZXhwaXJlc19pbiI6IDYwMDAwMDAsI
 CJpYXQiOiAxNDY1NDE4OTc5LCAiZXhwIjogMTQ2NTQyNDk3OSwgImF1ZGl0VHJhY2tpbmdJZCI6
 ICI2ZTI2MzA4ZC05YzY2LTRkNjQtODE2Zi1iZTdmYTcyMDc2MTgiLCAicmVhbG0iOiAiLyIsICJ
 hdWQiOiAiTXlDbGllbnQiLCAianRpIjogImY4MDEwZjE2LWZiYTQtNDg1ZS04NGM1LWM2OGU2Mj
 k2ZjIxYyIsICJ0b2tlbl90eXBlIjogIkJlYXJlciIgfQ.JOAG50dLwfB6lKQr4fdKB1zRdKZyfY
 5bRRof61knJDs"
}

8. Decode the stateless access token to view its contents:

curl http://openam.example.com:8080/openam/oauth2/realms/root/tokeninfo?access_token=eyAid...1knJDs
{
 "tokenName":"access_token",
 "sub":"demo",
 "scope":["cn","openid","profile"],
 "iss":"http://openam.example.com:8080/openam/oauth2",
 "nbf":1465418979,
 "authGrantId":"56ceac36-6c52-4d65-918b-68ff718b9033",
 "expires_in":6000000,
 "iat":1465418979,
 "exp":1465424979,
 "auditTrackingId":"6e26308d-9c66-4d64-816f-be7fa7207618",
 "cn":"demo",
 "realm":"/",
 "aud":"MyClient",
 "openid":"",
 "jti":"f8010f16-fba4-485e-84c5-c68e6296f21c",
 "token_type":"Bearer",
 "access_token":"eyAid...1knJDss",
 "profile":""
 }

Implementing OpenID Connect 1.0
Validating OpenID Connect 1.0 ID Tokens

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

2.6.1. Validating OpenID Connect 1.0 ID Tokens

Clients can use an OpenID Connect 1.0 endpoint on OpenAM to quickly validate a stateless OIDC
ID token and optionally retrieve any claims within the token. The endpoint is used globally and not
within a realm.

• /openam/oauth2/idtokeninfo

Note

The endpoint does not support the validation of encrypted OIDC ID tokens.

The endpoint validates an OIDC ID token based on rules 1-10 in section 3.1.3.7 of the OpenID
Connect Core and runs the following steps:

1. Extracts the first aud (audience) claim from the ID token. The client_id, which is passed in as
authentication of the request, will be used as the client and validated against the aud claim.

2. Extracts the realm claim, if present, default to the root realm if the token was not issued by
OpenAM.

3. Looks up the client in the given realm, producing an error if it does not exist.

4. Verifies the signature of the ID token, according to the settings for the client (ID token signed
response algorithm, public key selector).

5. Verifies the issuer, audience, expiry, not-before, and issued-at claims as per the specification.

To invoke the endpoint, the client sends an HTTP POST request to /openam/oauth2/idtokeninfo using the
following parameters in the POST body in application/x-www-form-url-encoded format or as query
parameters:

• id_token - OIDC ID token to validate (required)
• claims - optional comma-separated list of claims to return from the ID token

For example, you can run the following command:
$ curl -X POST -d "id_token=$IDTOKEN" \
 http://openam.example.com:8080/openam/oauth2/realms/root/idtokeninfo

where $IDTOKEN is an OIDC ID token.

If the ID token validates successfully, the endpoint unpacks the claims from the ID token and returns
them as JSON. You can also use an optional claims parameter in the request to return those specific
claims. If a claim is requested that does not exist, no error occurs; it will simply not be present in the
response.

For example, you can run the following command to retrieve the claims in an OIDC ID token:

http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation
http://openid.net/specs/openid-connect-core-1_0.html#IDTokenValidation

Implementing OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

$ curl -i -X POST -d "id_token=$IDTOKEN" \
 'http://openam.example.com:8080/openam/oauth2/realms/root/idtokeninfo?claims=sub,exp,realm'

HTTP/1.1 200 OK
Date: Wed, 01 Jun 2016 07:31:39 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.3.4
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Type: application/json;charset=UTF-8
Content-Length: 50
{
 "sub": "demo",
 "exp": 1461065147,
 "realm": "/"
}

For invalid requests, the endpoint returns a 400 HTTP code with a JSON error response:
$ curl -i -X POST 'http://openam.example.com:8080/openam/oauth2/realms/root/idtokeninfo?claims=sub,exp
,realm'

HTTP/1.1 400 Bad Request
Date: Wed, 01 Jun 2016 08:32:43 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.3.4
Vary: Accept-Charset, Accept-Encoding, Accept-Language, Accept
Content-Type: application/json
Transfer-Encoding: chunked
Connection: close
{
 "error":"bad_request",
 "error_description":"no id_token in request"
}

2.7. Configuring for GSMA Mobile Connect
GSMA Mobile Connect is an application of OpenID Connect (OIDC). Mobile Connect builds on OIDC
to facilitate use of mobile phones as authentication devices independently of the service provided
and independently of the device used to consume the service. Mobile Connect thus offers a standard
way for Mobile Network Operators to act as general-purpose identity providers, providing a range of
levels of assurance and profile data to Mobile Connect-compliant Service Providers.

This section includes an overview, as well as the following:

• "Authorization Request Parameters"

• "ID Token Properties"

• "Configuring as an OP for Mobile Connect"

In a Mobile Connect deployment, OpenAM can play the OpenID Provider role, implementing the
Mobile Connect Profile as part of the Service Provider - Identity Gateway interface.

http://www.gsma.com/personaldata/mobile-connect

Implementing OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

OpenAM can also play the Authenticator role as part of the Identity Gateway - Authenticators
interface. In this role, OpenAM serves to authenticate users at the appropriate Level of Assurance
(LoA). In Mobile Connect, LoAs represent the authentication level achieved. A Service Provider can
request LoAs without regard to the implementation, and the Identity Gateway includes a claim in the
ID Token that indicates the LoA achieved.

In OpenAM, Mobile Connect LoAs map to an authentication mechanism. Service Providers acting as
OpenID Relying Parties (RP) request an LoA by using the acr_values field in an OIDC authentication
request. In OIDC, acr_values specifies Authentication Context Class Reference values. The RP sets
acr_values as part of the OIDC Authentication Request. OpenAM returns the corresponding acr claim
in the Authentication Response as the value of the ID Token acr field.

OpenAM as OP supports LoAs 1 (low - little or no confidence), 2 (medium - some confidence, as in
single-factor authentication), and 3 (high - high confidence, as in multi-factor authentication), though
out of the box it does not include support for 4, which involves digital signatures.

As Mobile Connect OP, OpenAM supports mandatory request parameters, and a number of optional
request parameters:

Authorization Request Parameters

Request Parameter Support Description
response_type Supported OAuth 2.0 grant type to use. Set this to code for the

authorization grant.
client_id Supported Set this to the client identifier.
scope Supported Space delimited OAuth 2.0 scope values.

Required: openid

Optional: profile, email, address, phone, offline_access
redirect_uri Supported OAuth 2.0 URI where the authorization request

callback should go. Must match the redirect_uri in the
client profile that you registered with OpenAM.

state Supported Value to maintain state between the request and the
callback. Required for Mobile Connect.

nonce Supported String value to associate the client session with the
ID Token. Optional in OIDC, but required for Mobile
Connect.

display Supported String value to specify the user interface display.
login_hint Supported String value indicating the the ID to use for login.

When provided as part of the OIDC Authentication
Request, the login_hint is set as the value of a cookie
named oidcLoginHint, which is an HttpOnly cookie
(only sent over HTTPS). Authentication modules can
then retrieve the cookie's value.

Implementing OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

Request Parameter Support Description
acr_values Supported Authentication Context class Reference values used to

communicate acceptable LoAs.

When the OIDC relying party on the server provider
supplies acr_values in the authorization request,
OpenAM uses the OP configuration to map the values
to authentication chains. It runs through the list
of acr_values in order, attempting to use the first
authentication chain that matches. OpenAM then
returns the authentication chain used as the value
of the ID token acr claims property. In this way the
relying part on the service provider can determine the
LoA achieved during authentication.

dtbs Not supported Data To Be Signed

At present OpenAM does not support LoA 4.

As Mobile Connect OP, OpenAM responds to a successful authorization request with a response
containing all the required fields, and also the optional expires_in field. OpenAM supports the
mandatory ID Token properties, though the relying party is expected to use the expires_in value,
rather than specifying max_age as a request parameter:

ID Token Properties

Request Parameter Support Description
iss Supported Issuer identifier
sub Supported Subject identifier

By default OpenAM returns the identifier from the user
profile.

aud Supported Audience, an array including the client_id.
exp Supported Expiration time in seconds since the epoch.
iat Supported Issued at time in seconds since the epoch.
nonce Supported The nonce supplied in the request.
at_hash Supported. Base64url-encoding of the SHA-256 hash of the

"access_token" value.
acr Supported Authentication Context class Reference for the LoA

achieved.

For example, if the request specifies acr_values=loa-3
 loa-2 and OpenAM achieves LoA 2, then the ID token
includes "acr": "loa-2".

amr Supported Authentication Methods Reference to indicate the
authentication method.

Implementing OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

Request Parameter Support Description
OpenAM maps these to authentication modules.

Suggested values include the following: OK, DEV_PIN,
 SIM_PIN, UID_PWD, BIOM, HDR, OTP.

azp Supported Authorized party identifier, which is the client_id.

In addition to the standard OIDC user information returned with userinfo, OpenAM as OP for Mobile
Connect returns the updated_at property, representing the time last updated as seconds since the
epoch.

Configuring as an OP for Mobile Connect

You configure OpenAM as an OpenID Connect provider for Mobile Connect by changing the OAuth2
Provider configuration.

Follow the steps in this procedure to set up the OAuth2 provider service with Mobile Connect
defaults by using the Configure OAuth Provider wizard.

When you create the OAuth2 provider service with the Configure OAuth Provider wizard, the wizard
also creates a standard policy in the Top Level Realm (/) to protect the authorization endpoint. In
this configuration, OpenAM serves the resources to protect, and no separate application is involved.
OpenAM therefore acts both as the policy decision point and policy enforcement point that protects
the OAuth 2.0 authorization endpoint used by OpenID Connect.

There is no requirement to use the wizard or to create the policy in the Top Level Realm. However,
if you create the OAuth 2.0 provider service without the wizard, then you must set up the policy
independently as well. The policy must appear in a policy set of type iPlanetAMWebAgentService. When
configuring the policy allow all authenticated users to perform HTTP GET and POST requests on the
authorization endpoint. The authorization endpoint is described in "OAuth 2.0 Client and Resource
Server Endpoints" in the OAuth 2.0 Guide. For details on creating policies, see "Implementing
Authorization" in the Authorization Guide.

1. In the AM console, select Realms > Realm Name > Dashboard > Configure OAuth Provider >
Configure Mobile Connect.

2. On the Configure Mobile Connect page, select the Realm for the provider service.

3. (Optional) If necessary, adjust the lifetimes for authorization codes, access tokens, and refresh
tokens.

4. (Optional) Select Issue Refresh Tokens unless you do not want the authorization service to supply
a refresh token when returning an access token.

5. (Optional) Select Issue Refresh Tokens on Refreshing Access Tokens if you want the authorization
service to supply a refresh token when refreshing an access token.

6. (Optional) If you have a custom scope validator implementation, put it on the OpenAM classpath,
for example /path/to/tomcat/webapps/openam/WEB-INF/lib/, and specify the class name in the Scope

Implementing OpenID Connect 1.0
Configuring for GSMA Mobile Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

Implementation Class field. For an example, see "Customizing OAuth 2.0 Scope Handling" in the
OAuth 2.0 Guide.

7. Click Create to save your changes.

OpenAM creates an OAuth2 provider service with Mobile Connect default parameter values, as
well as a policy to protect the OAuth2 authorization endpoints.

Warning

If an OAuth2 provider service already exists, it will be overwritten with the new Mobile Connect parameter
values.

8. To access the provider service configuration in the AM console, browse to Realms > Realm Name
> Services, and then click OAuth2 Provider.

For Mobile Connect providers you may want to configure the following settings:

a. For the OpenID Connect acr_values to Auth Chain Mapping, configure the mapping between
acr_values in the authorization request and OpenAM authentication chains.

For example, if the relying party request includes acr_values=loa-3 loa-2 and the map includes
[loa-2]=ldapService, and [loa-3]=msisdnAndHotpChain, then the authentication chain for the
request is msisdnPlusHotpChain.

The ssoadm attribute is forgerock-oauth2-provider-loa-mapping.

b. For the OpenID Connect default acr claim, set the "acr" claim value to return in the ID Token
when falling back to the default authentication chain.

The ssoadm attribute is forgerock-oauth2-provider-default-acr.

c. For the OpenID Connect id_token amr values to Auth Module mappings, set the "amr" values
to return in the ID Token after successfully authenticating with specified authentication
modules.

For example, you could set [UID_PWD]=LDAP to return "amr": ["UID_PWD"] in the ID Token after
authenticating with the LDAP module.

The ssoadm attribute is forgerock-oauth2-provider-amr-mappings.

d. Configure the identity Data Store attributes used to return updated_at values in the ID Token.

For Mobile Connect clients, the user info endpoint returns updated_at values in the ID Token. If
the user profile has never been updated updated_at reflects creation time.

The updated_at values are read from the profile attributes you specify. When using OpenDJ
directory server as an identity Data Store, the value is read from the modifyTimestamp attribute,
or the createTimestamp attribute for a profile that has never been modified.

Implementing OpenID Connect 1.0
Encrypting OpenID Connect ID Tokens

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

The ssoadm attribute for Modified Timestamp attribute name is forgerock-oauth2-provider-
modified-attribute-name.

The ssoadm attribute is for Created Timestamp attribute name is forgerock-oauth2-provider-
created-attribute-name.

In addition, you must also add these attributes to the list of LDAP User Attributes for the data
store. Otherwise, the attributes are not returned when OpenAM reads the user profile. To
edit the list in the AM console, browse to Realms > Realm Name > Data Stores > Data Store
Name > LDAP User Attributes.

9. Click Save to complete the process.

A simple, non-secure GSMA Mobile Connect relying party example is available online.

2.8. Encrypting OpenID Connect ID Tokens
OpenAM supports the ability to encrypt OpenID Connect 1.0 ID tokens, which are Java Web Tokens
(JWTs). OpenAM uses RSAES-PKCS1-v1_5, which is an encryption and decryption scheme in version
1.5 of PKCS #1, as the encryption algorithm for the ID token.

The supported encryption methods are A256CBC-HS512, which specifies the
AES_256_CBC_HMAC_SHA_512 authenticated encryption algorithm (512-bit key), and A128CBC-
HS256, which specifies the AES_128_CBC_HMAC_SHA_256 authenticated encryption algorithm (256-
bit key).

To Configure OpenID Connect ID Token Encryption

1. Start the AM console, and select the realm that you are working with.

2. Navigate to Dashboard > Configure OAuth > Configure OpenID, and then select Create.

3. Navigate to Applications > OAuth 2.0.

4. Under Agent, select New, configure the Name and Password fields for the agent, and then select
Create.

5. On the OAuth 2.0/OpenID Connect Client page, click the agent you just created, and add the
openid scope.

6. Select the Enabled checkbox for Enable ID Token Encryption.

7. Run Java code to generate an encoded public client encryption key. An example snippet is
presented below:

https://stash.forgerock.org/projects/COM/repos/openid/browse

Implementing OpenID Connect 1.0
Configuring Digital Signatures

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(1024);
StringWriter writer = new StringWriter();
PEMWriter pemWriter = new PEMWriter(writer);
pemWriter.writeObject(keyPairGenerator.generateKeyPair().getPublic());
pemWriter.flush();
return writer.toString();

8. Copy and paste the encoded public client key generated in the previous step into the Client ID
Token Public Encryption Key field. This encoded public key will be used to encrypt ID tokens.

9. Run through the authorization OpenID Connect code flow to generate the encrypted ID token. For
more information, see "OpenID Connect Authorization Code Flow".

2.9. Configuring Digital Signatures
OpenAM supports digital signature algorithms that secure the integrity of its JSON payload, which is
outlined in the JSON Web Algorithm specification (RFC 7518).

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm) Header
Parameter Values for JWS:

• HS256 - HMAC with SHA-256
• HS384 - HMAC with SHA-384
• HS512 - HMAC with SHA-512
• RS256 - RSA using SHA-256
• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve
• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve
• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve

If you intend to use an ECDSA signing algorithm, you must generate a public/private key pair for use
with ECDSA. To generate the public and private key pair, see step 1 in "Configuring Elliptic Curve
Digital Signature Algorithms" in the Authentication and Single Sign-On Guide.

To Configure Digital Signatures

1. Start the AM console. Under Realms, select the realm that you are working with.

2. First, create or update your OAuth2 provider:

a. Select Dashboard > Configure OAuth Provider, then select Configure OpenID Connect, then
click Create.

b. Click Services > OAuth2 Provider.

c. On the OAuth2 Token Signing Algorithm drop-down list, select the signing algorithm to use
for your digital signatures.

https://tools.ietf.org/html/rfc7518
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Implementing OpenID Connect 1.0
Configuring Digital Signatures

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

d. Take one of the following actions depending on the token signing algorithm:

i. If you are using an HMAC signing algorithm, enter the Base64-encoded key used by
HS256, HS384 and HS512 in the Token Signing HMAC Shared Secret field.

ii. If you are using RS256, enter the public/private key pair used by RS256 in the Token
Signing RSA public/private key pair field. The public/private key pair will be retrieved
from the keystore referenced by the property com.sun.identity.saml.xmlsig.keystore.

iii. If you are using an ECDSA signing algorithm, enter the list of public/private key pairs
used for the elliptic curve algorithms (ES256/ES384/ES512) In the Token Signing ECDSA
public/private key pair alias field. For example, ES256|es256test. Each of the public/private
key pairs will be retrieved from the keystore referenced by the property com.sun.identity
.saml.xmlsig.keystore.

iv. Click Save Changes.

3. Next, update the OpenID Connect client:

a. Under Agent, click New, enter a Name and Password for the agent, and then click Create.

b. In the ID Token Signing Algorithm field, enter the signing algorithm that the ID token for this
client must be signed with. Default: RS256.

• HS256 (HMAC with SHA-256)
• HS384 (HMAC with SHA-384)
• HS512 (HMAC with SHA-512)
• RS256 (RSA using SHA-256)
• ES256 (ECDSA with SHA-256 and NIST standard P-256 elliptic curve)
• ES384 (ECDSA with SHA-384 and NIST standard P-384 elliptic curve)
• ES512 (ECDSA with SHA-512 and NIST standard P-521 elliptic curve)

c. Click Save.

To Obtain the OAuth 2.0/OpenID Connect 1.0 Public Signing Key

OpenAM exposes the public keys used to digitally sign OAuth 2.0 and OpenID Connect 1.0 access
and refresh tokens at a JSON web key (JWK) URI endpoint, which is exposed from all realms for an
OAuth2 provider. The following steps show how to access the public keys:

1. To find the JWK URI, perform an HTTP GET at /oauth2/realms/root/.well-known/openid-configuration.

curl http://openam.example.com:8080/openam/oauth2/realms/root/.well-known/openid-configuration
{
 "id_token_encryption_alg_values_supported":[
 "RSA1_5"
],
 "response_types_supported":[
 "token id_token",

Implementing OpenID Connect 1.0
Configuring Digital Signatures

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

 "code token",
 "code token id_token",
 "token",
 "code id_token",
 "code",
 "id_token"
],
 "registration_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
register",
 "token_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/access_token",
 "end_session_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
endSession",
 "scopes_supported":[
 "phone",
 "address",
 "email",
 "openid",
 "profile"
],
 "acr_values_supported":[

],
 "version":"3.0",
 "userinfo_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/userinfo",
 "token_endpoint_auth_methods_supported":[
 "client_secret_post",
 "private_key_jwt",
 "client_secret_basic"
],
 "subject_types_supported":[
 "public"
],
 "issuer":"http://openam.example.com:8080/openam/oauth2/realms/root",
 "id_token_encryption_enc_values_supported":[
 "A256CBC-HS512",
 "A128CBC-HS256"
],
 "claims_parameter_supported":true,
 "jwks_uri":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/jwk_uri",
 "id_token_signing_alg_values_supported":[
 "ES384",
 "ES256",
 "ES512",
 "HS256",
 "HS512",
 "RS256",
 "HS384"
],
 "check_session_iframe":"http://openam.example.com:8080/openam/oauth2/realms/root/connect/
checkSession",
 "claims_supported":[
 "zoneinfo",
 "phone_number",
 "address",
 "email",
 "locale",
 "name",
 "family_name",
 "given_name",

Implementing OpenID Connect 1.0
Configuring Digital Signatures

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

 "profile"
],
 "authorization_endpoint":"http://openam.example.com:8080/openam/oauth2/realms/root/authorize"
}

2. Perform an HTTP GET at the JWKS URI to get the public signing key:
$ curl http://openam.example.com:8080/openam/oauth2/realms/root/connect/jwk_uri
{
 "keys":
 [
 {
 "kty":"RSA",
 "kid":"SylLC6Njt1KGQktD9Mt+0zceQSU=",
 "use":"sig",
 "alg":"RS256",
 "n":"AK0kHP1O-RgdgLSoWxkuaYoi5Jic6hLKeuKw8WzCfsQ68ntBDf6tVOTn_kZA7Gjf4oJ
 AL1dXLlxIEy-kZWnxT3FF-0MQ4WQYbGBfaW8LTM4uAOLLvYZ8SIVEXmxhJsSlvaiTWCbNFaOf
 iII8bhFp4551YB07NfpquUGEwOxOmci_",
 "e":"AQAB"
 }
]
}

Using OpenID Connect 1.0
Authorizing OpenID Connect 1.0 Relying Parties

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

Chapter 3

Using OpenID Connect 1.0
This chapter covers examples and usage of OpenAM with OpenID Connect 1.0.

3.1. Authorizing OpenID Connect 1.0 Relying Parties
Registered clients can request authorization through OpenAM.

OpenID Connect 1.0 supports both a Basic Client Profile using the OAuth 2.0 authorization code
grant, and an Implicit Client Profile using the OAuth 2.0 implicit grant. These client profiles rely on
the OAuth 2.0 endpoints for authorization. Those endpoints are described in "OAuth 2.0 Client and
Resource Server Endpoints" in the OAuth 2.0 Guide.

OpenID Connect Authorization Code Flow and Implicit Flow define how clients interact with the
provider to obtain end user authorization and profile information. Although you can run the simple
example relying parties that are mentioned in this section without setting up Transport Layer
Security, do not deploy relying parties in production without securing the transport.

Code for the relying party examples shown here is available online. Clone the example project to
deploy it in the same web container as OpenAM. Edit the configuration at the outset of the .js
files in the project, register a corresponding profile for the example relying party as described in
"Registering OpenID Connect Relying Parties", and browse the deployment URL to see the initial
page.

https://stash.forgerock.org/projects/COM/repos/openid/browse

Using OpenID Connect 1.0
Authorization Code Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

OpenID Connect Client Profiles Start Page

In addition, authorized clients can access end user information through the OpenID Connect 1.0
specific endpoint /oauth2/userinfo.

3.1.1. Authorization Code Flow Example

OpenID Connect Authorization Code Flow is designed for web-based relying parties that use the
OAuth 2.0 Authorization Code grant type. This grant type makes it possible for the relying party to
get the access code by using the authorization code directly, without passing through the end user's
browser. To protect its client secret (password), part of the relying party must run on a server.

Using OpenID Connect 1.0
Authorization Code Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

In the example, the Basic Client Profile Start Page describes the prerequisite configuration, which
must be part of the relying party profile that is stored in the OpenAM realm where you set up the
OpenID Provider. In the AM console, check that the OAuth 2.0 client profile matches the settings
described.

OpenID Connect Basic Client Profile Start Page

Log out of OpenAM, and click the link at the bottom of the page to request authorization. The link
sends an HTTP GET request asking for openid profile scopes to the OpenID Provider authorization
URI.

Using OpenID Connect 1.0
Authorization Code Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

If everything is configured correctly, OpenAM's OpenID Provider has you authenticate as an end
user, such as the demo user with username demo and password changeit, and grant (Allow) the relying
party access to your profile.

If you successfully authenticate and allow the example relying party access to your profile, OpenAM
returns an authorization code to the example relying party. The example relying party then uses the
authorization code to request an access token and an ID token. It shows the response to that request.
It also validates the ID token signature using the default (HS256) algorithm, and decodes the ID
token to validate its content and show it in the output. Finally, it uses the access token to request
information about the end user who authenticated, and displays the result.

OpenID Connect Basic Client Profile Response Page

Using OpenID Connect 1.0
Implicit Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

Notice that in addition to the standard payload, the ID token indicates the end user's OpenAM realm,
in this case "realm": "/".

3.1.2. Implicit Flow Example

OpenID Connect Implicit Flow is designed for relying parties that use the OAuth 2.0 Implicit grant
type. This grant type is designed for relying parties implemented in a browser. Rather than protect
a client secret, the client profile must register a protected redirect URI in advance with the OpenID
Provider.

In the example, the Implicit Client Profile Start Page describes the prerequisite configuration, which
must be part of the relying party profile that is stored in the OpenAM realm where you set up the
OpenID Provider. In the AM console, check that the OAuth 2.0 client profile matches the settings
described. If you have already configured the agent profile for the Authorization Code Flow example,
then you still need to add the redirect URI for the Implicit Flow.

Using OpenID Connect 1.0
Implicit Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

OpenID Connect Implicit Client Profile Start Page

Log out of OpenAM, and click the link at the bottom of the page to request authorization. The link
sends an HTTP GET request asking for id_token token response types and openid profile scopes to the
OpenID Provider authorization URI.

If everything is configured correctly, OpenAM's OpenID Provider has you authenticate as an end
user, such as the demo user with username demo and password changeit, and grant (Allow) the relying
party access to your profile.

If you successfully authenticate and allow the example relying party access to your profile, OpenAM
returns the access token and ID token directly in the fragment (after #) of the redirect URI. The
relying party does not get an authorization code. The relying party shows the response to the request.
It also validates the ID token signature using the default (HS256) algorithm, and decodes the ID

Using OpenID Connect 1.0
Implicit Flow Example

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

token to validate its content and show it in the output. Finally, the relying party uses the access token
to request information about the end user who authenticated, and displays the result.

OpenID Connect Implicit Client Profile Response Page

As for the Authorization Code Flow example, the ID Token indicates the end user's OpenAM realm
and OpenAM token ID in addition to the standard information.

Customizing OpenID Connect 1.0
Scripting OpenID Connect 1.0 Claims

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

Chapter 4

Customizing OpenID Connect 1.0
This chapter covers customizing OpenAM's support for OpenID Connect 1.0.

4.1. Scripting OpenID Connect 1.0 Claims
This section demonstrates how to use the default OIDC claims script to return the profile attributes of
a user in response to an OpenID Connect request for the profile scope.

The default OIDC claims script maps the following claims to the profile scope:

• zoneinfo

• family_name

• locale

• name

To examine the contents of the default OIDC claims script in the AM console browse to Realms > Top
Level Realm > Scripts, and then click OIDC Claims Script.

For general information about scripting in OpenAM, see "About Scripting".

For information about APIs available for use when scripting OpenID Connect 1.0 claims, see the
following sections:

• "Global Scripting API Functionality"

• "OpenID Connect 1.0 Claims API Functionality"

4.1.1. Preparing

OpenAM requires a small amount of configuration before trying the example OIDC claims script. You
must first create an OAuth2 provider with OpenID Connect settings, and register an OpenID Connect
client, before you can authenticate to the client using a web browser.

The procedures in this section are:

• "To Create an OpenID Connect Provider Service"

Customizing OpenID Connect 1.0
Preparing

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

• "To Register an OpenID Connect Client"

To Create an OpenID Connect Provider Service

Follow the steps in this procedure to create an OpenID Connect provider service by using the wizard.

1. Log in to OpenAM as an administrator, for example amadmin.

2. Click Realms > Top Level Realm > Configure OAuth Provider > Configure OpenID Connect.

3. On the Configure OpenID Connect page, accept the default values and then click Create.

4. Navigate to Realms > Top Level Realm > Services, click OAuth2 Provider, and verify that the
value for OIDC Claims Script is the default script, OIDC Claims Script.

For a more detailed explanation and example of creating an OpenID Connect provider service, see
"Configuring as an OpenID Connect Provider".

To Register an OpenID Connect Client

Follow the steps in this procedure to create an OpenID Connect client agent profile.

1. Log in to OpenAM as an administrator, for example amadmin.

2. Navigate to Realms > Realm Name > Applications > OAuth 2.0.

3. In the Agent table, select New.

4. Enter a name for the client, such as oidcTest, provide a password, and then click Create.

5. On the OAuth 2.0/OpenID Connect Client page, click the agent name to configure the agent.

6. On the edit client page:

a. In Redirection URIs, enter an example URI such as http://www.example.com.

b. In Scope(s), enter both profile and openid.

The profile scope will return details about the subject such as given name and timezone. The
openid scope indicates this is an OpenID Connect client.

c. In Display name, enter the name of the client as it will be displayed on the consent page, for
example OIDC Claims Script Client.

7. Save your work.

For a more detailed explanation and examples of registering an OpenID Connect client, see
"Registering OpenID Connect Relying Parties" and "OAuth 2.0 and OpenID Connect 1.0 Client
Settings".

Customizing OpenID Connect 1.0
Trying the Default OIDC Claims Script

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

4.1.2. Trying the Default OIDC Claims Script

This section shows how to authenticate to a registered OpenID Connect client and request scopes
from OpenAM, which in turn uses the default OIDC Claims script to populate the scope with claims
and profile values.

To Authenticate to an OIDC Client and use the Default OIDC Claims Script

1. Log out of OpenAM.

2. In an Internet browser, navigate to the OpenAM OAuth 2.0 authorization endpoint, /oauth2/
authorize, and specify the following query parameters, with the values you configured in the agent
profile:

Query parameters for OpenID Connect Authorization to an Agent Profile

Query Parameter Agent Profile Property Value
client_id Name of the agent, for example oidcTest.
redirect_uri Redirection URIs, for example http://www.example.com.
response_type Response Types, for example code.
scope Scope(s), for example openid profile.

For example: http://openam.example.com:8080/openam/oauth2/realms/root/authorize?
client_id=oidcTest&redirect_uri=http://www.example.com&response_type=code&scope=openid profile

3. Log in to OpenAM as demo, with password changeit.

4. On the consent page, expand the panel labelled Your personal information to see the claim values
the default OIDC script has populated into the requested profile scope.

Customizing OpenID Connect 1.0
Trying the Default OIDC Claims Script

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

5. Click Allow to be redirected to the Redirection URI specified in the agent profile. The
authorization code is appended to the redirection URI as the value of the code query parameter.

Reference
OpenID Connect 1.0 Standards

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

Chapter 5

Reference
This reference section covers settings and other information relating to OpenID Connect 1.0 support
in OpenAM.

5.1. OpenID Connect 1.0 Standards
OpenAM implements the following RFCs, Internet-Drafts, and standards relating to OpenID Connect
1.0:

OpenID Connect 1.0

OpenAM can be configured to play the role of OpenID provider. The OpenID Connect
specifications depend on OAuth 2.0, JSON Web Token, Simple Web Discovery and related
specifications. The following specifications make up OpenID Connect 1.0.

• OpenID Connect Core 1.0 defines core OpenID Connect 1.0 features.

Note

In section 5.6 of the specification, AM supports Normal Claims. The optional Aggregated Claims and
Distributed Claims representations are not supported by AM.

• OpenID Connect Discovery 1.0 defines how clients can dynamically recover information about
OpenID providers.

• OpenID Connect Dynamic Client Registration 1.0 defines how clients can dynamically register
with OpenID providers.

• OpenID Connect Session Management 1.0- Draft 10 describes how to manage OpenID Connect
sessions, including logout.

• OAuth 2.0 Multiple Response Type Encoding Practices defines additional OAuth 2.0 response
types used in OpenID Connect.

• OAuth 2.0 Form Post Response Mode defines how OpenID providers return OAuth 2.0
Authorization Response parameters in auto-submitting forms.

OpenID Connect 1.0 also provides implementer's guides for client developers.

• OpenID Connect Basic Client Implementer's Guide 1.0

http://openid.net/connect/
http://openid.net/specs/openid-connect-core-1_0.html
http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-session-1_0-10.html
http://openid.net/specs/oauth-v2-multiple-response-types-1_0.html
http://openid.net/specs/oauth-v2-form-post-response-mode-1_0.html
http://openid.net/specs/openid-connect-basic-1_0.html

Reference
OpenID Connect 1.0 Claims API Functionality

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

• OpenID Connect Implicit Client Implementer's Guide 1.0

5.2. OpenID Connect 1.0 Claims API Functionality
This section covers functionality available when scripting OIDC claim handling using the OIDC claims
script context type.

5.2.1. Accessing OpenID Connect Requests

Server-side scripts can access the OpenID Connect request through the following objects:

OIDC Request Objects

Object Type Description
scopes Set<String> Contains a set of the requested scopes. For

example:
[
 "profile",
 "openid"
]

identity Class Contains a representation of the identity of the
resource owner.

For more details, see the com.sun.identity.idm
.AMIdentity class in the OpenAM Javadoc.

session Class Contains a representation of the user's session
object if the request contained a session cookie.

For more details, see the com.iplanet.sso
.SSOToken class in the OpenAM Javadoc.

claims Map<String, Object> Contains a map of the claims the server provides
by default. For example:
{
 "sub": "248289761001",
 "updated_at": "1450368765"
}

requestedClaims Map<String,
 Set<String>>

Contains requested claims if the claims query
parameter is used in the request and Enable
"claims_parameter_supported" is checked in
the OAuth2 provider service configuration,
otherwise is empty.

For more information see "Requesting Claims
using the "claims" Request Parameter" in the
OpenID Connect Core 1.0 specification.

http://openid.net/specs/openid-connect-implicit-1_0.html
https://backstage.forgerock.com/static/docs/am/5/apidocs/?com/sun/identity/idm/AMIdentity.html
https://backstage.forgerock.com/static/docs/am/5/apidocs/?com/iplanet/sso/SSOToken.html
http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter
http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

Reference
OAuth2 Provider

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

Object Type Description
Example:
{
 "given_name": {
 "essential": true,
 "values": [
 "Demo User",
 "D User"
]
 },
 "nickname": null,
 "email": {
 "essential": true
 }
}

5.3. OAuth2 Provider
amster type ID: oauth-oidc

5.3.1. Global Attributes
The following settings appear on the Global Attributes tab:

Token Blacklist Cache Size

Number of blacklisted tokens to cache in memory to speed up blacklist checks and reduce load on
the CTS.

Default value: 10000

amster data attribute: blacklistCacheSize

Blacklist Poll Interval (seconds)

How frequently to poll for token blacklist changes from other servers, in seconds.

How often each server will poll the CTS for token blacklist changes from other servers. This
is used to maintain a highly compressed view of the overall current token blacklist improving
performance. A lower number will reduce the delay for blacklisted tokens to propagate to all
servers at the cost of increased CTS load. Set to 0 to disable this feature completely.

Default value: 60

amster data attribute: blacklistPollInterval

Blacklist Purge Delay (minutes)

Length of time to blacklist tokens beyond their expiry time.

Reference
Core

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

Allows additional time to account for clock skew to ensure that a token has expired before it is
removed from the blacklist.

Default value: 1

amster data attribute: blacklistPurgeDelay

HMAC ID Token Authenticity Secret

A secret to use when signing a claim in HMAC-signed ID tokens so that authenticity can be
assured when they are presented back to OpenAM.

Default value: l6QZJe4O4be65x8TU7F2ihonPxCgimk5ekIOL+L50Zc=

amster data attribute: idTokenAuthenticitySecret

ID Token Signing Key Alias for Agent Clients

The alias for the RSA key that should be used signing ID tokens for Agent OAuth2 Clients

Default value: test

amster data attribute: agentIdTokenSigningKeyAlias

5.3.2. Core
The following settings appear on the Core tab:

Use Stateless Access & Refresh Tokens

When enabled, OpenAM issues access and refresh tokens that can be inspected by resource
servers.

Default value: false

amster data attribute: statelessTokensEnabled

Authorization Code Lifetime (seconds)

The time an authorization code is valid for, in seconds.

Default value: 120

amster data attribute: codeLifetime

Refresh Token Lifetime (seconds)

The time in seconds a refresh token is valid for. If this field is set to -1, the token will never
expire.

Default value: 604800

Reference
Advanced

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

amster data attribute: refreshTokenLifetime

Access Token Lifetime (seconds)

The time an access token is valid for, in seconds.

Default value: 3600

amster data attribute: accessTokenLifetime

Issue Refresh Tokens

Whether to issue a refresh token when returning an access token.

Default value: true

amster data attribute: issueRefreshToken

Issue Refresh Tokens on Refreshing Access Tokens

Whether to issue a refresh token when refreshing an access token.

Default value: true

amster data attribute: issueRefreshTokenOnRefreshedToken

Saved Consent Attribute Name

Name of a case-sensitive and multi-valued attribute on resource owner profiles where OpenAM
can save authorization consent decisions.

When the resource owner chooses to save the decision to authorize access for a client
application, then OpenAM updates the resource owner's profile to avoid having to prompt the
resource owner to grant authorization when the client issues subsequent authorization requests.

amster data attribute: savedConsentAttribute

5.3.3. Advanced

The following settings appear on the Advanced tab:

Custom Login URL Template

Custom URL for handling login, to override the default OpenAM login page.

Supports Freemarker syntax, with the following variables:

Variable Description
gotoUrl The URL to redirect to after login.

Reference
Advanced

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

acrValues The Authentication Context Class Reference (acr)
values for the authorization request.

realm The OpenAM realm the authorization request was
made on.

module The name of the OpenAM authentication
module requested to perform resource owner
authentication.

service The name of the OpenAM authentication
chain requested to perform resource owner
authentication.

locale A space-separated list of locales, ordered by
preference.

The following example template redirects users to a non-OpenAM front end to handle login, which
will then redirect back to the /oauth2/authorize endpoint with any required parameters:

http://mylogin.com/login?goto=${goto}<#if acrValues??>&acr_values=${acrValues}</#if><#if realm??
>&realm=${realm}</#if><#if module??>&module=${module}</#if><#if service??>&service=${service}</#if><#if
 locale??>&locale=${locale}</#if>

amster data attribute: customLoginUrlTemplate

Scope Implementation Class

The class that contains the required scope implementation, must implement the org.forgerock
.oauth2.core.ScopeValidator interface.

Default value: org.forgerock.openam.oauth2.OpenAMScopeValidator

amster data attribute: scopeImplementationClass

Response Type Plugins

List of plugins that handle the valid response_type values.

OAuth 2.0 clients pass response types as parameters to the OAuth 2.0 Authorization endpoint (
/oauth2/authorize) to indicate which grant type is requested from the provider. For example, the
client passes code when requesting an authorization code, and token when requesting an access
token.

Values in this list take the form response-type|plugin-class-name.

Default value:

code|org.forgerock.oauth2.core.AuthorizationCodeResponseTypeHandler
device_code|org.forgerock.oauth2.core.TokenResponseTypeHandler
token|org.forgerock.oauth2.core.TokenResponseTypeHandler

amster data attribute: responseTypeClasses

Reference
Advanced

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

User Profile Attribute(s) the Resource Owner is Authenticated On

Names of profile attributes that resource owners use to log in. You can add others to the default,
for example mail.

Default value: uid

amster data attribute: authenticationAttributes

User Display Name attribute

The profile attribute that contains the name to be displayed for the user on the consent page.

Default value: cn

amster data attribute: displayNameAttribute

Supported Scopes

The set of supported scopes, with translations.

Scopes may be entered as simple strings or pipe-separated strings representing the internal
scope name, locale, and localized description.

For example: read|en|Permission to view email messages in your account

Locale strings are in the format: language_country_variant, for example en, en_GB, or en_US_WIN.

If the locale and pipe is omitted, the description is displayed to all users that have undefined
locales.

If the description is also omitted, nothing is displayed on the consent page for the scope. For
example specifying read| would allow the scope read to be used by the client, but would not
display it to the user on the consent page when requested.

Important

Do not add the special token am-introspect-all-tokens to this list.

Instead, add it to the list of scopes in the client profile of a client that should have access to introspect
access tokens issued to other clients in the same realm.

amster data attribute: supportedScopes

Subject Types supported

List of subject types supported. Valid values are:

• public - Each client receives the same subject (sub) value.

Reference
Advanced

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

• pairwise - Each client receives a different subject (sub) value, to prevent correlation between
clients.

Default value: public

amster data attribute: supportedSubjectTypes

Default Client Scopes

List of scopes a client will be granted if they request registration without specifying which scopes
they want. Default scopes are NOT auto-granted to clients created through the OpenAM console.

amster data attribute: defaultScopes

OAuth2 Token Signing Algorithm

Algorithm used to sign stateless OAuth 2.0 tokens in order to detect tampering.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

The possible values for this property are:

HS256
HS384
HS512
RS256
ES256
ES384
ES512

Default value: HS256

amster data attribute: tokenSigningAlgorithm

Stateless Token Compression

Whether stateless access and refresh tokens should be compressed.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
Advanced

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

amster data attribute: tokenCompressionEnabled

Token Signing HMAC Shared Secret

Base64-encoded key used by HS256, HS384 and HS512.

Default value: l6QZJe4O4be65x8TU7F2ihonPxCgimk5ekIOL+L50Zc=

amster data attribute: tokenSigningHmacSharedSecret

Token Signing RSA public/private key pair

The public/private key pair used by RS256.

The public/private key pair will be retrieved from the keystore referenced by the property com.sun
.identity.saml.xmlsig.keystore.

Default value: test

amster data attribute: keypairName

Token Signing ECDSA public/private key pair alias

The list of public/private key pairs used for the elliptic curve algorithms (ES256/ES384/ES512).
Add an entry to specify an alias for a specific elliptic curve algorithm, for example ES256|
es256Alias.

Each of the public/private key pairs will be retrieved from the keystore referenced by the
property com.sun.identity.saml.xmlsig.keystore.

Default value:

ES512|es512test
ES384|es384test
ES256|es256test

amster data attribute: tokenSigningECDSAKeyAlias

Subject identifier hash salt

If pairwise subject types are supported, it is STRONGLY RECOMMENDED to change this value.
It is used in the salting of hashes for returning specific sub claims to individuals using the same
request_uri or sector_identifier_uri.

For example, you might set this property to: changeme

amster data attribute: hashSalt

Code verifier parameter required

If enabled, requests using the authorization code grant require a code_challenge attribute.

Reference
OpenID Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

For more information, read the draft specification for this feature.

Default value: false

amster data attribute: codeVerifierEnforced

Modified Timestamp attribute name

The identity Data Store attribute used to return modified timestamp values.

amster data attribute: modifiedTimestampAttribute

Created Timestamp attribute name

The identity Data Store attribute used to return created timestamp values.

amster data attribute: createdTimestampAttribute

Allow clients to skip consent

If enabled, clients may be configured so that the resource owner will not be asked for consent
during authorization flows.

Default value: false

amster data attribute: clientsCanSkipConsent

Enable auth module messages for Password Credentials Grant

If enabled, authentication module failure messages are used to create Resource Owner Password
Credentials Grant failure messages. If disabled, a standard authentication failed message is used.

The Password Grant Type requires the grant_type=password parameter.

Default value: false

amster data attribute: moduleMessageEnabledInPasswordGrant

5.3.4. OpenID Connect

The following settings appear on the OpenID Connect tab:

OIDC Claims Script

The script that is run when issuing an ID token or making a request to the userinfo endpoint
during OpenID requests.

The script gathers the scopes and populates claims, and has access to the access token, the user's
identity and, if available, the user's session.

https://tools.ietf.org/html/draft-ietf-oauth-spop-12

Reference
OpenID Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

The possible values for this property are:

OIDC Claims Script

Default value: OIDC Claims Script

amster data attribute: oidcClaimsScript

ID Token Signing Algorithms supported

Algorithms supported to sign OpenID Connect id_tokens.

OpenAM supports signing algorithms listed in JSON Web Algorithms (JWA): "alg" (Algorithm)
Header Parameter Values for JWS:

• HS256 - HMAC with SHA-256.

• HS384 - HMAC with SHA-384.

• HS512 - HMAC with SHA-512.

• ES256 - ECDSA with SHA-256 and NIST standard P-256 elliptic curve.

• ES384 - ECDSA with SHA-384 and NIST standard P-384 elliptic curve.

• ES512 - ECDSA with SHA-512 and NIST standard P-521 elliptic curve.

• RS256 - RSASSA-PKCS-v1_5 using SHA-256.

Default value:

ES384
HS256
HS512
ES256
RS256
HS384
ES512

amster data attribute: supportedIDTokenSigningAlgorithms

ID Token Encryption Algorithms supported

Encryption algorithms supported to encrypt OpenID Connect ID tokens in order to hide its
contents.

OpenAM supports the following ID token encryption algorithms:

• RSA-OAEP - RSA with Optimal Asymmetric Encryption Padding (OAEP) with SHA-1 and MGF-1.

• RSA-OAEP-256 - RSA with OAEP with SHA-256 and MGF-1.

http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1
http://tools.ietf.org/html/draft-ietf-jose-json-web-algorithms#section-3.1

Reference
OpenID Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

• A128KW - AES Key Wrapping with 128-bit key derived from the client secret.

• RSA1_5 - RSA with PKCS#1 v1.5 padding.

• A256KW - AES Key Wrapping with 256-bit key derived from the client secret.

• dir - Direct encryption with AES using the hashed client secret.

• A192KW - AES Key Wrapping with 192-bit key derived from the client secret.

Default value:

RSA-OAEP
RSA-OAEP-256
A128KW
RSA1_5
A256KW
dir
A192KW

amster data attribute: supportedIDTokenEncryptionAlgorithms

ID Token Encryption Methods supported

Encryption methods supported to encrypt OpenID Connect ID tokens in order to hide its contents.

OpenAM supports the following ID token encryption algorithms:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default value:

A256GCM
A192GCM
A128GCM
A128CBC-HS256
A192CBC-HS384
A256CBC-HS512

amster data attribute: supportedIDTokenEncryptionMethods

Supported Claims

Set of claims supported by the OpenID Connect /oauth2/userinfo endpoint, with translations.

Claims may be entered as simple strings or pipe separated strings representing the internal claim
name, locale, and localized description.

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

For example: name|en|Your full name..

Locale strings are in the format: language + "_" + country + "_" + variant, for example en, en_GB,
or en_US_WIN. If the locale and pipe is omitted, the description is displayed to all users that have
undefined locales.

If the description is also omitted, nothing is displayed on the consent page for the claim. For
example specifying family_name| would allow the claim family_name to be used by the client, but
would not display it to the user on the consent page when requested.

amster data attribute: supportedClaims

OpenID Connect JWT Token Lifetime (seconds)

The amount of time the JWT will be valid for, in seconds.

Default value: 3600

amster data attribute: jwtTokenLifetime

5.3.5. Advanced OpenID Connect

The following settings appear on the Advanced OpenID Connect tab:

Remote JSON Web Key URL

The Remote URL where the providers JSON Web Key can be retrieved.

If this setting is not configured, then OpenAM provides a local URL to access the public key of the
private key used to sign ID tokens.

amster data attribute: jkwsURI

Idtokeninfo endpoint requires client authentication

When enabled, the /oauth2/idtokeninfo endpoint requires client authentication if the signing
algorithm is set to HS256, HS384, or HS512.

Default value: true

amster data attribute: idTokenInfoClientAuthenticationEnabled

Enable "claims_parameter_supported"

If enabled, clients will be able to request individual claims using the claims request parameter, as
per section 5.5 of the OpenID Connect specification.

Default value: false

amster data attribute: claimsParameterSupported

http://openid.net/specs/openid-connect-core-1_0.html#ClaimsParameter

Reference
Advanced OpenID Connect

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

Allow Open Dynamic Client Registration

Allow clients to register without an access token. If enabled, you should consider adding some
form of rate limiting. See Client Registration in the OpenID Connect specification for details.

Default value: false

amster data attribute: allowDynamicRegistration

Generate Registration Access Tokens

Whether to generate Registration Access Tokens for clients that register via open dynamic client
registration. Such tokens allow the client to access the Client Configuration Endpoint as per the
OpenID Connect specification. This setting has no effect if open dynamic client registration is
disabled.

Default value: true

amster data attribute: generateRegistrationAccessTokens

OpenID Connect acr_values to Auth Chain Mapping

Maps OpenID Connect ACR values to authentication chains. See the acr_values parameter in the
OpenID Connect authentication request specification for more details.

amster data attribute: loaMapping

OpenID Connect default acr claim

Default value to use as the acr claim in an OpenID Connect ID Token when using the default
authentication chain.

amster data attribute: defaultACR

OpenID Connect id_token amr values to Auth Module mappings

Specify amr values to be returned in the OpenID Connect id_token. Once authentication has
completed, the authentication modules that were used from the authentication service will be
mapped to the amr values. If you do not require amr values, or are not providing OpenID Connect
tokens, leave this field blank.

amster data attribute: amrMappings

Always return claims in ID Tokens

If enabled, include scope-derived claims in the id_token, even if an access token is also returned
that could provide access to get the claims from the userinfo endpoint.

If not enabled, if an access token is requested the client must use it to access the userinfo
endpoint for scope-derived claims, as they will not be included in the ID token.

Default value: false

http://openid.net/specs/openid-connect-registration-1_0.html#ClientRegistration
http://openid.net/specs/openid-connect-registration-1_0.html#ClientConfigurationEndpoint
http://openid.net/specs/openid-connect-core-1_0.html#AuthRequest

Reference
Device Flow

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

amster data attribute: alwaysAddClaimsToToken

Store Ops Tokens

Whether OpenAM will store the ops tokens corresponding to OpenID Connect sessions in the
CTS store. Note that session management related endpoints will not work when this setting is
disabled.

Default value: true

amster data attribute: storeOpsTokens

Authorized OIDC SSO Clients

Specify a list of client names that are authorized to use OpenID Connect ID tokens as SSO
Tokens.

Clients in this list can use ID tokens issued by AM to a user as if it were a full SSO token
belonging to that user. For information on SSO tokens, see "About Sessions" in the Authentication
and Single Sign-On Guide.

Important

Only add known trusted clients, as enabling this feature grants more authority than an ID Token normally
provides.

Note that Java EE Agents 5 and Web Policy Agents 5 use OpenID Connect for communicating
with AM. Agent profiles are automatically granted this privilege and do not need to be
whitelisted.

amster attribute: authorisedOpenIdConnectSSOClients

5.3.6. Device Flow

The following settings appear on the Device Flow tab:

Verification URL

The URL that the user will be instructed to visit to complete their OAuth 2.0 login and consent
when using the device code flow.

amster data attribute: verificationUrl

Device Completion URL

The URL that the user will be sent to on completion of their OAuth 2.0 login and consent when
using the device code flow.

amster data attribute: completionUrl

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

Device Code Lifetime (seconds)

The lifetime of the device code, in seconds.

Default value: 300

amster data attribute: deviceCodeLifetime

Device Polling Interval

The polling frequency for devices waiting for tokens when using the device code flow.

Default value: 5

amster data attribute: devicePollInterval

5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings
To register an OAuth 2.0 client with OpenAM as the OAuth 2.0 authorization server, or register an
OpenID Connect 1.0 client through The AM console, then create an OAuth 2.0 Client agent profile.
After creating the agent profile, you can further configure the properties in the AM console by
navigating to Realms > Realm Name > Applications > OAuth 2.0 > Client Name.

OAuth 2.0 and OpenID Connect 1.0 Client Configuration Fields

The following configuration fields are for OAuth 2.0 and OpenID Connect 1.0:

Group

Set this field if you have configured an OAuth 2.0 Client agent group.

Status

Specify whether the client profile is active for use or inactive.

Client secret

Specify the client secret as described by RFC 6749 in the section, Client Password.

For OAuth 2.0/OpenID Connect 1.0 clients, AM uses the client password as the client shared
secret key when signing the contents of the request parameter with HMAC-based algorithms, such
as HS256.

Client type

Specify the client type.

Confidential clients can maintain the confidentiality of their credentials, such as a web
application running on a server where its credentials are protected. Public clients run the risk

http://tools.ietf.org/html/rfc6749#section-2.3.1

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

of exposing their passwords to a host or user agent, such as a JavaScript client running in a
browser.

Redirection URIs

Specify client redirection endpoint URIs as described by RFC 6749 in the section, Redirection
Endpoint. OpenAM's OAuth 2.0 authorization service redirects the resource owner's user-agent
back to this endpoint during the authorization code grant process. If your client has more than
one redirection URI, then it must specify the redirection URI to use in the authorization request.
The redirection URI must NOT contain a fragment (#).

Redirection URIs are required for OpenID Connect 1.0 clients.

Scopes

Specify scopes that are to be presented to the resource owner when the resource owner is asked
to authorize client access to protected resources.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

AM reserves a special scope, am-introspect-all-tokens. As administrator, add this scope to the
OAuth 2.0 client profile to allow the client to introspect access tokens issued to other clients in
the same realm. This scope cannot be added during dynamic client registration.

Claim(s)

Specify one or more claim name translations that will override those specified for the
authentication session. Claims are values that are presented to the user to inform them what data
is being made available to the client.

Claims can be in entered as simple strings, such as name, email, profile, or sub, or as a pipe-
separated string in the format: scope|locale|localized description. For example, name|en|Full name of
 user.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example,
a claim of name| would allow the client to use the name claim but would not display it to the user
when requested.

http://tools.ietf.org/html/rfc6749#section-3.1.2
http://tools.ietf.org/html/rfc6749#section-3.1.2

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

If a value is not given, the value is computed from the OAuth2 provider.

Display name

Specify a client name to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include name or locale|localized name.

The Display name can be entered as a single string or as a pipe-separated string for locale and
localized name, for example, en|My Example Company.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Display description

Specify a client description to display to the resource owner when the resource owner is asked to
authorize client access to protected resources. Valid formats include description or locale|localized
 description.

The Display description can be entered as a single string or as a pipe-separated string for
locale and localized name, for example, en|The company intranet is requesting the following access
 permission.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale is omitted, the name is displayed to all users having undefined locales.

Default Scope(s)

Specify scopes in scope or scope|locale|localized description format. These scopes are set
automatically when tokens are issued.

The openid scope is required. It indicates that the client is making an OpenID Connect request to
the authorization server.

Scopes can be entered as simple strings, such as openid, read, email, profile, or as a pipe-separated
string in the format: scope|locale|localized description. For example, read|en|Permission to view email
 messages.

Locale strings have the format: language_country_variant. For example, en, en_GB, or en_US_WIN. If
the locale and pipe is omitted, the localized description is displayed to all users having undefined
locales. If the localized description is omitted, nothing is displayed to all users. For example, a
scope of read| would allow the client to use the read scope but would not display it to the user
when requested.

Response Types

Specify the response type that the client uses. The response type value specifies the flow that
determine how the ID token and access token are returned to the client. For more information,
see OAuth 2.0 Multiple Response Type Encoding Practices.

By default, the following response types are available:

https://openid.net/specs/oauth-v2-multiple-response-types-1_0.html

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

• code. Specifies that the client application requests an authorization code grant.

• token. Specifies that the client application requests an implicit grant type and requests a token
from the API.

• id_token. Specifies that the client application requests an ID token.

• code token. Specifies that the client application requests an access token, access token type, and
an authorization code.

• token id_token. Specifies that the client application requests an access token, access token type,
and an ID token.

• code id_token. Specifies that the client application requests an authorization code and an ID
token.

• code token id_token. Specifies that the client application requests an authorization code, access
token, access token type, and an ID token.

Contacts

Specify the email addresses of users who administer the client.

Token Endpoint Authentication Method

Specify the authentication method with which a client authenticates to OpenAM (as an
authorization server) at the token endpoint. The authentication method applies to OIDC requests
with scope openid. For more information, see the OpenID Connect Core 1.0 incorporating errata
set 1.

• client_secret_basic. Clients authenticate with OpenAM (as an authorization server) using the
HTTP Basic authentication scheme after receiving a client_secret value.

• client_secret_post. Clients authenticate with OpenAM (as an authorization server) by including
the client credentials in the request body after receiving a client_secret value.

• private_key_jwt. Clients sign a JSON web token (JWT) with a registered public key.

Json Web Key URI

Specify the URI that contains the client's public keys in JSON web key format.

Json Web Key

Raw JSON web key value containing the client's public keys.

Sector Identifier URI

Specify the host component of this URI, which is used in the computation of pairwise subject
identifiers.

http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication
http://openid.net/specs/openid-connect-core-1_0.html#ClientAuthentication

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

Subject Type

Specify the subject identifier type, which is a locally unique identifier that will be consumed by
the client. Select one of two options:

• public. Provides the same sub (subject) value to all clients.

• pairwise. Provides a different sub (subject) value to each client.

ID Token Signing Algorithm

Specify the signing algorithm that the ID token must be signed with.

Enable ID Token Encryption

Enable ID token encryption using the specified ID token encryption algorithm.

ID Token Encryption Algorithm

Specify the algorithm that the ID token must be encrypted with.

Default value: RSA1_5 (RSAES-PKCS1-V1_5).

ID Token Encryption Method

Specify the method that the ID token must be encrypted with.

Default value: A128CBC-HS256.

Client ID Token Public Encryption Key

Specify the Base64-encoded public key for encrypting ID tokens.

Post Logout Redirect URIs

Specify the URI to which to redirect the user-agent after the client logout process.

Access Token

Specify the registration_access_token value that you provide when registering the client, and then
subsequently when reading or updating the client profile.

Client Session URI

Specify the relying party (client) URI to which the OpenID Connect Provider sends session
changed notification messages using the HTML 5 postMessage API.

Client Name

Specify a human-readable name for the client.

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

Client JWT Bearer Public Key Certificate

Specify the public key certificate of the client's key pair that is used to sign JWTs issued by the
client and used for client authentication or to request access tokens.

This is the base64-encoded X509 certificate containing the public key in PEM format, as in the
following example.

-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjANBgkqhkiG9w0BAQsFADA5MRswGQYDVQQKExJvcGVuYW0uZXhh
bXBsZS5jb20xGjAYBgNVBAMTEWp3dC1iZWFyZXItY2xpZW50MB4XDTE0MTAyNzExNTY1NloXDTI0
MTAyNDExNTY1NlowOTEbMBkGA1UEChMSb3BlbmFtLmV4YW1wbGUuY29tMRowGAYDVQQDExFqd3Qt
YmVhcmVyLWNsaWVudDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAID4ZZ/DIGEBr4QC
2uz0GYFOCUlAPanxX21aYHSvELsWyMa7DJlD+mnjaF8cPRRMkhYZFXDJo/AVcjyblyT3ntqL+2Js
3D7TmS6BSjkxZWsJHyhJIYEoUwwloc0kizgSm15MwBMcbnksQVN5VWiOe4y4JMbi30t6k38lM62K
KtaSPP6jvnW1LTmL9uiqLWz54AM6hU3NlCI3J6Rfh8waBIPAEjmHZNquOl2uGgWumzubYDFJbomL
SQqO58RuKVaSVMwDbmENtMYWXIKQL2xTt5XAbwEQEgJ/zskwpA2aQt1HE6de3UymOhONhRiu4rk3
AIEnEVbxrvy4Ik+wXg7LZVsCAwEAAaMhMB8wHQYDVR0OBBYEFIuI7ejuZTg5tJsh1XyRopGOMBcs
MA0GCSqGSIb3DQEBCwUAA4IBAQBM/+/tYYVIS6LvPl3mfE8V7x+VPXqj/uK6UecAbfmRTrPk1ph+
jjI6nmLX9ncomYALWL/JFiSXcVsZt3/412fOqjakFVS0PmK1vEPxDlav1drnVA33icy1wORRRu5/
qA6mwDYPAZSbm5cDVvCR7Lt6VqJ+D0V8GABFxUw9IaX6ajTqkWhldY77usvNeTD0Xc4R7OqSBrnA
SNCaUlJogWyzhbFlmE9Ne28j4RVpbz/EZn0oc/cHTJ6Lryzsivf4uDO1m3M3kM/MUyXc1Zv3rqBj
TeGSgcqEAd6XlGXY1+M/yIeouUTi0F1bk1rNlqJvd57Xb4CEq17tVbGBm0hkECM8
-----END CERTIFICATE-----

You can generate a key pair and export the certificate by using the Java keytool command.
$ keytool \
 -genkeypair \
 -keysize 2048 \
 -alias self-signed \
 -keyalg rsa \
 -dname "CN=jwt-bearer-client,O=openam.example.com" \
 -keystore keystore.jks \
 -keypass changeit \
 -storepass changeit \
 -validity 3650 \
 -v
Generating 2,048 bit RSA key pair and self-signed certificate (SHA256withRSA)
with a validity of 3,650 days
for: CN=jwt-bearer-client, O=openam.example.com
[Storing keystore.jks]

$ keytool \
 -list \
 -alias self-signed \
 -rfc \
 -keystore keystore.jks \
 -keypass changeit \
 -storepass changeit
Alias name: self-signed
Creation date: Oct 27, 2014
Entry type: PrivateKeyEntry
Certificate chain length: 1
Certificate[1]:
-----BEGIN CERTIFICATE-----
MIIDETCCAfmgAwIBAgIEU8SXLjANBgkqhkiG9w0BAQsFADA5MRswGQYDVQQKExJvcGVuYW0uZXhh

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

bXBsZS5jb20xGjAYBgNVBAMTEWp3dC1iZWFyZXItY2xpZW50MB4XDTE0MTAyNzExNTY1NloXDTI0
MTAyNDExNTY1NlowOTEbMBkGA1UEChMSb3BlbmFtLmV4YW1wbGUuY29tMRowGAYDVQQDExFqd3Qt
YmVhcmVyLWNsaWVudDCCASIwDQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBAID4ZZ/DIGEBr4QC
2uz0GYFOCUlAPanxX21aYHSvELsWyMa7DJlD+mnjaF8cPRRMkhYZFXDJo/AVcjyblyT3ntqL+2Js
3D7TmS6BSjkxZWsJHyhJIYEoUwwloc0kizgSm15MwBMcbnksQVN5VWiOe4y4JMbi30t6k38lM62K
KtaSPP6jvnW1LTmL9uiqLWz54AM6hU3NlCI3J6Rfh8waBIPAEjmHZNquOl2uGgWumzubYDFJbomL
SQqO58RuKVaSVMwDbmENtMYWXIKQL2xTt5XAbwEQEgJ/zskwpA2aQt1HE6de3UymOhONhRiu4rk3
AIEnEVbxrvy4Ik+wXg7LZVsCAwEAAaMhMB8wHQYDVR0OBBYEFIuI7ejuZTg5tJsh1XyRopGOMBcs
MA0GCSqGSIb3DQEBCwUAA4IBAQBM/+/tYYVIS6LvPl3mfE8V7x+VPXqj/uK6UecAbfmRTrPk1ph+
jjI6nmLX9ncomYALWL/JFiSXcVsZt3/412fOqjakFVS0PmK1vEPxDlav1drnVA33icy1wORRRu5/
qA6mwDYPAZSbm5cDVvCR7Lt6VqJ+D0V8GABFxUw9IaX6ajTqkWhldY77usvNeTD0Xc4R7OqSBrnA
SNCaUlJogWyzhbFlmE9Ne28j4RVpbz/EZn0oc/cHTJ6Lryzsivf4uDO1m3M3kM/MUyXc1Zv3rqBj
TeGSgcqEAd6XlGXY1+M/
yIeouUTi0F1bk1rNlqJvd57Xb4CEq17tVbGBm0hkECM8
-----END CERTIFICATE-----

Default Max Age

Specify the maximum time in seconds that a user can be authenticated. If the user last
authenticated earlier than this value, then the user must be authenticated again. If specified, the
request parameter max_age overrides this setting.

Minimum value: 1.

Default: 600

Default Max Age Enabled

Enable the default max age feature.

Public key selector

Select the public key for this client, which comes from either the JWKs_URI, manual JWKs, or X.509
field.

Authorization Code Lifetime (seconds)

Specify the time in seconds for an authorization code to be valid. If this field is set to zero, the
authorization code lifetime of the OAuth2 provider is used.

Default: 6000

Refresh Token Lifetime (seconds)

Specify the time in seconds for a refresh token to be valid. If this field is set to zero, the refresh
token lifetime of the OAuth2 provider is used. If the field is set to -1, the token will never expire.

Default: 6000

Access Token Lifetime (seconds)

Specify the time in seconds for an access token to be valid. If this field is set to zero, the access
token lifetime of the OAuth2 provider is used.

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

Default: 6000

OpenID Connect JWT Token Lifetime (seconds)

Specify the time in seconds for a JWT to be valid. If this field is set to zero, the JWT token lifetime
of the OAuth2 provider is used.

Default: 6000

Implied Consent

Enable the implied consent feature. When enabled, the resource owner will not be asked for
consent during authorization flows. The OAuth2 Provider must also be configured to allow clients
to skip consent.

JWKs URI content cache timeout in ms

Specify the maximum amount of time, in milliseconds, that the content of the JWKS URI can
be cached before being refreshed. This avoids fetching the JWKS URI content for every token
encryption.

Default: 3600000

JWKs URI content cache miss cache time

Specify the minimum amount of time, in milliseconds, that the content of the JWKS URI is cached.
This avoids fetching the JWKS URI content for every token signature verification, for example if
the key ID (kid) is not in the JWKS content already cached.

Default: 60000

User info signed response algorithm

Specify the JSON Web Signature (JWS) algorithm for signing UserInfo Responses. If specified, the
response will be JSON Web Token (JWT) serialized, and signed using JWS.

The default, if omitted, is for the UserInfo Response to return the claims as a UTF-8-encoded
JSON object using the application/json content type.

User info encrypted response algorithm

Specify the JSON Web Encryption (JWE) algorithm for encrypting UserInfo Responses.

If both signing and encryption are requested, the response will be signed then encrypted, with
the result being a nested JWT.

The default, if omitted, is that no encryption is performed.

User info encrypted response encryption algorithm

Specify the JWE encryption method for encrypting UserInfo Responses. If specified, you must also
specify an encryption algorithm in the User info encrypted response algorithm property.

Reference
OAuth 2.0 and OpenID Connect 1.0 Client Settings

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

AM supports the following encryption methods:

• A128GCM, A192GCM, and A256GCM - AES in Galois Counter Mode (GCM) authenticated encryption
mode.

• A128CBC-HS256, A192CBC-HS384, and A256CBC-HS512 - AES encryption in CBC mode, with HMAC-SHA-2
for integrity.

Default: A128CBC-HS256

User info response format

Specify the output format from the UserInfo endpoint.

The supported output formats are as follows:

• User info JSON response format.

• User info encrypted JWT response format.

• User info signed JWT response format.

• User info signed then encrypted response format.

For more information on the output format of the UserInfo Response, see Successful UserInfo
Response in the OpenID Connect Core 1.0 incorporating errata set 1 specification.

Default: User info JSON response format.

Token Endpoint Authentication Signing Algorithm

Specify the JWS algorithm that must be used for signing JWTs used to authenticate the client at
the Token Endpoint.

JWTs that are not signed with the selected algorithm in token requests from the client using the
private_key_jwt or client_secret_jwt authentication methods will be rejected.

Default: RS256

OAuth 2.0 Mix-Up Mitigation enabled

Enable OAuth 2.0 mix-up mitigation on the authorization server side.

Enable this setting only if this OAuth 2.0 client supports the OAuth 2.0 Mix-Up Mitigation draft,
otherwise AM will fail to validate access token requests received from this client.

http://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse
http://openid.net/specs/openid-connect-core-1_0.html#UserInfoResponse

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Appendix A. About Scripting

You can use scripts for client-side and server-side authentication, policy conditions, and handling
OpenID Connect claims.

A.1. The Scripting Environment
This section introduces how OpenAM executes scripts, and covers thread pools and security
configuration.

You can use scripts to modify default OpenAM behavior in the following situations, also known as
contexts:

Client-side Authentication

Scripts that are executed on the client during authentication. Client-side scripts must be in
JavaScript.

Server-side Authentication

Scripts are included in an authentication module and are executed on the server during
authentication.

Policy Condition

Scripts used as conditions within policies.

OIDC Claims

Scripts that gather and populate the claims in a request when issuing an ID token or making a
request to the userinfo endpoint.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

OpenAM implements a configurable scripting engine for each of the context types that are executed
on the server.

The scripting engines in OpenAM have two main components: security settings, and the thread pool.

A.1.1. Security
OpenAM scripting engines provide security features for ensuring that malicious Java classes are
not directly called. The engines validate scripts by checking all directly-called Java classes against
a configurable blacklist and whitelist, and, optionally, against the JVM SecurityManager, if it is
configured.

Whitelists and blacklists contain class names that are allowed or denied execution respectively.
Specify classes in whitelists and blacklists by name or by using regular expressions.

Classes called by the script are checked against the whitelist first, and must match at least one
pattern in the list. The blacklist is applied after the whitelist, and classes matching any pattern are
disallowed.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

You can also configure the scripting engine to make an additional call to the JVM security manager
for each class that is accessed. The security manager throws an exception if a class being called is
not allowed to execute.

For more information on configuring script engine security, see "Scripting".

Important Points About Script Engine Security

The following points should be considered when configuring the security settings within each script
engine:

The scripting engine only validates directly accessible classes.

The security settings only apply to classes that the script directly accesses. If the script calls Foo
.a() and then that method calls Bar.b(), the scripting engine will be unable to prevent it. You must
consider the whole chain of accessible classes.

Note

Access includes actions such as:

• Importing or loading a class.

• Accessing any instance of that class. For example, passed as a parameter to the script.

• Calling a static method on that class.

• Calling a method on an instance of that class.

• Accessing a method or field that returns an instance of that class.

Potentially dangerous Java classes are blacklisted by default.

All Java reflection classes (java.lang.Class, java.lang.reflect.*) are blacklisted by default to avoid
bypassing the security settings.

The java.security.AccessController class is also blacklisted by default to prevent access to the
doPrivileged() methods.

Caution

You should not remove potentially dangerous Java classes from the blacklist.

The whitelists and blacklists match class or package names only.

The whitelist and blacklist patterns apply only to the exact class or package names involved. The
script engine does not know anything about inheritance, so it is best to whitelist known, specific
classes.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

A.1.2. Thread Pools

Each script is executed in an individual thread. Each scripting engine starts with an initial number of
threads available for executing scripts. If no threads are available for execution, OpenAM creates a
new thread to execute the script, until the configured maximum number of threads is reached.

If the maximum number of threads is reached, pending script executions are queued in a number
of buffer threads, until a thread becomes available for execution. If a created thread has completed
script execution and has remained idle for a configured amount of time, OpenAM terminates the
thread, shrinking the pool.

For more information on configuring script engine thread pools, see "Scripting".

A.2. Global Scripting API Functionality
This section covers functionality available to each of the server-side script types.

Global API functionality includes:

• Accessing HTTP Services

• Debug Logging

A.2.1. Accessing HTTP Services

OpenAM passes an HTTP client object, httpClient, to server-side scripts. Server-side scripts can call
HTTP services with the httpClient.send method. The method returns an HttpClientResponse object.

Configure the parameters for the HTTP client object by using the org.forgerock.http.protocol package.
This package contains the Request class, which has methods for setting the URI and type of request.

The following example, taken from the default server-side Scripted authentication module script, uses
these methods to call an online API to determine the longitude and latitude of a user based on their
postal address:

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

function getLongitudeLatitudeFromUserPostalAddress() {

 var request = new org.forgerock.http.protocol.Request();

 request.setUri("http://maps.googleapis.com/maps/api/geocode/json?address=" +
 encodeURIComponent(userPostalAddress));
 request.setMethod("GET");

 var response = httpClient.send(request).get();
 logResponse(response);

 var geocode = JSON.parse(response.getEntity());
 var i;

 for (i = 0; i < geocode.results.length; i++) {
 var result = geocode.results[i];
 latitude = result.geometry.location.lat;
 longitude = result.geometry.location.lng;

 logger.message("latitude:" + latitude + " longitude:" + longitude);
 }
}

HTTP client requests are synchronous and blocking until they return. You can, however, set a global
timeout for server-side scripts. For details, see "Scripted Authentication Module Properties" in the
Authentication and Single Sign-On Guide.

Server-side scripts can access response data by using the methods listed in the table below.

HTTP Client Response Methods

Method Parameters Return Type Description
HttpClientResponse.getCookies Void Map<String, String> Get the cookies for the

returned response, if
any exist.

HttpClientResponse.getEntity Void String Get the entity of the
returned response.

HttpClientResponse.getHeaders Void Map<String, String> Get the headers for the
returned response, if
any exist.

HttpClientResponse
.getReasonPhrase

Void String Get the reason phrase
of the returned
response.

HttpClientResponse.getStatusCode Void Integer Get the status code of
the returned response.

HttpClientResponse.hasCookies Void Boolean Indicate whether the
returned response had
any cookies.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

Method Parameters Return Type Description
HttpClientResponse.hasHeaders Void Boolean Indicate whether the

returned response had
any headers.

A.2.2. Debug Logging
Server-side scripts can write messages to OpenAM debug logs by using the logger object.

OpenAM does not log debug messages from scripts by default. You can configure OpenAM to log such
messages by setting the debug log level for the amScript service. For details, see "Debug Logging By
Service" in the Setup and Maintenance Guide.

The following table lists the logger methods.

Logger Methods

Method Parameters Return Type Description
logger.error Error Message (type:

String)
Void Write Error Message to OpenAM

debug logs if ERROR level logging
is enabled.

logger.errorEnabled Void Boolean Return true when ERROR level
debug messages are enabled.

logger.message Message (type: String) Void Write Message to OpenAM debug
logs if MESSAGE level logging is
enabled.

logger.messageEnabled Void Boolean Return true when MESSAGE level
debug messages are enabled.

logger.warning Warning Message (type:
String)

Void Write Warning Message to OpenAM
debug logs if WARNING level
logging is enabled.

logger.warningEnabled Void Boolean Return true when WARNING level
debug messages are enabled.

A.3. Managing Scripts
This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims using the AM console,
the ssoadm command, and the REST API.

A.3.1. Managing Scripts With the AM Console
The following procedures describe how to create, modify, and delete scripts using the AM console:

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

• "To Create Scripts by Using the AM Console"

• "To Modify Scripts by Using the AM Console"

• "To Delete Scripts by Using the AM Console"

To Create Scripts by Using the AM Console

1. Log in to the AM console as an OpenAM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Click New Script.

The New Script page appears:

4. Specify a name for the script.

5. Select the type of script from the Script Type drop-down list.

6. Click Create.

The Script Name page appears:

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

7. Enter values on the Script Name page as follows:

a. Enter a description of the script.

b. Choose the script language, either JavaScript or Groovy. Note that not every script type
supports both languages.

c. Enter the source code in the Script field.

On supported browsers, you can click Upload, navigate to the script file, and then click Open
to upload the contents to the Script field.

d. Click Validate to check for compilation errors in the script.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

Correct any compilation errors, and revalidate the script until all errors have been fixed.

e. Save your changes.

To Modify Scripts by Using the AM Console

1. Log in to the AM console as an OpenAM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Select the script you want to modify from the list of scripts.

The Script Name page appears.

4. Modify values on the Script Name page as needed. Note that if you change the Script Type,
existing code in the script is replaced.

5. If you modified the code in the script, click Validate to check for compilation errors.

Correct any compilation errors, and revalidate the script until all errors have been fixed.

6. Save your changes.

To Delete Scripts by Using the AM Console

1. Log in to the AM console as an OpenAM administrator, for example, amadmin.

2. Navigate to Realms > Realm Name > Scripts.

3. Choose one or more scripts to delete by activating the checkboxes in the relevant rows. Note that
you can only delete user-created scripts—you cannot delete the global sample scripts provided
with OpenAM.

4. Click Delete.

A.3.2. Managing Scripts With the ssoadm Command

Use the ssoadm command's create-sub-cfg, get-sub-cfg, and delete-sub-cfg subcommands to manage
OpenAM scripts.

Create an OpenAM script as follows:

1. Create a script configuration file as follows:
script-file=/path/to/script-file
language=JAVASCRIPT|GROOVY
name=myScript
context=AUTHENTICATION_SERVER_SIDE|AUTHENTICATION_CLIENT_SIDE|POLICY_CONDITION|OIDC_CLAIMS

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

2. Run the ssoadm create-sub-cfg command. The --datafile argument references the script
configuration file you created in the previous step:
$ ssoadm \
 create-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/scriptConfiguration \
 --subconfigid myScript \
 --datafile /path/to/myScriptConfigurationFile
Sub Configuration scriptConfigurations/scriptConfiguration was added to realm /myRealm

To list the properties of a script, run the ssoadm get-sub-cfg command:
$ ssoadm \
 get-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
createdBy=
lastModifiedDate=
lastModifiedBy=
name=myScript
context=POLICY_CONDITION
description=
language=JAVASCRIPT
creationDate=
script=...Script output follows...

To delete a script, run the ssoadm delete-sub-cfg command:
$ ssoadm \
 delete-sub-cfg \
 --realm /myRealm \
 --adminid amadmin \
 --password-file /tmp/pwd.txt \
 --servicename ScriptingService \
 --subconfigname scriptConfigurations/myScript
Sub Configuration scriptConfigurations/myScript was deleted from realm /myRealm

A.3.3. Managing Scripts With the REST API

This section shows you how to manage scripts used for client-side and server-side scripted
authentication, custom policy conditions, and handling OpenID Connect claims by using the REST
API.

OpenAM provides the scripts REST endpoint for the following:

• "Querying Scripts"

• "Reading a Script"

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

• "Validating a Script"

• "Creating a Script"

• "Updating a Script"

• "Deleting a Script"

User-created scripts are realm-specific, hence the URI for the scripts' API can contain a realm
component, such as /json{/realm}/scripts. If the realm is not specified in the URI, the top level realm is
used.

Tip

OpenAM includes some global example scripts that can be used in any realm.

Scripts are represented in JSON and take the following form. Scripts are built from standard JSON
objects and values (strings, numbers, objects, sets, arrays, true, false, and null). Each script has a
system-generated universally unique identifier (UUID), which must be used when modifying existing
scripts. Renaming a script will not affect the UUID:
{
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

The values for the fields shown in the example above are explained below:

_id

The UUID that OpenAM generates for the script.

name

The name provided for the script.

description

An optional text string to help identify the script.

script

The source code of the script. The source code is in UTF-8 format and encoded into Base64.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

For example, a script such as the following:
var a = 123;
var b = 456;

When encoded into Base64 becomes:
dmFyIGEgPSAxMjM7IA0KdmFyIGIgPSA0NTY7

language

The language the script is written in - JAVASCRIPT or GROOVY.

Language Support per Context

Script Context Supported Languages
POLICY_CONDITION JAVASCRIPT, GROOVY
AUTHENTICATION_SERVER_SIDE JAVASCRIPT, GROOVY
AUTHENTICATION_CLIENT_SIDE JAVASCRIPT

OIDC_CLAIMS JAVASCRIPT, GROOVY

context

The context type of the script.

Supported values are:

POLICY_CONDITION

Policy Condition

AUTHENTICATION_SERVER_SIDE

Server-side Authentication

AUTHENTICATION_CLIENT_SIDE

Client-side Authentication

Note

Client-side scripts must be written in JavaScript.

OIDC_CLAIMS

OIDC Claims

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

createdBy

A string containing the universal identifier DN of the subject that created the script.

creationDate

An integer containing the creation date and time, in ISO 8601 format.

lastModifiedBy

A string containing the universal identifier DN of the subject that most recently updated the
resource type.

If the script has not been modified since it was created, this property will have the same value as
createdBy.

lastModifiedDate

A string containing the last modified date and time, in ISO 8601 format.

If the script has not been modified since it was created, this property will have the same value as
creationDate.

A.3.4. Querying Scripts

To list all the scripts in a realm, as well as any global scripts, perform an HTTP GET to the /json{/
realm}/scripts endpoint with a _queryFilter parameter set to true.

Note

If the realm is not specified in the URL, OpenAM returns scripts in the top level realm, as well as any global
scripts.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts?_queryFilter
 =true
{
 "result": [
 {
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 },
 {
 "_id": "7e3d7067-d50f-4674-8c76-a3e13a810c33",
 "name": "Scripted Module - Server Side",
 "description": "Default global script for server side Scripted Authentication Module",
 "script": "dmFyIFNUQVJUX1RJ...",
 "language": "JAVASCRIPT",
 "context": "AUTHENTICATION_SERVER_SIDE",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Supported _queryFilter Fields and Operators

Field Supported Operators
_id Equals (eq), Contains (co), Starts with (sw)
name Equals (eq), Contains (co), Starts with (sw)
description Equals (eq), Contains (co), Starts with (sw)
script Equals (eq), Contains (co), Starts with (sw)
language Equals (eq), Contains (co), Starts with (sw)
context Equals (eq), Contains (co), Starts with (sw)

A.3.5. Reading a Script

To read an individual script in a realm, perform an HTTP GET using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Tip

To read a script in the top-level realm, or to read a built-in global script, do not specify a realm in the URL.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/9de3eb62-f131-4fac-a294
-7bd170fd4acb
{
 "_id": "9de3eb62-f131-4fac-a294-7bd170fd4acb",
 "name": "Scripted Policy Condition",
 "description": "Default global script for Scripted Policy Conditions",
 "script": "LyoqCiAqIFRoaXMg...",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1433147666269,
 "lastModifiedBy": "id=dsameuser,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1433147666269
}

A.3.6. Validating a Script

To validate a script, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an _action
parameter set to validate. Include a JSON representation of the script and the script language,
JAVASCRIPT or GROOVY, in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7Cg==",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": true
}

If the script is valid the JSON response contains a success key with a value of true.

If the script is invalid the JSON response contains a success key with a value of false, and an indication
of the problem and where it occurs, as shown below:

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "script": "dmFyIGEgPSAxMjM7dmFyIGIgPSA0NTY7ID1WQUxJREFUSU9OIFNIT1VMRCBGQUlMPQo=",
 "language": "JAVASCRIPT"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action=validate
{
 "success": false,
 "errors": [
 {
 "line": 1,
 "column": 27,
 "message": "syntax error"
 }
]
}

A.3.7. Creating a Script

To create a script in a realm, perform an HTTP POST using the /json{/realm}/scripts endpoint, with an
_action parameter set to create. Include a JSON representation of the script in the POST data.

The value for script must be in UTF-8 format and then encoded into Base64.

Note

If the realm is not specified in the URL, OpenAM creates the script in the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

$ curl \
 --request POST \
 --header "Content-Type: application/json" \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --data '{
 "name": "MyJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An example script"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/?_action
 =create
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyJavaScript",
 "description": "An example script",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436807766258
}

A.3.8. Updating a Script

To update an individual script in a realm, perform an HTTP PUT using the /json{/realm}/scripts
endpoint, specifying the UUID in both the URL and the PUT body. Include a JSON representation of
the updated script in the PUT data, alongside the UUID.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

$ curl \
 --header "iPlanetDirectoryPro: AQIC5..." \
 --header "Content-Type: application/json" \
 --request PUT \
 --data '{
 "name": "MyUpdatedJavaScript",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "description": "An updated example script configuration"
 }' \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{
 "_id": "0168d494-015a-420f-ae5a-6a2a5c1126af",
 "name": "MyUpdatedJavaScript",
 "description": "An updated example script configuration",
 "script": "dmFyIGEgPSAxMjM7CnZhciBiID0gNDU2Ow==",
 "language": "JAVASCRIPT",
 "context": "POLICY_CONDITION",
 "createdBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "creationDate": 1436807766258,
 "lastModifiedBy": "id=amadmin,ou=user,dc=openam,dc=forgerock,dc=org",
 "lastModifiedDate": 1436808364681
}

A.3.9. Deleting a Script

To delete an individual script in a realm, perform an HTTP DELETE using the /json{/realm}/scripts
endpoint, specifying the UUID in the URL.

Note

If the realm is not specified in the URL, OpenAM uses the top level realm.

The iPlanetDirectoryPro header is required and should contain the SSO token of an administrative
user, such as amAdmin, who has access to perform the operation.
$ curl \
 --request DELETE \
 --header "iPlanetDirectoryPro: AQIC5..." \
 https://openam.example.com:8443/openam/json/realms/root/realms/myrealm/scripts/0168d494-015a-420f-ae5a
-6a2a5c1126af
{}

A.4. Scripting
amster type ID: scripting

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

A.4.1. Configuration

The following settings appear on the Configuration tab:

Default Script Type

The default script context type when creating a new script.

The possible values for this property are:

POLICY_CONDITION
AUTHENTICATION_SERVER_SIDE
AUTHENTICATION_CLIENT_SIDE
OIDC_CLAIMS

Default value: POLICY_CONDITION

amster data attribute: defaultContext

A.4.2. Secondary Configurations

This service has the following Secondary Configurations.

A.4.2.1. Engine Configuration

The following properties are available for Scripting Service secondary configuration instances:

Engine Configuration

Configure script engine parameters for running a particular script type in OpenAM.

amster data attribute: engineConfiguration

To access a secondary configuration instance using the ssoadm command, use: --subconfigname
 [primary configuration]/[secondary configuration] For example:
$ ssoadm set-sub-cfg \
 --adminid amAdmin \
 --password-file admin_pwd_file \
 --servicename ScriptingService \
 --subconfigname OIDC_CLAIMS/engineConfiguration \
 --operation set \
 --attributevalues maxThreads=300 queueSize=-1

Note

Supports server-side scripts only. OpenAM cannot configure engine settings for client-side scripts.

The configurable engine settings are as follows:

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

Server-side Script Timeout

The maximum execution time any individual script should take on the server (in seconds).
OpenAM terminates scripts which take longer to run than this value.

amster data attribute: serverTimeout

Core thread pool size

The initial number of threads in the thread pool from which scripts operate. OpenAM will
ensure the pool contains at least this many threads.

amster data attribute: coreThreads

Maximum thread pool size

The maximum number of threads in the thread pool from which scripts operate. If no free
thread is available in the pool, OpenAM creates new threads in the pool for script execution
up to the configured maximum.

amster data attribute: maxThreads

Thread pool queue size

The number of threads to use for buffering script execution requests when the maximum
thread pool size is reached.

amster data attribute: queueSize

Thread idle timeout (seconds)

Length of time (in seconds) for a thread to be idle before OpenAM terminates created
threads. If the current pool size contains the number of threads set in Core thread pool size
idle threads will not be terminated, to maintain the initial pool size.

amster data attribute: idleTimeout

Java class whitelist

Specifies the list of class-name patterns allowed to be invoked by the script. Every class
accessed by the script must match at least one of these patterns.

You can specify the class name as-is or use a regular expression.

amster data attribute: whiteList

Java class blacklist

Specifies the list of class-name patterns that are NOT allowed to be invoked by the script. The
blacklist is applied AFTER the whitelist to exclude those classes - access to a class specified
in both the whitelist and the blacklist will be denied.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

You can specify the class name to exclude as-is or use a regular expression.

amster data attribute: blackList

Use system SecurityManager

If enabled, OpenAM will make a call to System.getSecurityManager().checkPackageAccess(...) for
each class that is accessed. The method throws SecurityException if the calling thread is not
allowed to access the package.

Note

This feature only takes effect if the security manager is enabled for the JVM.

amster data attribute: useSecurityManager

Scripting languages

Select the languages available for scripts on the chosen type. Either GROOVY or JAVASCRIPT.

amster data attribute: languages

Default Script

The source code that is presented as the default when creating a new script of this type.

amster data attribute: defaultScript

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

Appendix B. Getting Support

For more information or resources about AM and ForgeRock Support, see the following sections:

B.1. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

B.2. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

B.3. Getting Support and Contacting ForgeRock
ForgeRock provides support services, professional services, training through ForgeRock University,
and partner services to assist you in setting up and maintaining your deployments. For a general
overview of these services, see https://www.forgerock.com.

ForgeRock has staff members around the globe who support our international customers and
partners. For details on ForgeRock's support offering, including support plans and service level
agreements (SLAs), visit https://www.forgerock.com/support.

https://www.forgerock.com
https://www.forgerock.com/support

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

Glossary

Access control Control to grant or to deny access to a resource.

Account lockout The act of making an account temporarily or permanently inactive
after successive authentication failures.

Actions Defined as part of policies, these verbs indicate what authorized
subjects can do to resources.

Advice In the context of a policy decision denying access, a hint to the policy
enforcement point about remedial action to take that could result in a
decision allowing access.

Agent administrator User having privileges only to read and write policy agent profile
configuration information, typically created to delegate policy agent
profile creation to the user installing a policy agent.

Agent authenticator Entity with read-only access to multiple agent profiles defined in the
same realm; allows an agent to read web service profiles.

Application In general terms, a service exposing protected resources.

In the context of AM policies, the application is a template that
constrains the policies that govern access to protected resources. An
application can have zero or more policies.

Application type Application types act as templates for creating policy applications.

Application types define a preset list of actions and functional logic,
such as policy lookup and resource comparator logic.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

Application types also define the internal normalization, indexing
logic, and comparator logic for applications.

Attribute-based access
control (ABAC)

Access control that is based on attributes of a user, such as how old a
user is or whether the user is a paying customer.

Authentication The act of confirming the identity of a principal.

Authentication chaining A series of authentication modules configured together which a
principal must negotiate as configured in order to authenticate
successfully.

Authentication level Positive integer associated with an authentication module, usually
used to require success with more stringent authentication measures
when requesting resources requiring special protection.

Authentication module AM authentication unit that handles one way of obtaining and
verifying credentials.

Authorization The act of determining whether to grant or to deny a principal access
to a resource.

Authorization Server In OAuth 2.0, issues access tokens to the client after authenticating a
resource owner and confirming that the owner authorizes the client to
access the protected resource. AM can play this role in the OAuth 2.0
authorization framework.

Auto-federation Arrangement to federate a principal's identity automatically based
on a common attribute value shared across the principal's profiles at
different providers.

Bulk federation Batch job permanently federating user profiles between a service
provider and an identity provider based on a list of matched user
identifiers that exist on both providers.

Circle of trust Group of providers, including at least one identity provider, who have
agreed to trust each other to participate in a SAML v2.0 provider
federation.

Client In OAuth 2.0, requests protected web resources on behalf of the
resource owner given the owner's authorization. AM can play this role
in the OAuth 2.0 authorization framework.

Conditions Defined as part of policies, these determine the circumstances under
which which a policy applies.

Environmental conditions reflect circumstances like the client
IP address, time of day, how the subject authenticated, or the
authentication level achieved.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

Subject conditions reflect characteristics of the subject like whether
the subject authenticated, the identity of the subject, or claims in the
subject's JWT.

Configuration datastore LDAP directory service holding AM configuration data.

Cross-domain single sign-
on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

Delegation Granting users administrative privileges with AM.

Entitlement Decision that defines which resource names can and cannot be
accessed for a given subject in the context of a particular application,
which actions are allowed and which are denied, and any related
advice and attributes.

Extended metadata Federation configuration information specific to AM.

Extensible Access Control
Markup Language
(XACML)

Standard, XML-based access control policy language, including
a processing model for making authorization decisions based on
policies.

Federation Standardized means for aggregating identities, sharing authentication
and authorization data information between trusted providers, and
allowing principals to access services across different providers
without authenticating repeatedly.

Fedlet Service provider application capable of participating in a circle of
trust and allowing federation without installing all of AM on the
service provider side; AM lets you create Java Fedlets.

Hot swappable Refers to configuration properties for which changes can take effect
without restarting the container where AM runs.

Identity Set of data that uniquely describes a person or a thing such as a
device or an application.

Identity federation Linking of a principal's identity across multiple providers.

Identity provider (IdP) Entity that produces assertions about a principal (such as how and
when a principal authenticated, or that the principal's profile has a
specified attribute value).

Identity repository Data store holding user profiles and group information; different
identity repositories can be defined for different realms.

Java EE policy agent Java web application installed in a web container that acts as a policy
agent, filtering requests to other applications in the container with
policies based on application resource URLs.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

Metadata Federation configuration information for a provider.

Policy Set of rules that define who is granted access to a protected resource
when, how, and under what conditions.

Policy Agent Agent that intercepts requests for resources, directs principals to AM
for authentication, and enforces policy decisions from AM.

Policy Administration Point
(PAP)

Entity that manages and stores policy definitions.

Policy Decision Point (PDP) Entity that evaluates access rights and then issues authorization
decisions.

Policy Enforcement Point
(PEP)

Entity that intercepts a request for a resource and then enforces
policy decisions from a PDP.

Policy Information Point
(PIP)

Entity that provides extra information, such as user profile attributes
that a PDP needs in order to make a decision.

Principal Represents an entity that has been authenticated (such as a user,
a device, or an application), and thus is distinguished from other
entities.

When a Subject successfully authenticates, AM associates the Subject
with the Principal.

Privilege In the context of delegated administration, a set of administrative
tasks that can be performed by specified subjects in a given realm.

Provider federation Agreement among providers to participate in a circle of trust.

Realm AM unit for organizing configuration and identity information.

Realms can be used for example when different parts of an
organization have different applications and user data stores, and
when different organizations use the same AM deployment.

Administrators can delegate realm administration. The administrator
assigns administrative privileges to users, allowing them to perform
administrative tasks within the realm.

Resource Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to
match multiple actual resources.

Resource owner In OAuth 2.0, entity who can authorize access to protected web
resources, such as an end user.

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

Resource server In OAuth 2.0, server hosting protected web resources, capable of
handling access tokens to respond to requests for such resources.

Response attributes Defined as part of policies, these allow AM to return additional
information in the form of "attributes" with the response to a policy
decision.

Role based access control
(RBAC)

Access control that is based on whether a user has been granted a set
of permissions (a role).

Security Assertion Markup
Language (SAML)

Standard, XML-based language for exchanging authentication and
authorization data between identity providers and service providers.

Service provider (SP) Entity that consumes assertions about a principal (and provides a
service that the principal is trying to access).

Session The interval that starts with the user authenticating through AM and
ends when the user logs out, or when their session is terminated. For
browser-based clients, AM manages user sessions across one or more
applications by setting a session cookie. See also Stateful session and
Stateless session.

Session high availability Capability that lets any AM server in a clustered deployment access
shared, persistent information about users' sessions from the CTS
token store. The user does not need to log in again unless the entire
deployment goes down.

Session token Unique identifier issued by AM after successful authentication. For
a Stateful session, the session token is used to track a principal's
session.

Single log out (SLO) Capability allowing a principal to end a session once, thereby ending
her session across multiple applications.

Single sign-on (SSO) Capability allowing a principal to authenticate once and gain access to
multiple applications without authenticating again.

Site Group of AM servers configured the same way, accessed through a
load balancer layer.

The load balancer handles failover to provide service-level availability.
Use sticky load balancing based on amlbcookie values to improve site
performance.

The load balancer can also be used to protect AM services.

Standard metadata Standard federation configuration information that you can share with
other access management software.

Stateful session An AM session that resides in the Core Token Service's token store.
Stateful sessions might also be cached in memory on one or more

OpenID Connect 1.0 Guide AM 5.0.0 (2019-10-15T18:51:21.311747)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

AM servers. AM tracks stateful sessions in order to handle events
like logout and timeout, to permit session constraints, and to notify
applications involved in SSO when a session ends.

Stateless session An AM session for which state information is encoded in AM and
stored on the client. The information from the session is not retained
in the CTS token store. For browser-based clients, AM sets a cookie in
the browser that contains the session information.

Subject Entity that requests access to a resource

When a subject successfully authenticates, AM associates the subject
with the Principal that distinguishes it from other subjects. A subject
can be associated with multiple principals.

User data store Data storage service holding principals' profiles; underlying storage
can be an LDAP directory service, a relational database, or a custom
IdRepo implementation.

Web policy agent Native library installed in a web server that acts as a policy agent with
policies based on web page URLs.

	OpenID Connect 1.0 Guide
	Table of Contents
	Preface
	Chapter 1. Introducing OpenID Connect 1.0
	1.1. OpenID Connect Scopes and Claims
	1.2. OpenID Connect Authorization Code Flow
	1.3. OpenID Connect Implicit Flow
	1.4. OpenID Connect Discovery
	1.5. OpenID Connect Relying Party Registration
	1.6. OpenID Connect Session Management
	1.7. Security Considerations

	Chapter 2. Implementing OpenID Connect 1.0
	2.1. Configuring as an OpenID Connect Provider
	2.2. Configuring for OpenID Connect Discovery
	2.3. Configuring the Base URL Source Service
	2.4. Registering OpenID Connect Relying Parties
	2.5. Managing OpenID Connect User Sessions
	2.6. Stateless OpenID Connect 1.0 Access and Refresh Tokens
	2.6.1. Validating OpenID Connect 1.0 ID Tokens

	2.7. Configuring for GSMA Mobile Connect
	2.8. Encrypting OpenID Connect ID Tokens
	2.9. Configuring Digital Signatures

	Chapter 3. Using OpenID Connect 1.0
	3.1. Authorizing OpenID Connect 1.0 Relying Parties
	3.1.1. Authorization Code Flow Example
	3.1.2. Implicit Flow Example

	Chapter 4. Customizing OpenID Connect 1.0
	4.1. Scripting OpenID Connect 1.0 Claims
	4.1.1. Preparing
	4.1.2. Trying the Default OIDC Claims Script

	Chapter 5. Reference
	5.1. OpenID Connect 1.0 Standards
	5.2. OpenID Connect 1.0 Claims API Functionality
	5.2.1. Accessing OpenID Connect Requests

	5.3. OAuth2 Provider
	5.3.1. Global Attributes
	5.3.2. Core
	5.3.3. Advanced
	5.3.4. OpenID Connect
	5.3.5. Advanced OpenID Connect
	5.3.6. Device Flow

	5.4. OAuth 2.0 and OpenID Connect 1.0 Client Settings

	Appendix A. About Scripting
	A.1. The Scripting Environment
	A.1.1. Security
	A.1.2. Thread Pools

	A.2. Global Scripting API Functionality
	A.2.1. Accessing HTTP Services
	A.2.2. Debug Logging

	A.3. Managing Scripts
	A.3.1. Managing Scripts With the AM Console
	A.3.2. Managing Scripts With the ssoadm Command
	A.3.3. Managing Scripts With the REST API
	A.3.4. Querying Scripts
	A.3.5. Reading a Script
	A.3.6. Validating a Script
	A.3.7. Creating a Script
	A.3.8. Updating a Script
	A.3.9. Deleting a Script

	A.4. Scripting
	A.4.1. Configuration
	A.4.2. Secondary Configurations
	A.4.2.1. Engine Configuration

	Appendix B. Getting Support
	B.1. Accessing Documentation Online
	B.2. Using the ForgeRock.org Site
	B.3. Getting Support and Contacting ForgeRock

	Glossary

