Maintenance

This guide covers recurring administrative operations.

& —:

Tools Server Process
Run DS command-line Start, stop, restart DS.
tools.

&

Backup/Restore Resource Limits
Backup and restore Set limits for user and
data. application.

S b

Tuning Troubleshooting
Tune server Solve common
performance. problems.

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive
Identity and Access Management solution. We help our customers deepen their
relationships with their customers, and improve the productivity and connectivity of
their employees and partners. For more information about ForgeRock and about the
platform, see https://www.forgerock.com&.

Maintenance Tools

1/85

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/admin-tools.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/server-process.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/resource-limits.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/troubleshooting.html

Server Commands

e Add DS server command-line tools to your PATH:
1. Bash
2. PowerShell

S export PATH=/path/to/opendj/bin:S$S{PATH}

PS C:\path\to> Senv:PATH += ";C:\path\to\opendj\bat"

e For reference information, use the --help option with any DS tool.

e All commands call Java programs. This means every command starts a JVM, so it
takes longer to start than a native binary.

DS running on... DS installed Default path to tools...
from...

Linux distributions .Zip /path/to/opendj/bin

Linux distributions .deb, .rpm /opt/opendj/bin

Microsoft Windows .Zip C:\path\to\opendj\bat

The installation and upgrade tools, setup, and upgrade, are found in the parent
directory of the other tools. These tools are not used for everyday administration.

Commands Constraints

dsbackup When the server is offline, or when running commands in
dsconfig offline mode, these commands can modify server files. They
export-1dif must, therefore, access server files as a user who has the same
import-1dif filesystem permissions as the user who installs and runs the
rebuild-index server.

setup

For most systems, the simplest way to achieve this is to run the
command as the same user who installs and runs the server.

setup-profile

start-ds
When following best practices for auditing and separation of

duty, provision administrative and server user accounts with
compatible group or access control list permissions.

2/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/setup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/upgrade.html

Commands

backendstat
create-rc-
script
encode-password
setup
setup-profile
start-ds
supportextract
upgrade
windows-service

dsbackup
changelogstat
dsconfig
dsrepl
encode-password
export-1dif
import-1dif
manage-account
manage-tasks
rebuild-index
status

stop-ds
verify-index

makeldif

base64
ldapcompare
ldapdelete
ldapmodify
ldappasswordmod
ify

ldapsearch
1difdiff
ldifmodify
ldifsearch

Constraints

These commands must be used with the local DS server in the
same installation as the tools.

These commands are not useful with non-DS servers.

These commands must be used with DS servers having the
same version as the command.

These commands are not useful with non-DS servers.

This command depends on template files. The template files
can make use of configuration files installed with DS servers
under config/MakelLDIF/ .

The LDIF output can be used with any directory server.

These commands can be used independently of DS servers, and
are not tied to a specific version.

3/85

Command®
addrate
authrate
backendstat

baseb64

changelogstat

create-rc-
script (UNIX)

dsbackup

dskeymgr

Description

Measure add and delete throughput and response time.
Measure bind throughput and response time.

Debug databases for pluggable backends.

Encode and decode data in base64 format.

Base64-encoding represents binary data in ASCIl, and can be
used to encode character strings in LDIF, for example.

Debug file-based changelog databases.

Generate a script you can use to start, stop, and restart the
server, either directly, or at system boot and shutdown. Use
create-rc-script -f script-file.

This lets you register and manage DS servers as services on
UNIX and Linux systems.

Back up or restore directory data.

Generate a deployment key, a shared master key, a private CA
certificate based on a deployment key and password, or a key
pair with the certificate signed by the private CA.

4/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/addrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/authrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/backendstat.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/base64.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/changelogstat.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/create-rc-script.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/create-rc-script.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

Command®

dsconfig

dsrepl

encode-password

export-1dif

import-1dif

ldapcompare

ldapdelete

Description

The dsconfig command is the primary command-line tool for
viewing and editing DS server configurations. When started
without arguments, dsconfig prompts you for administration
connection information. Once connected to a running server, it
presents you with a menu-driven interface to the server
configuration.

To edit the configuration when the server is not running, use
the --offline command.

Some advanced properties are not visible by default when you
run the dsconfig command interactively. Use the --
advanced option to access advanced properties.

When you pass connection information, subcommands, and
additional options to dsconfig, the command runs in script
mode, so it is not interactive.

You can prepare dsconfig batch scripts with the --
commandFilePath option in interactive mode, then read from
the batch file with the --batchFilePath option in script
mode. Batch files can be useful when you have many
dsconfig commands to run, and want to avoid starting the
JVM for each command.

Alternatively, you can read commands from standard input with
the --batch option.

Manage data replication between directory servers to keep
their contents in sync.

Encode a plaintext password according to one of the available
storage schemes.

Export directory data to LDIF, the standard, portable, text-
based representation of directory content.

Load LDIF content into the directory, which overwrites existing
data. It cannot be used to append data to the backend
database.

Compare the attribute values you specify with those stored on
entries in the directory.

Delete one entry or an entire branch of subordinate entries in
the directory.

5/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsconfig.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsrepl.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/encode-password.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/export-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/import-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapcompare.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapdelete.html

Command®
ldapmodify

ldappasswordmod

ify

ldapsearch

1difdiff

ldifmodify

ldifsearch

makeldif

manage-account

manage-tasks

modrate

rebuild-index

searchrate

setup-profile

start-ds

supportextract

Description
Modify the specified attribute values for the specified entries.

Modify user passwords.

Search a branch of directory data for entries that match the
LDAP filter you specify.

Display differences between two LDIF files. The output is LDIF.

Similar to the ldapmodify command, modify specified
attribute values for specified entries in an LDIF file.

Similar to the 1ldapsearch command, search a branch of data
in LDIF for entries matching the LDAP filter you specify.

Generate directory data in LDIF based on templates that define
how the data should appear.

The makeldif command generates test data that mimics data
expected in production, and does not compromise real,
potentially private information.

Lock and unlock user accounts, and view and manipulate
password policy state information.

View information about tasks scheduled to run in the server,
and cancel specified tasks.

Measure modification throughput and response time.
Rebuild an index stored in an indexed backend.
Measure search throughput and response time.
Configure a setup profile after initial installation.
Start one DS server.

Display information about the server.

Stop one DS server.

Collect troubleshooting information for technical support
purposes.

6/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldappasswordmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldappasswordmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldapsearch.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifdiff.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifmodify.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/ldifsearch.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/makeldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-account.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-tasks.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/rebuild-index.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/setup-profile.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/start-ds.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/status.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/stop-ds.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/supportextract.html

Command(" Description

verify-index Verify that an index stored in an indexed backend is not
corrupt.

windows-service Register and manage one DS server as a Windows service.
(Windows)

(' UNIX names for the commands. Equivalent Windows commands have .bat extensions.

Trusted Certificates

When a client tool initiates a secure connection to a server, the server presents its digital
certificate.

The tool must determine whether it trusts the server certificate and continues to
negotiate a secure connection, or does not trust the server certificate and drops the
connection. To trust the server certificate, the tool's truststore must contain the trusted
certificate. The trusted certificate is a CA certificate, or the self-signed server certificate.

The following table explains how the tools locate the truststore.

Truststore Option Truststore Used

None The default truststore, user.home/.opendj/keystore,
where user.home is the Java system property. user.home
is SHOME on Linux and UNIX, and %USERPROFILE% on
Windows. The keystore password is OpenDJ . Neither
the file name, nor the password can be changed.

e Ininteractive mode, DS command-line tools prompt
for approval to trust an unrecognized certificate,
and whether to store it in the default truststore for
future use.

e Insilent mode, the tools rely on the default
truststore.

--use<Type>TrustStore Only the specified truststore is used. The <Type> in the
{trustStorePath} option name reflects the trust store type.

The tool fails with an error if it cannot trust the server
certificate.

Default Settings

7/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/verify-index.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/windows-service.html

You can set defaults in the ~/.opendj/tools.properties file, as in the following
example:

hostname=1localhost
port=4444
bindDN=uid=admin
useSsl=true
trustAll=true

The file location on Windows is %UserProfile%\ .opendj\tools.properties.

Server Processes

Start a Server

e Start the server in the background:

S start-ds

Alternatively, specify the --no-detach option to start the server in the foreground.

e (Linux) If the DS server was installed from a .deb or .rpm package, then service
management scripts were created at setup time:

centos# service opendj start

Starting opendj (via systemctl): [
oK]

ubuntu$ sudo service opendj start

SStarting opendj: > SUCCESS.

e (UNIX) Create an RC script, and use the script to start the server.

Unless you run DS servers on Linux as root, use the --userName userName option
to specify the user who installed the server:

$ sudo create-rc-script --outputFile /etc/init.d/opendj --
userName opendj

8/85

$ sudo /etc/init.d/opendj start

For example, if you run the DS server on Linux as root, you can use the RC script to
start the server at system boot, and to stop the server at system shutdown:

S sudo update-rc.d opendj defaults

update-rc.d: warning: /etc/init.d/opendj missing LSB

information

update-rc.d: see <http://wiki.debian.org/LSBInitScripts>

Adding system startup for /etc/init.d/opendj
/etc/rcO.d/K20opendj -> ../init.d/opendj
/etc/rc1.d/K20opendj -> ../init.d/opendj
/etc/rc6.d/K20opendj -> ../init.d/opendj
/etc/rc2.d/S20opendj -> ../init.d/opendj
/etc/rc3.d/S20opendj -> ../init.d/opendj
/etc/rc4.d/S20opendj -> ../init.d/opendj
/etc/rc5.d/S20opendj -> ../init.d/opendj

Alternatively, generate a service file with the --systemdService option, and use
systemd to manage the service.

¢ (Windows) Register the DS server as a Windows service:
C:\path\to\opendj\bat> windows-service.bat --enableService

Manage the service with Windows-native administration tools.

Stop a Server

Although DS servers are designed to recover from failure and disorderly shutdown, it is

safer to shut the server down cleanly, because a clean shutdown reduces startup delays.

During startup, the server attempts to recover database backend state. Clean shutdown
prevents situations where the server cannot recover automatically.

Clean Server Retirement

1. Before shutting down the system where the server is running, and before
detaching any storage used for directory data, cleanly stop the server using one
of the following techniques:

o Use the stop-ds command:

9/85

S stop-ds

o (Linux) If the DS server was installed from a .deb or .rpm package, then
service management scripts were created at setup time:

centos# service opendj stop
Stopping opendj (via systemctl):
[oK]

ubuntu$ sudo service opendj stop

SStopping opendj: ... > SUCCESS.

o (UNIX) Create an RC script, and then use the script to stop the server:

S sudo create-rc-script --outputFile /etc/init.d/opendj
--userName opendj

$ sudo /etc/init.d/opendj stop

o (Windows) Register the DS server once as a Windows service:

C:\path\to\opendj\bat> windows-service.bat --
enableService

Manage the service with Windows-native administration tools.

Do not intentionally kill the DS server process unless the server is completely
unresponsive.

+ When stopping cleanly, the server writes state information to database
backends, and releases locks that it holds on database files.

Restart a Server

e Use the stop-ds command:

S stop-ds --restart

e (Linux) If the DS server was installed from a .deb or .rpm package, then service
management scripts were created at setup time:

10/85

centos# service opendj restart

Restarting opendj (via systemctl): [
OK]

ubuntu$ sudo service opendj restart
$Stopping opendj: ... > SUCCESS.
SStarting opendj: > SUCCESS.

e (UNIX) Create an RC script, and then use the script to stop the server:

$ sudo create-rc-script --outputFile /etc/init.d/opendj --
userName opendj

S sudo /etc/init.d/opendj restart

e (Windows) Register the DS server once as a Windows service:

C:\path\to\opendj\bat> windows-service.bat --enableService

Manage the service with Windows-native administration tools.

Server Tasks

The following server administration commands can be run in online and offline mode.
They invoke data-intensive operations, and so potentially take a long time to complete.
The links below are to the reference documentation for each command:

e dsbackup

e export-Idif

e import-ldif

e rebuild-index
When you run these commands in online mode, they run as tasks on the server. Server
tasks are scheduled operations that can run one or more times as long as the server is

up. For example, you can schedule the dsbackup and export-1dif commands to run
recurrently in order to back up server data on a regular basis.

You schedule a task as a directory administrator, sending the request to the

administration port. You can therefore schedule a task on a remote server if you choose.

When you schedule a task on a server, the command returns immediately, yet the task

11/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/export-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/import-ldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/rebuild-index.html

can start later, and might run for a long time before it completes. You can access tasks
by using the manage-tasks command.

Although you can schedule a server task on a remote server, the data for the task must be
accessible to the server locally. For example, when you schedule a backup task on a
remote server, that server writes backup files to a file system on the remote server.
Similarly, when you schedule a restore task on a remote server, that server restores
backup files from a file system on the remote server.

The reference documentation describes the available options for each command:

Configure email notification for success and failure

Define alternatives on failure

Start tasks immediately (--start 0)

Schedule tasks to start at any time in the future

Server Recovery

DS servers can restart after a crash or after the server process is killed abruptly. After
disorderly shutdown, the DS server must recover its database backends. Generally, DS
servers return to service quickly.

Database recovery messages are found in the database log file, such as
/path/to/opendj/db/userData/dj.log.

The following example shows two example messages from the recovery log. The first
message is written at the beginning of the recovery process. The second message is
written at the end of the process:

[/path/to/opendj/db/userData]Recovery underway, found end of log

[/path/to/opendj/db/userData]Recovery finished: Recovery Info

The JVM's heap-based database cache is lost when the server stops or crashes. The
cache must therefore be reconstructed from the directory database files. Database files
might still be in the filesystem cache on restart, but rebuilding the JVM's heap-based
database cache takes time. DS servers start accepting client requests before this process
is complete.

Backup and Restore

12/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/manage-tasks.html

e Backup archives are not guaranteed to be compatible across major and minor
server releases. Restore backups only on directory servers of the same major or
minor version.

To share data between servers of different versions, either use replication, or
use LDIF.

e DS servers use cryptographic keys to sign and verify the integrity of backup
files, and to encrypt data. Servers protect these keys by encrypting them with
the shared master key for a deployment. For portability, servers store the
encrypted keys in the backup files.

Any server can therefore restore a backup taken with the same server version,
as long as it holds a copy of the shared master key used to encrypt the keys.

Back Up

When you set up a directory server, the process creates a /path/to/opendj/bak/
directory. You can use this for backups if you have enough local disk space, and when
developing or testing backup processes. In deployment, store backups remotely to avoid
losing your data and backups in the same crash.

Back Up Data (Server Task)

When you schedule a backup as a server task, the DS server manages task
completion. The server must be running when you schedule the task, and when the
task runs:

1. Schedule the task on a running server, binding as a user with the backend-
backup administrative privilege.

The following example schedules an immediate backup task for the
dsEvaluation backend:

S dsbackup \

create \
--hostname localhost \
--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

13/85

--backupLocation bak \
--backendName dsEvaluation

To back up all backends, omit the --backendName option.

To back up more than one backend, specify the --backendName option
multiple times.

For details, see dsbackup.

Back Up Data (Scheduled Task)

When you schedule a backup as a server task, the DS server manages task

completion. The server must be running when you schedule the task, and when the
task runs:

1. Schedule backups using the crontab format with the --recurringTask
option.

The following example schedules nightly online backup of all user data at 2 AM,
notifying diradmin@example.com when finished, or on error:

S dsbackup \

create \
--hostname localhost \
--port 4444 \

--bindDN uid=admin \

--bindPassword password \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--backupLocation bak \

--recurringTask "00 02 * * *" \
--description "Nightly backup at 2 AM" \
--taskId NightlyBackup \
--completionNotify diradmin@example.com \
--errorNotify diradmin@example.com

For details, see dsbackup.

Back Up Data (External Command)

14/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

When you back up data without contacting the server, the dsbackup create

command runs as an external command, independent of the server process. It
backs up the data whether the server is running or not.

When you back up LDIF-based backends with this method, the command does
not lock the files. To avoid corrupting the backup files, do not run the

dsbackup create --offline command on an LDIF backend simultaneously
with any changes to the backend.

This applies to LDIF backends, schema files, and the task backend, for example.

Use this method to schedule backup with a third-party tool, such as the cron
command:

1. Back up data without contacting the server process, and use the --offline
option.

The following example backs up the dsEvaluation backend immediately:

S dsbackup \

create \

--offline \
--backupLocation bak \
--backendName dsEvaluation

To back up all backends, omit the --backendName option.

To back up more than one backend, specify the --backendName option
multiple times.

For details, see dsbackup.

Back Up Configuration Files

When you back up directory data using the dsbackup command, you do not back
up server configuration files. The server stores configuration files under the
/path/to/opendj/config/ directory.

The server records snapshots of its configuration under the
/path/to/opendj/var/ directory. You can use snapshots to recover from

misconfiguration performed with the dsconfig command. Snapshots only reflect
the main configuration file, config.1dif.

15/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

1. Stop the server:

S stop-ds

2. Back up the configuration files:

§ tar -zcvf backup-config-$(date +%s).tar.gz config

By default, this backup includes the server keystore, so store it securely.

3. Start the server:

S start-ds

Back Up Using Snapshots

ForgeRock recommends using the dsbackup command when possible for backup and
restore operations. You can use snapshot technology as an alternative to the dsbackup
command, but you must be careful how you use it.

While DS directory servers are running, database backend cleanup operations write data
even when there are no pending client or replication operations. An ongoing file system
backup operation may record database log files that are not in sync with each other.

Successful recovery after restore is only guaranteed under certain conditions.
The snapshots must:
e Be atomic, capturing the state of all files at exactly the same time.
If you are not sure that the snapshot technology is atomic, do not use it. Use the
dsbackup command instead.
o Capture the state of all data (db/) and (changelogDb/) changelog files together.
When using a file system-level snapshot feature, for example, keep at least all data

and changelog files on the same file system. This is the case in a default server
setup.

e Be paired with a specific server configuration.

A snapshot of all files includes configuration files that may be specific to one DS
server, and cannot be restored safely on another DS server with a different
configuration. If you restore all system files, this principle applies to system
configuration as well.

16/85

For details on making DS configuration files as generic as possible, see Property
Value Substitution.

If snapshots in your deployment do not meet these criteria, you must stop the DS server
before taking the snapshot. You must also take care not to restore incompatible
configuration files.

Restore

After you restore a replicated backend, replication brings it up to date with changes
newer than the backup. Replication uses internal change log records to determine
which changes to apply. This process happens even if you only have a single server
that you configured for replication at setup time (by setting the replication port with
the --replicationPort port option). To prevent replication from replaying
changes newer than the backup you restore, refer to Disaster recovery.

Replication purges internal change log records, however, to prevent the change log
from growing indefinitely. Replication can only bring the backend up to date if the
change log still includes the last change backed up.

For this reason, when you restore a replicated backend from backup, the backup
must be newer than the last purge of the replication change log (default: 3 days).

If no backups are newer than the replication purge delay, do not restore from a
backup. Initialize the replica instead, without using a backup. For details, see
Manual Initialization.

Restore Data (Server Task)

1. Verify the backup you intend to restore.

The following example verifies the most recent backup of the dsEvaluation
backend:

$ dsbackup \
list \
--backupLocation bak \
--backendName dsEvaluation \
--last \

--verify

2. Schedule the restore operation as a task, binding as a user with the backend-
restore administrative privilege.

17/85

file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/disaster-recovery.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#init-repl

The following example schedules an immediate restore task for the
dsEvaluation backend:

$ dsbackup \

restore \
--hostname localhost \
--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--backupLocation bak \

--backendName dsEvaluation

To restore the latest backups of more than one backend, specify the --
backendName option multiple times.

To restore a specific backup, specify the --backupId option. To restore
multiple specific backups of different backends, specify the --backupId
option multiple times.

To list backup information without performing verification, use the dsbackup
list command without the --verify option. The output includes backup IDs
for use with the --backupId option.

For details, see dsbackup.

Restore Data (External Command)

1. Stop the server if it is running:

S stop-ds --quiet
2. Verify the backup you intend to restore.

The following example verifies the most recent backup of the dsEvaluation
backend:

S dsbackup \
list \
--backupLocation bak \
--backendName dsEvaluation \

18/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

--last \
--verify

3. Restore using the --offline option.

The following example restores the dsEvaluation backend:

S dsbackup \
restore \
--offline \
--backupLocation bak \
--backendName dsEvaluation

To restore the latest backups of more than one backend, specify the --
backendName option multiple times.

To restore a specific backup, specify the --backupId option. To restore
multiple specific backups of different backends, specify the --backupId
option multiple times.

To list backup information without performing verification, use the dsbackup
list command without the --verify option. The output includes backup IDs
for use with the --backupId option.

For details, see dsbackup.

4. Start the server:

S start-ds --quiet

Restore Configuration Files

1. Stop the server:

S stop-ds --quiet
2. Restore the configuration files from the backup, overwriting existing files:

$ tar -zxvf backup-config-<date>.tar.gz

3. Start the server:

19/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

S start-ds --quiet

Restore From a Snapshot

ForgeRock recommends using the dsbackup command when possible for backup and
restore operations.

You can use snapshot technology as an alternative to the dsbackup command, but you
must be careful how you use it. For details, see Back Up Using Snapshots.

Take the following points into account before restoring a snapshot:

e When you restore files for a replicated backend, the snapshot must be newer than the
last purge of the replication change log (default: 3 days).

e Stop the DS server before you restore the files.

e The DS configuration files in the snapshot must match the configuration where you
restore the snapshot.

If the configuration uses expressions, define their values for the current server
before starting DS.

» When using snapshot files to initialize replication, only restore the data (db/) files
for the target backend.

Depending on the snapshot technology, you might need to restore the files
separately, and then move only the target backend files from the restored
snapshot.

e When using snapshot files to restore replicated data to a known state, stop all
affected servers before you restore.

Purge Old Files

Periodically purge old backup files with the dsbackup purge command. The following
example removes all backup files older than the default replication purge delay:

S dsbackup \
purge \
--offline \
--backupLocation bak \
--olderThan 3d

This example runs the external command without contacting the server process. You
can also purge backups by ID, or by backend name, and you can specify the number of
backups to keep. For details, see dsbackup.

20/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dsbackup.html

To purge files as a server task, use the task options, such as --recurringTask. The
user must have the backend-backup administrative privilege to schedule a purge task.

Cloud Storage

You can stream backup files to cloud storage, and restore them directly from cloud
storage.

The implementation supports these providers:

e Amazon AWS S3
e Azure Cloud Storage

e Google Cloud Storage

Follow these steps to store backup files in the cloud:

1. Get a storage account and space from the cloud provider where the server can
store backup files.

This storage space is referred to below as cloud-bak.
2. Get credentials from the cloud provider.
The DS server backing up files must have read, write, and delete access. For

information about granting access, see the access control documentation for
your provider.

If you are not yet familiar with cloud storage, see the documentation from your
provider for help. The following table provides links to the documentation for
supported providers:

Provider Hints

Amazon AWS For details on setting up S3 and working with S3 buckets, see
S3 the Amazon Web Services documentation on Getting started
with Amazon Simple Storage Service©.

Azure Cloud DS authenticates to Azure with an Azure storage account.

Storage For details, see the Microsoft documentation on how to
Create an Azure Storage account, or to Create a
BlockBlobStorage account™.

21/85

https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.aws.amazon.com/AmazonS3/latest/gsg/GetStartedWithS3.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-create
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-blob-create-account-block-blob

Provider

Google
Cloud
Storage

Hints

DS authenticates to Google Cloud with a service account. For
details, see the Google documentation on Getting Started
with Authentication®.

For details about creating and managing storage buckets,
see the Google How-To documentation on Creating buckets
¥, and Working with buckets™.

3. Set environment variables for the credentials:

Provider

Amazon AWS
S3

Azure Cloud
Storage

Google
Cloud
Storage

Environment Variable(s)

export AWS_ACCESS_KEY_ID=aws-access-key
export AWS_SECRET_ACCESS_KEY=aws-secret-key
export AZURE_ACCOUNT_NAME=azure-account-name
export AZURE_ACCOUNT_KEY=azure-account-key

export GOOGLE_CREDENTIALS=/path/to/gcp-
credentials. json (optional)

4. Restart the DS server so that it reads the environment variables you set:

S stop-ds --restart

5. Run dsbackup commands with all required provider-specific options.

The options in the following table use the providers' default storage endpoints:

Provider

Amazon AWS
S3

Required Options

--storageProperty

s3.keyId.env.var :AWS_ACCESS_KEY_ID \
--storageProperty
s3.secret.env.var:ANS_SECRET_ACCESS_KEY \
--backupLocation s3://cloud-bak

22/85

https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/docs/authentication/getting-started
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#creating-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets
https://cloud.google.com/storage/docs/how-to#working-with-buckets

Provider Required Options

Azure Cloud
St --storageProperty
orage az.accountName.env.var :AZURE_ACCOUNT_NAME \

--storageProperty
az.accountKey.env.var :AZURE_ACCOUNT_KEY \
--backuplLocation az://cloud-bak

Google
--storageProperty

Cloud .
gs.credentials.path:/path/to/gcp-

Storage

credentials.json \
--backuplLocation gs://cloud-bak

or

--storageProperty
gs.credentials.env.var :GOOGLE_CREDENTIALS \
--backupLocation gs://cloud-bak

If your cloud storage does not use the default endpoint, add one of the following
options:

--storage-property endpoint:endpoint-url

--storage-property endpoint.env.var:environment-variable-for-
endpoint-url

For Azure cloud storage, the endpoint-url starts with the account name.
Examples include https://azure-account-name.blob.core.windows.net,
https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net, and
https://S$S{AZURE_ACCOUNT_NAME}.some.private.azure.endpoint.

Cloud storage requires working space in the local system temporary directory.
Some cloud storage providers require sending the content length with each
file.

To send the correct content length, the dsbackup command writes each
prepared backup file to the system temporary directory before upload. It
deletes each file after successful upload.

Cloud storage samples

Click the samples for your storage provider to expand the section and see the
commands:

23/85

v AWS samples

#

API keys created through the AWS API gateway console:
#

export AWS_ACCESS_KEY_ID=aws-access-key-id

export AWS_SECRET_ACCESS_KEY=aws-secret-key

These samples use the following S3 bucket, and a non-default
endpoint:

S3 bucket: s3://ds-test-backup

S3 endpoint: https://s3.us-east-1.amazonaws.com

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \
--backupLocation s3://ds-test-backup \
--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \
--storageProperty s3.secret.env.var :AWS_SECRET_ACCESS_KEY \
--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

List and verify the latest backup files for each backend at
this location:
dsbackup list --verify --last \
--backupLocation s3://ds-test-backup \
--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \
--storageProperty s3.secret.env.var:ANS_SECRET_ACCESS_KEY \
--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \
--backuplLocation s3://ds-test-backup \
--storageProperty s3.keyId.env.var:AWS_ACCESS_KEY_ID \
--storageProperty s3.secret.env.var :AWS_SECRET_ACCESS_KEY \
--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

Purge all dsEvaluation backup files:
dsbackup purge --backendName dsEvaluation --keepCount 0 --
offline \
--backupLocation s3://ds-test-backup \
--storageProperty s3.keyId.env.var:AWNS_ACCESS_KEY_ID \
--storageProperty s3.secret.env.var :ANS_SECRET_ACCESS_KEY \
--storageProperty endpoint:https://s3.us-east-1.amazonaws.com

¥ Azure samples

24/85

#

Credentials for Azure storage, where the Azure account is
found in keyl in the Azure console:

#

export AZURE_ACCOUNT_NAME=azure-account-name

export AZURE_ACCOUNT_KEY=azure-account-key

These samples use the following Azure storage, and a non-
default endpoint:

Azure storage: az://ds-test-backup/test1

Azure endpoint:
https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \
--backupLocation az://ds-test-backup/test1l \
--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \
--storageProperty az.accountKey.env.var :AZURE_ACCOUNT_KEY \
--storageProperty
"endpoint:https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net"

List and verify the latest backup files for each backend at
this location:
dsbackup list --verify --last \
--backupLocation az://ds-test-backup/testl \
--storageProperty az.accountName.env.var :AZURE_ACCOUNT_NAME \
--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \
--storageProperty
"endpoint:https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net"

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \
--backuplLocation az://ds-test-backup/testl1 \
--storageProperty az.accountName.env.var :AZURE_ACCOUNT_NAME \
--storageProperty az.accountKey.env.var :AZURE_ACCOUNT_KEY \
--storageProperty
"endpoint:https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net"

Purge all dsEvaluation backup files:

dsbackup purge --backendName dsEvaluation --keepCount 0 --

offline \
--backuplLocation az://ds-test-backup/test1 \
--storageProperty az.accountName.env.var:AZURE_ACCOUNT_NAME \
--storageProperty az.accountKey.env.var:AZURE_ACCOUNT_KEY \

25/85

--storageProperty
"endpoint:https://S{AZURE_ACCOUNT_NAME}.blob.core.windows.net"

v Google cloud samples

#

Credentials generated with and download from the Google cloud
console:

#

export GOOGLE_CREDENTIALS=/path/to/gcp-credentials. json

These samples use the following cloud storage, and endpoint:
Google storage: gs://ds-test-backup/testl]
Google endpoint: https://www.googleapis.com

Back up the dsEvaluation backend offline:

dsbackup create --backendName dsEvaluation --offline \
--backupLocation gs://ds-test-backup/testl \
--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \
--storageProperty endpoint:https://www.googleapis.com

List and verify the latest backup files for each backend at
this location:

dsbackup list --verify --last \

--backupLocation gs://ds-test-backup/test1 \
--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \
--storageProperty endpoint:https://www.googleapis.com

Restore dsEvaluation from backup offline:

dsbackup restore --backendName dsEvaluation --offline \
--backupLocation gs://ds-test-backup/testl \
--storageProperty gs.credentials.env.var:GOOGLE_CREDENTIALS \
--storageProperty endpoint:https://www.googleapis.com

Purge all dsEvaluation backup files:

dsbackup purge --backendName dsEvaluation --keepCount 0 --

offline \
--backupLocation gs://ds-test-backup/test1 \
--storageProperty gs.credentials.env.var :GOOGLE_CREDENTIALS \
--storageProperty endpoint:https://www.googleapis.com

Disaster recovery

26/85

Directory services are critical to authentication, session management, authorization, and
more. When directory services are broken, quick recovery is a must.

In DS directory services, a disaster is a serious data problem affecting the entire
replication topology. Replication can't help you recover from a disaster because it
replays data changes everywhere.

Disaster recovery comes with a service interruption, the loss of recent changes, and a
reset for replication. It is rational in the event of a real disaster. It's unnecessary to follow
the disaster recovery procedure for a hardware failure or a server that's been offline too
long and needs reinitialization. Even if you lose most of your DS servers, you can still
rebuild the service without interruption or data loss.

For disaster recovery to be quick, you must prepare in advance.

Don't go to production until you have successfully tested your disaster recovery
procedures.

The following example helps prepare to recover from a disaster. It shows the following
tasks:

e Back up a DS directory service.
e Restore the service to a known state.

e Validate the procedure.

Tasks

The following tasks demonstrate a disaster recovery procedure on a single computer
two replicated DS servers set up for evaluation.

In deployment, the procedure involves multiple computers, but the order and content of
the tasks remain the same. Before you perform the procedure in production, make sure
you have copies of the following:

e The deployment description, documentation, plans, runbooks, and scripts.

» The system configuration and software, including the Java installation.

e The DS software and any customizations, plugins, or extensions.

e Arecent backup of any external secrets required, such as an HSM or a CA key.

e Arecent backup of each server’s configuration files, matching the production
configuration.

e The deployment ID and password.

27/85

file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html

This procedure applies to DS versions providing the dsrepl disaster-recovery
command.

For deployments with any earlier DS servers that don't provide the command, you
can't use this procedure. Instead, refer to How do | perform disaster recovery steps
in DS (All versions)?&

Disaster recovery has these characteristics:

» You perform disaster recovery on a stopped server, one server at a time.
o Disaster recovery is per base DN, like replication.
e On each server you recover, you use the same disaster recovery ID, a unique

identifier for this recovery.

To minimize the service interruption, this example recovers the servers one by one. It is
also possible to perform disaster recovery in parallel by stopping and starting all servers
together.

Task 1: Back up directory data

Back up data while the directory service is running smoothly. For additional details, refer
to Backup and Restore.

1. Back up the directory data.

The following command backs up directory data created for evaluation:

$ /path/to/opendj/bin/dsbackup \

create \

--start 0 \

--backupLocation /path/to/opendj/bak \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

The command returns, and the DS server runs the backup task in the background.

When adapting the recovery process for deployment, schedule a backup task to run
regularly for each database backend.

2. Check the backup task finishes successfully:

28/85

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361
https://backstage.forgerock.com/knowledge/kb/article/a31420361

§ /path/to/opendj/bin/manage-tasks \

--summary \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

The status of the backup task is "Completed successfully" when it is done.

Recovery from disaster means stopping the directory service and losing the latest
changes. The more recent the backup, the fewer changes you lose during recovery.
Backup operations are cumulative, so you can schedule them regularly without using
too much disk space as long as you purge outdated backup files. As you script your
disaster recovery procedures for deployment, schedule a recurring backup task to have
safe, current, and complete backup files for each backend.

Task 2: Recover from a disaster

This task restores the directory data from backup files created before the disaster. Adapt

this procedure as necessary if you have multiple directory backends to recover.

All changes since the last backup operation are lost.

Subtasks:

e Prepare for recovery
e Recover the first directory server

e Recover remaining servers

Prepare for recovery

1. If you have lost DS servers, replace them with servers configured as before the
disaster.

In this example, no servers were lost. Reuse the existing servers.

2. 0n each replica, prevent applications from making changes to the backend for the
affected base DN. Changes made during recovery would be lost or could not be

replicated:

29/85

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html#cumulative-backups

$ /path/to/opendj/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:internal-only \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

In this example, the first server’'s administrative port is 4444 . The second server’s
administrative portis 14444 .

Recover the first directory server

30/85

DS uses the disaster recovery ID to set the generation ID, an internal, shorthand form
of the initial replication state. Replication only works when the data for the base DN
share the same generation ID on each server.

There are two approaches to using the dsrepl disaster-recovery command.
Use one or the other:

e (Recommended) Let DS generate the disaster recovery ID on a first replica. Use
the generated ID on all other servers you recover.

When you use the generated ID, the dsrepl disaster-recovery command
verifies each server you recover has the same initial replication state as the
first server.

e Use the recovery ID of your choice on all servers.

Don't use this approach if the replication topology includes one or more
standalone replication servers. It won't work.

This approach works when you can't define a "first" replica, for example,
because you've automated the recovery process in an environment where the
order of recovery is not deterministic.

When you choose the recovery ID, the dsrepl disaster-recovery
command doesn’t verify the data match. The command uses your ID as the
random seed when calculating the new generation ID. For the new generation
IDs to match, your process must have restored the same data on each server.
Otherwise, replication won't work between servers whose data does not
match.

If you opt for this approach, skip these steps. Instead, proceed to Recover
remaining servers.

Don’t mix the two approaches in the same disaster recovery procedure. Use the
generated recovery ID or the recovery ID of your choice, but do not use both.

This process generates the disaster recovery ID to use when recovering the other
servers.

1. Stop the directory server you use to start the recovery process:

$ /path/to/opendj/bin/stop-ds

2. Restore the affected data on this directory server:

$ /path/to/opendj/bin/dsbackup \
restore \

31/85

--offline \
--backendName dsEvaluation \
--backupLocation /path/to/opendj/bak

Changes to the affected data that happened after the backup are lost. Use the most
recent backup files prior to the disaster.

This approach to restoring data works in deployments with the same DS server
version. When all DS servers share the same DS version, you can restore all the
DS directory servers from the same backup data.

Backup archives are not guaranteed to be compatible across major and minor
server releases. Restore backups only on directory servers of the same major or
minor version.

3. Run the command to begin the disaster recovery process.

When this command completes successfully, it displays the disaster recovery ID:

$ /path/to/opendj/bin/dsrepl \
disaster-recovery \
--baseDn dc=example,dc=com \
--generate-recovery-id \
--no-prompt

Disaster recovery id: <generatedId>

Record the <generatedld>. You will use it to recover all other servers.

4. Start the recovered server:

$ /path/to/opendj/bin/start-ds

5. Test the data you restored is what you expect.

6. Start backing up the recovered directory data.
As explained in New backup after recovery, you can no longer rely on pre-recovery
backup data after disaster recovery.

7. Allow external applications to make changes to directory data again:

$ /path/to/opendj/bin/dsconfig \
set-backend-prop \
--backend-name dsEvaluation \
--set writability-mode:enabled \
--hostname localhost \

32/85

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

You have recovered this replica and begun to bring the service back online. To enable
replication with other servers to resume, recover the remaining servers.

Recover remaining servers

Make sure you have a disaster recovery ID. Use the same ID for all DS servers in this
recovery procedure:

e (Recommended) If you generated the ID as described in Recover the first
directory server, use it.

e If not, use a unique ID of your choosing for this recovery procedure.

For example, you could use the date at the time you begin the procedure.

You can perform this procedure in parallel on all remaining servers or on one server at a
time. For each server:

1. Stop the server:

$ /path/to/replica/bin/stop-ds

2. Unless the server is a standalone replication server, restore the affected data:

$ /path/to/replica/bin/dsbackup \
restore \
--offline \
--backendName dsEvaluation \
--backupLocation /path/to/opendj/bak

3. Run the recovery command.

The following command uses a generated ID. It verifies this server's data matches
the first server you recovered:

S export DR_ID=<generatedId>
$ /path/to/replica/bin/dsrepl \

33/85

disaster-recovery \

--baseDn dc=example,dc=com \
--generated-id S${DR_ID} \
--no-prompt

If the recovery ID is a unique ID of your choosing, use dsrepl disaster-recovery
--baseDn <base-dn> --user-generated-id <recoveryId> instead. This
alternative doesn't verify the data on each replica match and won't work if the
replication topology includes one or more standalone replication servers.

4. Start the recovered server:

$ /path/to/replica/bin/start-ds

5. If this is a directory server, test the data you restored is what you expect.

6. If this is a directory server, allow external applications to make changes to directory
data again:

$ /path/to/replica/bin/dsconfig \

set-backend-prop \

--backend-name dsEvaluation \

--set writability-mode:enabled \

--hostname localhost \

--port 14444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

After completing these steps for all servers, you have restored the directory service and
recovered from the disaster.

Validation

After recovering from the disaster, validate replication works as expected. Use the
following steps as a simple guide.

1. Modify an entry on one replica.

The following command updates Babs Jensen’s description to Post recovery:

$ /path/to/opendj/bin/ldapmodify \
--hostname localhost \

34/85

--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin
\
--bindDn uid=bjensen, ou=People,dc=example,dc=com \
--bindPassword hifalutin <<EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
replace: description
description: Post recovery
EOF
MODIFY operation successful for DN
uid=bjensen, ou=People, dc=example, dc=com

2. Read the modified entry on another replica:

$ /path/to/replica/bin/ldapsearch \
--hostname localhost \
--port 11636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin
\
--bindDN uid=bjensen, ou=People,dc=example,dc=com \
--bindPassword hifalutin \
--baseDn dc=example, dc=com \
"(cn=Babs Jensen)" \
description
dn: uid=bjensen, ou=People, dc=example, dc=com
description: Post recovery

You have shown the recovery procedure succeeded.

Before deployment

When planning to deploy disaster recovery procedures, take these topics into account.

Recover before the purge delay

When recovering from backup, you must complete the recovery procedure while the
backup is newer than the replication delay.

If this is not possible for all servers, recreate the remaining servers from scratch after
recovering as many servers as possible and taking a new backup.

35/85

New backup after recovery

Disaster recovery resets the replication generation ID to a different format than you get
when importing new directory data.

After disaster recovery, you can no longer use existing backup files for the recovered
base DN. Directory servers can only replicate data under a base DN with directory
servers having the same generation ID. The old backups no longer have the right
generation IDs.

Instead, immediately after recovery, back up data from the recovered base DN and use
the new backups going forward.

You can purge older backup files to prevent someone accidentally restoring from a
backup with an outdated generation ID.

Change notifications reset

Disaster recovery clears the changelog for the recovered base DN.

If you use change number indexing for the recovered base DN, disaster recovery resets
the change number.

Standalone servers

If you have standalone replication servers and directory servers, you might not want to
recover them all at once.

Instead, in each region, alternate between recovering a standalone directory server then
a standalone replication server to reduce the time to recovery.

Reference material

Reference Description
About replication In-depth introduction to replication concepts
Backup and Restore The basics, plus backing up to the cloud and using

filesystem snapshots

Cryptographic Keys About keys, including those for encrypting and
decrypting backup files

Data Storage Details about exporting and importing LDIF, common
data stores

36/85

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#repl-enable
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer
file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html#about-repl
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/backup-restore.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/import-export.html

Accounts

Account Lockout

Account lockout settings are part of password policy. The server locks an account after
the specified number of consecutive authentication failures. For example, users are
allowed three consecutive failures before being locked out for five minutes. Failures
themselves expire after five minutes.

The aim of account lockout is not to punish users who mistype their passwords. It
protects the directory when an attacker attempts to guess a user password with
repeated attempts to bind.

Account lockout is not transactional across a replication topology. Under normal
circumstances, replication propagates lockout quickly. If replication is ever delayed,
an attacker with direct access to multiple replicas could try to authenticate up to
the specified number of times on each replica before being locked out on all
replicas.

The following command adds a replicated password policy to activate lockout:

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: cn=Lock after three failures,dc=example,dc=com
objectClass: top
objectClass: subentry
objectClass: ds-pwp-password-policy
cn: Lock after three failures
ds-pwp-password-attribute: userPassword
ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256
ds-pwp-lockout-failure-expiration-interval: 5 m
ds-pwp-lockout-duration: 5 m
ds-pwp-lockout-failure-count: 3
subtreeSpecification: { base "ou=people" }
EOF

37/85

Users with this policy are locked out after three failed attempts in succession:

S ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN "uid=bjensen, ou=people, dc=example, dc=com" \
--bindPassword hifalutin \
--baseDN dc=example,dc=com \
uid=bjensen \
mail

dn: uid=bjensen, ou=People, dc=example, dc=com
mail: bjensen@example.com

S ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN "uid=bjensen, ou=people, dc=example,dc=com” \
--bindPassword fatfngrs \
--baseDN dc=example, dc=com \
uid=bjensen \
mail

The LDAP bind request failed: 49 (Invalid Credentials)

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN "uid=bjensen, ou=people, dc=example,dc=com" \
--bindPassword fatfngrs \
--baseDN dc=example, dc=com \
uid=bjensen \
mail

The LDAP bind request failed: 49 (Invalid Credentials)

38/85

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN "uid=bjensen, ou=people, dc=example,dc=com" \
--bindPassword fatfngrs \
--baseDN dc=example, dc=com \
uid=bjensen \
mail

The LDAP bind request failed: 49 (Invalid Credentials)

S ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN "uid=bjensen, ou=people, dc=example, dc=com" \
--bindPassword hifalutin \
--baseDN dc=example,dc=com \
uid=bjensen \
mail

The LDAP bind request failed: 49 (Invalid Credentials)

Account Management

Disable an Account

1. Make sure the user running the manage-account command has access to
perform the appropriate operations.

Kirsten Vaughan is a member of the Directory Administrators group. For this
example, she must have the password-reset privilege, and access to edit
user attributes and operational attributes:

S ldapmodify \
--hostname localhost \
--port 1636 \

--useSsl \

39/85

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: uid=kvaughan, ou=People, dc=example, dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: password-reset

dn: ou=People,dc=example, dc=com
changetype: modify
add: aci
aci: (target="ldap:///ou=People,dc=example,dc=com")
(targetattr ="*||+")
(version 3.0;acl "Admins can run amok"; allow(all)
groupdn = "ldap:///cn=Directory
Administrators, ou=Groups, dc=example,dc=com" ;)
EOF

Notice here that the directory superuser, uid=admin, assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.
However, if the administrator can update administrator privileges, they can
assign themselves the bypass-acl privilege. Then they are no longer bound
by access control instructions, including both user data ACls and global ACls.
For this reason, do not assign the privilege-change privilege to normal
administrator users.

2. Set the account status to disabled:

S manage-account \
set-account-is-disabled \
--hostname localhost \
--port 4444 \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \
--operationValue true \
--targetDN uid=bjensen, ou=people, dc=example,dc=com \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin

Account Is Disabled: true

40/85

Activate a Disabled Account

1. Clear the disabled status:

S manage-account \
set-account-is-disabled \
--hostname localhost \
--port 4444 \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \
--operationValue false \
--targetDN uid=bjensen, ou=people, dc=example, dc=com \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin

Account Is Disabled: false

Account Status Notifications

DS servers can send mail about account status changes. The DS server needs an SMTP
server to send messages, and needs templates for the mail it sends. By default, message
templates are in English, and found in the /path/to/opendj/config/messages/
directory.

DS servers generate notifications only when the server writes to an entry or evaluates a
user entry for authentication. A server generates account enabled and account disabled
notifications when the user account is enabled or disabled with the manage-account
command. A server generates password expiration notifications when a user tries to
bind.

For example, if you configure a notification for password expiration, that notification
gets triggered when the user authenticates during the password expiration warning
interval. The server does not automatically scan entries to send password expiry
notifications.

DS servers implement controls that you can pass in an LDAP search to determine
whether a user’s password is about to expire. See Supported LDAP Controls for a list.

Your script or client application can send notifications based on the results of the search.

Send Account Status Mail

41/85

file:///home/pptruser/Downloads/build/site/ds/ldap-reference/controls.html

1. Configure an SMTP server to use when sending messages:

S dsconfig \

create-mail-server \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--server-name "SMTP server" \

--set enabled:true \

--set auth-username:mail.user \

--set auth-password:password \

--set smtp-server:smtp.example.com:587 \

--set trust-manager-provider:"JVM Trust Manager" \
--set use-start-tls:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--no-prompt

2. Prepare the DS server to mail users about account status.

The following example configures the server to send text-format mail
messages:

$ dsconfig \
set-account-status-notification-handler-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--handler-name "SMTP Handler" \
--set enabled:true \
--set email-address-attribute-type:mail \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--no-prompt

Notice that the server finds the user's mail address on the attribute on the
user's entry, specified by email-address-attribute-type. You can also
configure the message-subject and message-template-file properties.
Use interactive mode to make the changes.

42/85

You find templates for messages by default under the config/messages
directory. Edit the templates as necessary.

If you edit the templates to send HTML rather than text messages, then set the
advanced property, send-email-as-html:

$ dsconfig \
set-account-status-notification-handler-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--handler-name "SMTP Handler" \
--set enabled:true \
--set send-email-as-html:true \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--no-prompt

3. Adjust applicable password policies to use the account status notification
handler you configured:

$ dsconfig \

set-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--set account-status-notification-handler:"SMTP Handler"
\

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--no-prompt

When configuring a subentry password policy, set the ds-pwp-account-
status-notification-handler attribute, an attribute of the ds-pwp-
password-policy object class.

Message Templates
When editing the config/messages templates, use the following tokens, which the
server replaces with text:

43/85

%%notification-type%%
The name of the notification type.

%%notification-message%%
The message for the notification.

%%notification-user-dn%%
The string representation of the user DN that is the target of the notification.

%%notification-user-attr:attrname%%
The value of the attribute specified by attrname from the user’s entry.

If the specified attribute has multiple values, then this is the first value encountered.
If the specified attribute does not have any values, then this is an empty string.

%%notification-property:propname%%
The value of the specified property.

If the specified property has multiple values, then this is the first value encountered.
If the specified property does not have any values, then this is an empty string.
Valid propname values include the following:

e account-unlock-time

e new-password

e o0ld-password

e password-expiration-time

e password-policy-dn

e seconds-until-expiration

e seconds-until-unlock

e time-until-expiration

e time-until-unlock

Resource Limits

Search Limits
You can set limits on search operations:

e The lookthrough limit defines the maximum number of candidate entries that the DS
server considers when processing a search.

The default lookthrough limit of 5000 is set by the global server property
lookthrough-limit.

44/85

You can override the limit per user with the operational attribute, ds-rlim-
lookthrough-limit.

e The size limit sets the maximum number of entries returned for a search.
The default size limit of 1000 is set by the global server property size-1limit.
You can override the limit per user with the operational attribute, ds-rlim-size-
limit.
Search requests can include a size limit setting. The 1ldapsearch command has a -
-sizelimit option.

e The time limit defines the maximum processing time for a search operation.
The default time limit of 1 minute is set by the global server property time-limit.

You can override the limit on a per user basis with the operational attribute, ds-
rlim-time-1limit . Times for ds-rlim-time-1limit are expressed in seconds.

In addition, search requests themselves can include a time limit setting. The
ldapsearch command has an --timeLimit option.
e The idle time limit defines how long an idle connection remains open

No default idle time limit is set. You can set an idle time limit by using the global
server property idle-time-limit.

You can override the limit on a per user basis with the operational attribute, ds-
rlim-idle-time-1imit . Times for ds-rlim-idle-time-1limit are expressed in
seconds.

e The maximum number of persistent searches is set by the global server property
max-psearches.

Set Limits For a User

1. Give an administrator access to update the operational attributes related to
search limits:

S ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

45/85

dn: ou=People,dc=example, dc=com
changetype: modify
add: aci
aci: (targetattr = "ds-rlim-lookthrough-limit||ds-rlim-
time-limit| |ds-rlim-size-1imit")

(version 3.0;acl "Allow Kirsten Vaughan to manage search
limits";

allow (all) (userdn =
"ldap:///uid=kvaughan, ou=People, dc=example,dc=com") ;)
EOF

2. Change the user entry to set the limits to override:

$ ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery << EOF
dn: uid=bjensen, ou=People, dc=example, dc=com
changetype: modify
add: ds-rlim-size-limit
ds-rlim-size-limit: 10
EOF

When Babs Jensen performs an indexed search returning more than 10 entries,
she sees the following message:

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--bindDN uid=bjensen, ou=people,dc=example,dc=com \
--bindPassword hifalutin \
--baseDN dc=example, dc=com \
"(sn=jensen)"

The LDAP search request failed: 4 (Size Limit Exceeded)

46/85

Additional Information: This search operation has sent
the maximum of 18 entries to the client

Set Limits For Users in a Group

1. Give an administrator the privilege to write subentries:

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: uid=kvaughan, ou=People, dc=example, dc=com
changetype: modify
add: ds-privilege-name
ds-privilege-name: subentry-write
EOF

Notice here that the directory superuser, uid=admin, assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.
However, if the administrator can update administrator privileges, they can
assign themselves the bypass-acl privilege. Then they are no longer bound
by access control instructions, including both user data ACls and global ACls.
For this reason, do not assign the privilege-change privilege to normal
administrator users.

2. Create an LDAP subentry to specify the limits using collective attributes:

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery << EOF
dn: cn=Remove Administrator Search
Limits, dc=example, dc=com

47/85

objectClass: collectiveAttributeSubentry
objectClass: extensibleObject
objectClass: subentry
objectClass: top
cn: Remove Administrator Search Limits
ds-rlim-lookthrough-limit;collective: ©
ds-rlim-size-limit;collective: ©
ds-rlim-time-1limit;collective: ©
subtreeSpecification: {base "ou=people",
specificationFilter
"(isMemberOf=cn=Directory
Administrators, ou=Groups, dc=example,dc=com)" }
EOF

The base entry identifies the branch that holds administrator entries. For
details on how subentries apply, see About Subentry Scope.

3. Check the results:

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan, ou=people, dc=example, dc=com \
--bindPassword bribery \

--baseDN uid=kvaughan, ou=people, dc=example, dc=com \
--searchScope base \

(&))" O\

ds-rlim-lookthrough-limit ds-rlim-time-limit ds-rlim-
size-limit

dn: uid=kvaughan, ou=People, dc=example, dc=com
ds-rlim-lookthrough-1limit: ©
ds-rlim-size-limit: ©

ds-rlim-time-limit: ©

Limit Persistent Searches

An LDAP persistent search maintains an open a connection that may be be idle for long
periods of time. Whenever a modification changes data in the search scope, the server

48/85

file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html#subentry-scope

returns a search result. The more concurrent persistent searches, the more work the
server has to do for each modification:

1. Set the global property max-psearches to limit total concurrent persistent
searches.

The following example limits the maximum number of persistent searchees to
30:

S dsconfig \
set-global-configuration-prop \
--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set max-psearches:30 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file

/path/to/opendj/config/keystore.pin \
--no-prompt

Connection Limits

Limit Total Connections

Each connection uses memory. On UNIX and Linux systems, each connection uses an
available file descriptor.

To limit the total number of concurrent client connections that the server accepts, use
the global setting max-allowed-client-connections. The following example sets the
limit to 64K. 64K is the minimum number of file descriptors that should be available to
the DS server:

S dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set max-allowed-client-connections:65536 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \

49/85

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#max-allowed-client-connections

--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Restrict Who Can Connect

To restrict which clients can connect to the server, use the global setting allowed-
client, or denied-client . The following example restricts access to clients from the
example.com domain:

$ dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set allowed-client:example.com \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Set these properties per Connection Handler . The settings on a connection handler
override the global settings.

Limit Connections Per Client

To limit the number of concurrent connections from a client, use the global settings
restricted-client, and restricted-client-connection-1limit . The following
example sets the limit for all clients on the 10.6.08.* network to 1000 concurrent
connections:

$ dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set restricted-client:"10.0.0.*" \
--set restricted-client-connection-1imit:16000 \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

50/85

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#allowed-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#allowed-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#denied-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-connection-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#restricted-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#restricted-client-connection-limit

Set these properties per Connection Handler . The settings on a connection handler
override the global settings.

The server applies the properties in this order:
1.Ifthe denied-client property is set, the server denies connections from any
client matching the settings.
2.Ifthe restricted-client property is set, the server checks the number of
connections from any client matching the settings.
If a matching client exceeds restricted-client-connection-1limit connections,
the server refuses additional connections.

3.If the allowed-client property is set, the server allows connections from any
client matching the settings.

4. If none of the properties are set, the server allows connections from any client.

Idle Time Limits

If client applications leave connections idle for long periods, you can drop their
connections by setting the global configuration property idle-time-limit. By default, no
idle time limit is set.

If your network is configured to drop connections that have been idle for some time, set
the DS idle time limit to a lower value than the idle time limit for the network. This helps
to ensure that idle connections are shut down in orderly fashion. Setting the DS limit
lower than the network limit is particularly useful with networks that drop idle
connections without cleanly closing the connection and notifying the client and server.

DS servers do not enforce idle timeout for persistent searches.

The following example sets the idle-time-limit to 24 hours:

S dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set idle-time-limit:24h \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

51/85

file:///home/pptruser/Downloads/build/site/ds/configref/objects-connection-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#idle-time-limit

Request Size Limits

The default maximum request size is 5 MB. This is sufficient for most deployments. In
cases where clients add groups with large numbers of members, requests can exceed
the 5 MB limit.

The following example increases the limit to 20 MB for the LDAP connection handler:

$ dsconfig \
set-connection-handler-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--handler-name LDAP \
--set max-request-size:20mb \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

This setting affects only the size of requests, not responses.

Limits and Proxied Authorization

Proxied authorization lets an application bind as one user and carry out LDAP
operations on behalf of other users.

Resource limits do not change when the user proxies as another user. In other words,
resource limits depend on the bind DN, not the proxy authorization identity.

Move a Server

The following procedure moves a server to the new host new-server.example.com.
The steps skip creation of system accounts, startup scripts, and registration as a
Windows service:

1. Stop the server:

S stop-ds

2. Renew the server certificate to account for the new hostname.

52/85

Skip this step if the server certificate is a wildcard certificate that is already valid
for the new hostname.

The following command renews the server certificate generated with a
deployment key:

S dskeymgr \

create-tls-key-pair \

--deploymentKey SDEPLOYMENT_KEY \
--deploymentKeyPassword password \
--keyStoreFile /path/to/opendj/config/keystore \
--keyStorePassword:file
/path/to/opendj/config/keystore.pin \

--hostname localhost \

--hostname new-server.example.com \

--subjectDn CN=DS, O=ForgeRock

For more command options, refer to dskeymgr. The default validity for the
certificate is one year.

3. Find and replace the old hostname with the new hostname in the server’s
configuration file, config/config.1ldif.
The following list includes configuration settings that may specify the server
hosthame:
o ds-cfg-advertised-listen-address
o ds-cfg-bootstrap-replication-server
o ds-cfg-listen-address
o ds-cfg-server-fqdn
o ds-cfg-source-address
4. Move all files in the /path/to/opendj directory to the new server.

5. Start the server:

S start-ds

6. If the server you moved is referenced by others as a replication bootstrap
server, update the replication bootstrap server configuration on those servers.

Performance Tuning

Performance Requirements

53/85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

Your key performance requirement is to satisfy your users or customers with the
resources available to you. Before you can solve potential performance problems, define
what those users or customers expect. Determine which resources you will have to
satisfy their expectations.

Service Level Objectives

A service level objective (SLO) is a target for a directory service level that you can
measure quantitatively. If possible, base SLOs on what your key users expect from the
service in terms of performance.

Define SLOs for at least the following areas:
e Directory service response times

Directory service response times range from less than a millisecond on average,
across a low latency connection on the same network, to however long it takes your
network to deliver the response.

More important than average or best response times is the response time
distribution, because applications set timeouts based on worst case scenarios.

An example response time performance requirement is, Directory response times
must average less than 10 milliseconds for all operations except searches returning
more than 10 entries, with 99.9% of response times under 40 milliseconds.

e Directory service throughput

Directories can serve many thousands of operations per second. In fact there is no
upper limit for read operations such as searches, because only write operations
must be replicated. To increase read throughput, simply add additional replicas.

More important than average throughput is peak throughput. You might have peak
write throughput in the middle of the night when batch jobs update entries in bulk,
and peak binds for a special event or first thing Monday morning.

An example throughput performance requirement is, The directory service must
sustain a mix of 5,000 operations per second made up of 70% reads, 25% modifies, 3%
adds, and 2% deletes.

Ideally, you mimic the behavior of key operations during performance testing, so
that you understand the patterns of operations in the throughput you need to
provide.

e Directory service availability

DS software is designed to let you build directory services that are basically
available, including during maintenance and even upgrade of individual servers.

54 /85

To reach very high levels of availability, you must also ensure that your operations
execute in a way that preserves availability.

Availability requirements can be as lax as a best effort, or as stringent as 99.999% or
more uptime.

Replication is the DS feature that allows you to build a highly available directory
service.

e Directory service administrative support
Be sure to understand how you support your users when they run into trouble.

While directory services can help you turn password management into a self-service
visit to a web site, some users still need to know what they can expect if they need
your help.

Creating an SLO, even if your first version consists of guesses, helps you reduce
performance tuning from an open-ended project to a clear set of measurable goals for a
manageable project with a definite outcome.

Resource Constraints

With your SLOs in hand, inventory the server, networks, storage, people, and other
resources at your disposal. Now is the time to estimate whether it is possible to meet
the requirements at all.

If, for example, you are expected to serve more throughput than the network can
transfer, maintain high-availability with only one physical machine, store 100 GB of
backups on a 50 GB partition, or provide 24/7 support all alone, no amount of tuning will
fix the problem.

When checking that the resources you have at least theoretically suffice to meet your
requirements, do not forget that high availability in particular requires at least two of
everything to avoid single points of failure. Be sure to list the resources you expect to
have, when and how long you expect to have them, and why you need them. Make note
of what is missing and why.

Server Hardware
DS servers are pure Java applications, making them very portable. DS servers tend to
perform best on single-board, x86 systems due to low memory latency.

Storage

High-performance storage is essential for handling high-write throughput. When the
database stays fully cached in memory, directory read operations do not result in disk

55/85

I/0. Only writes result in disk 1/0. You can further improve write performance by using
solid-state disks for storage or file system cache.

DS directory servers are designed to work with /ocal storage for database backends.
Do not use network file systems, such as NFS, where there is no guarantee that a single
process has access to files.

Storage area networks (SANs) and attached storage are fine for use with DS
directory servers.

Regarding database size on disk, sustained write traffic can cause the database to grow
to more than twice its initial size on disk. This is normal behavior. The size on disk does
not impact the DB cache size requirements.

To avoid directory database file corruption after crashes or power failures on Linux
systems, enable file system write barriers, and make sure that the file system journaling
mode is ordered. For details on how to enable write barriers and set the journaling
mode for data, see the options for your file system in the mount command manual

page.

Performance Tests

Even if you do not need high availability, you still need two of everything, because your
test environment needs to mimic your production environment as closely as possible.

In your test environment, set up DS servers just as you do in production. Conduct
experiments to determine how to best meet your SLOs.

The following command-line tools help with basic performance testing:

e The makeldif command generates sample data with great flexibility.

e The addrate command measures add and delete throughput and response time.
e The authrate command measures bind throughput and response time.

e The modrate command measures modification throughput and response time.

e The searchrate command measures search throughput and response time.

All *rate commands display response time distributions measurements, and support
testing at specified levels of throughput.

For additional precision when evaluating response times, use the global configuration

setting etime-resolution. To change elapsed processing time resolution from
milliseconds (default) to nanoseconds:

56 /85

file:///home/pptruser/Downloads/build/site/ds/tools-reference/makeldif.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/addrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/authrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/modrate.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/searchrate.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#etime-resolution

S dsconfig \
set-global-configuration-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--set etime-resolution:nanoseconds \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

The etime, recorded in the server access log, indicates the elapsed time to process the
request. The etime starts when the decoded operation is available to be processed by
a worker thread.

Test performance with your production-ready configuration. If, however, you simply
want to demonstrate top performance, take the following points into account:

e Incorrect JVM tuning slows down server and tool performance. Make sure the JVM is
tuned for best performance.

For example, set the following environment variable, then restart the server and
run the performance tools again to take the change into account:

export OPENDJ_JAVA_ARGS="-XX:+UseParallelGC -
XX:MaxTenuringThreshold=1"

If the server heap is very large, see the details in Java Settings.

e Unfiltered access logs record messages for each client request. Turn off full access
logging.
For example, set enabled:false for the Json File-Based Access Logger log
publisher, and any other unfiltered log publishers that are enabled.

e Secure connections are recommended, and they can be costly

Set require-secure-authentication:false inthe password policies governing
the bind entries, and bind using insecure connections.

Performance Settings

Use the following suggestions when your tests show that DS performance is lacking,
even though you have the right underlying network, hardware, storage, and system
resources in place.

57/85

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/tuning.html#perf-java

Maximum Open Files

DS servers must open many file descriptors when handling thousands of client
connections.

Linux systems often set a limit of 1024 per user. That setting is too low to accept
thousands of client connections.

Make sure the server can use at least 64K (65536) file descriptors. For example, when
running the server as user opendj on a Linux system that uses
/etc/security/limits.conf to set user level limits, set soft and hard limits by adding
these lines to the file:

opendj soft nofile 65536
opendj hard nofile 131072

The example above assumes the system has enough file descriptors available overall.
Check the Linux system overall maximum as follows:

S cat /proc/sys/fs/file-max
204252

Linux Page Caching

Default Linux virtual memory settings cause significant buildup of dirty data pages
before flushing them. When the kernel finally flushes the pages to disk, the operation
can exhaust the disk I/0 for up to several seconds. Application operations waiting on the
file system to synchronize to disk are blocked.

The default virtual memory settings can therefore cause DS server operations to block
for seconds at a time. Symptoms included high outlier etimes, even for very low average
etimes. For sustained high loads, such as import operations, the server has to maintain
thousands of open file descriptors.

To avoid these problems, tune Linux page caching. As a starting point for testing and
tuning, set vm.dirty_background_bytes to one quarter of the disk I/O per second,
and vm.dirty_expire_centisecs to 1000 (10 seconds) using the sysctl command.
This causes the kernel to flush more often, and limits the pauses to a maximum of 250
milliseconds.

For example, if the disk I/0 is 80 MB/second for writes, the following example shows an
appropriate starting point. It updates the /etc/sysctl.conf file to change the setting
permanently, and uses the sysctl -p command to reload the settings:

58/85

S echo vm.dirty_background_bytes=20971520 | sudo tee -a
/etc/sysctl.conf
[sudo] password for admin:

S echo vm.dirty_expire_centisecs=1000 | sudo tee -a
/etc/sysctl.conf

S sudo sysctl -p
vm.dirty_background_bytes
vm.dirty_expire_centisecs

20971520
1000

Be sure to test and adjust the settings for your deployment.

For additional details, see the Oracle documentation on Linux Page Cache Tuning®, and
the Linux sysctl command virtual memory kernel reference.

Java Settings

Default Java settings let you evaluate DS servers using limited system resources. For high
performance production systems, test and run with a tuned JVM.

To apply JVM settings for a server, edit config/java.properties, and restart the
server.

Availability of the following java options depends on the JVM:

-Xmx
If you observe any internal node evictions, add more RAM to the system. If adding

RAM is not an option, increase the maximum heap size to optimize RAM allocation.
For details, see Cache Internal Nodes.

Use at least a 2 GB heap unless your data set is small.

-XX:+DisableExplicitGC

When using JMX, add this option to the list of start-ds.java-args arguments to
avoid periodic full GC events.

JMX is based on RMI, which uses references to objects. By default, the JMX client and
server perform a full GC periodically to clean up stale references. As a result, the
default settings cause JMX to cause a full GC every hour.

Avoid using this argument with import-1dif.offline.java-args or when using

the import-1dif command. The import process uses garbage collection to manage
memory and references to memory-mapped files.

59/85

https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://docs.oracle.com/cd/NOSQL/html/AdminGuide/linuxcachepagetuning.html
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt
https://www.kernel.org/doc/Documentation/sysctl/vm.txt

-XX:MaxTenuringThreshold=1

This sets the maximum number of GC cycles an object stays in survivor spaces
before it is promoted into the old generation space.

Setting this option as suggested reduces the new generation GC frequency and
duration. The JVM quickly promotes long-lived objects to the old generation space,
rather than letting them accumulate in new generation survivor spaces, copying
them for each GC cycle.

-Xlog:gc=1level:file
Log garbage collection messages when diagnosing JVM tuning problems. You can
turn the option off when everything is running smoothly.

Always specify the output file for the garbage collection log. Otherwise, the VM logs
the messages to the opendj/logs/server.out file, mixing them with other
messages, such as stack traces from the supportextract command.

For example, -Xlog:gc=info:file=/path/to/gc.log logs informational
messages about garbage collection to the file, /path/to/gc.log.

For details, use the java -Xlog:help command.

-XX:TieredStopAtLevel=1

Short-lived client tools, such as the 1dapsearch command, start up faster when this
optionissetto 1 as shown.

-XX:+UseG1GC -XX:MaxGCPauseMillis=1600
Java 11
Use G1 GC (the default) when the heap size is 8 GB or more.

Java 17
Use G1 GC.

-XX:+UseParallelGC

Java 11
Use parallel GC when the heap size is less than 8 GB.

Java 17
Use G1 GC instead.
Data Storage Settings

By default, DS servers compress attribute descriptions and object class sets to reduce
data size. This is called compact encoding.

By default, DS servers do not compress entries stored in its backend database. If your
entries hold values that compress well, such as text, you can gain space. Set the backend

60/85

property entries-compressed:true, and reimport the data from LDIF. The DS server
compresses entries before writing them to the database:

S dsconfig \
set-backend-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--backend-name dsEvaluation \
--set entries-compressed:true \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

S import-1dif \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--1difFile backup.ldif \
--backendID dsEvaluation \
--includeBranch dc=example,dc=com \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin

DS directory servers do not proactively rewrite all entries after you change the settings.
To force the DS server to compress all entries, you must import the data from LDIF.
LDIF Import Settings

By default, the temporary directory used for scratch files is opendj/import-tmp . Use
the import-1dif --tmpDirectory option to set this directory to a tmpfs file system,
such as /tmp.

If you are certain your LDIF contains only valid entries with correct syntax, you can skip
schema validation. Use the import-1dif --skipSchemaValidation option.

Database Cache Settings

61/85

By default, DS directory servers:
e Use shared cache for all JE database backends.

The recommended setting is to leave the global property, je-backend-
shared-cache-enabled, setto true.

If you have more than one JE database backend, before you change this setting
to false, you must set either db-cache-percent or db-cache-size
appropriately for each JE backend. By default, db-cache-percent is 50% for
each backend. If you have multiple backends, including backends created with
setup profiles, the default settings can prevent the server from starting if you
first disable the shared cache.

e Cache JE database internal and leaf notes to achieve best performance.

The recommended setting is to leave this advanced property, db-cache-mode,
setto cache-1n.

In very large directory deployments, monitor the server to make sure internal
nodes remain cached. For details, see Cache Internal Nodes.

If you require fine-grained control over JE backend cache settings, you can configure the
amount of memory requested for database cache per database backend:

1. Configure db-cache-percent or db-cache-size for each JE backend.

db-cache-percent
Percentage of VM memory to allocate to the database cache for the backend.

If the directory server has multiple database backends, the total percent of JVM
heap used must remain less than 100 (percent), and must leave space for other
uses.

Default: 50 (percent)

db-cache-size
JVM memory to allocate to the database cache.

This is an alternative to db-cache-percent . If you set its value larger than 0,
then it takes precedence over db-cache-percent.

Default: 0 MB
2. Set the global property je-backend-shared-cache-enabled:false.

3. Restart the server for the changes to take effect.

Cache Internal Nodes

62/85

file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-percent
file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-size
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#je-backend-shared-cache-enabled
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#je-backend-shared-cache-enabled
file:///home/pptruser/Downloads/build/site/ds/configref/objects-je-backend.html#db-cache-mode

A JE backend is implemented as a B-tree data structure. A B-tree is made up of nodes
that can have children. Nodes with children are called internal nodes. Nodes without
children are called /eaf nodes.

The directory stores data in key-value pairs. Internal nodes hold the keys, and can also
hold small values. Leaf nodes hold the values. One internal node usually holds keys to
values in many leaf nodes. A B-tree has many more leaf nodes than internal nodes.

To read a value by its key, the backend traverses all internal nodes on the branch from
the B-tree root to the leaf node holding the value. The backend is more likely to access
nodes the closer they are to the B-tree root. Internal nodes are accessed far more
frequently than leaf nodes, and must remain cached in memory. In addition to the
worker threads serving client application requests, cleaner threads working in the
background also access internal nodes frequently. The performance impact of having to
fetch frequently used internal nodes from disk can be severe.

When the database cache is full, the backend must begin evicting nodes from cache in
order to load others. By default, the backend evicts leaf nodes even when the cache is
not full. The backend is less likely to access a leaf node than an internal node, and leaf
nodes might remain in the file system cache where they can be accessed quickly. If,
however, the internal nodes do not all fit in cache, the backend eventually evicts even
critical internal nodes.

Monitor the backend database environment to react if a backend evicts internal nodes,
or performs critical evictions. The following example shows no internal node (IN)
evictions, and no critical evictions:

S ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \

--bindPassword password \

--baseDN cn=backends, cn=monitor \

"(| (ds-mon-db-cache-evict-internal-nodes-count=*)(ds-mon-je-
environment-nbytes-evicted-critical=*))" \
ds-mon-db-cache-evict-internal-nodes-count \
ds-mon-je-environment-nbytes-evicted-critical

dn: ds-cfg-backend-id=dsEvaluation, cn=backends, cn=monitor
ds-mon-db-cache-evict-internal-nodes-count: ©

dn: cn=raw JE database statistics,ds-cfg-backend-

63/85

id=dsEvaluation, cn=backends, cn=monitor
ds-mon-je-environment-nbytes-evicted-critical: ©

e If ds-mon-db-cache-evict-internal-nodes-count is greater than @, then the
system has too little memory for all internal nodes to remain in DB cache.

e If ds-mon-je-environment-nbytes-evicted-critical is greater than @, then
the DB worker threads are evicting data because the normal process of clearing
cache using background threads is no longer sufficient.

Increase the DB cache size, and add more RAM to your system if necessary, until there
are no internal node evictions, and no critical evictions. If adding RAM is not an option,
increase the maximum heap size (-Xmx) to optimize RAM allocation.

Estimate Minimum DB Cache Size

When the DB cache is not large enough to hold all internal nodes, the performance

impact can be severe. This section explains how to estimate the minimum DB cache size
to hold all internal nodes.

The examples below reflect a directory server with a 10 million entry dsEvaluation
backend. The backend holds Example.com entries that generated as described in Install
DS for Evaluation with the additional setup option --set ds-

evaluation/generatedUsers:10, 000,000 .

Base your own calculations on realistic sample data, with the same indexes that you use
in production, and with data affected by realistic client application and replication loads.
To generate your own sample data, start by reading Generate Test Data. To simulate
load, use the tools described in Performance Tests. Even better, learn about real loads
from analysis of production access logs, and build custom test clients that reflect the
access patterns of your applications.

After you import LDIF, the backend contains the minimum number of internal
nodes required for the data. Over time as external applications update the
directory server, the number of internal nodes grows.

A JE backend only appends to the database log for update operations, so many
internal nodes in the database logs of a live system represent garbage that the
backend eventually cleans up. Only the live internal nodes must be cached in
memory. Over time, the increase in the number of internal nodes should track
backend growth.

After loading the server for some time, stop the server. Use the backendstat
command and JE DbCacheSize tool together to estimate the required DB cache size.

64/85

file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html
file:///home/pptruser/Downloads/build/site/ds/install-guide/setup-ds.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/ldif-tools.html#generating-ldif

The following example uses the backendstat command to discover information about
keys in the backend. Using a script or a spreadsheet on the output, calculate the total
number of keys (sum of Total Keys, here: 73255315) and average key size (sum of Key
Size/sum of Total Keys, here: 13). Use the results as input to the JE DbCacheSize tool:

Stop the server before using backendstat:

S stop-ds

S backendstat list-raw-dbs --backendId dsEvaluation

Raw DB Name
Total Size

/compressed_schema/comp ...

822

/compressed_schema/comp ...

865
/dc=com, dc=example/aci.
4

/dc=com, dc=example/cn.c ...

187129681

/dc=com, dc=example/cn.c ...

210042476

/dc=com, dc=example/dn2i ...

348894361

/dc=com, dc=example/ds-c ...

0

/dc=com, dc=example/ds-c ...

21

/dc=com, dc=example/ds-s ...

0

/dc=com, dc=example/ds-s ...

0

/dc=com, dc=example/entr ...

87825725

/dc=com, dc=example/give ...

20069078

/dc=com, dc=example/give ...

48410198

/dc=com, dc=example/id2c ...

40

/dc=com, dc=example/id2e ...

5069593748

/dc=com, dc=example/json ...

84

Total Keys

50

17

10000165

858658

10000181

9988518

8614

19652

10000181

Keys Size

50

17

139242471

5106085

268892913

18

39954072

51691

97670

26

80001448

74

Values Size

772

848

47887210

204936391

80001448

47871653

20017387

48312528

14

4989592300

10

65/85

/dc=com, dc=example/json ... 2 34

38

/dc=com, dc=example/mail ... 10000152 238891751
286778919

/dc=com, dc=example/mail ... 1222798 7336758
119701864

/dc=com, dc=example/memb ... 1 40

42

/dc=com, dc=example/obje ... 23 379

772

/dc=com, dc=example/refe ... 0 0

0

/dc=com, dc=example/sn.c ... 13457 92943
20119988

/dc=com, dc=example/sn.c ... 41585 219522
73933480

/dc=com, dc=example/stat ... 23 1153

1175

/dc=com, dc=example/tele ... 9989952 109889472
157762994

/dc=com, dc=example/tele ... 1111110 6543210
227825236

/dc=com, dc=example/uid. 10000152 118889928
166777096

/dc=com, dc=example/uniq 10 406

427

Total: 29

47887168

112365106

393

20027045

73713958

22

47873522

221282026

47887168

21

Calculate sum of Total Keys, sum of Key Size, and average key

size:

S java -cp /path/to/opendj/lib/opendj.jar

com.sleepycat.je.util.DbCacheSize \
-records 73255315 -key 13

=== Environment Cache Overhead ===

3,158,773 minimum bytes

To account for JE daemon operation, record locks, HA
connections, etc,

a larger amount is needed in practice.

=== Database Cache Size ===

Number of Bytes Description

network

66 /85

2,709,096,544 Internal nodes only
To get leaf node sizing specify -data

For further information see the DbCacheSize javadoc.

The resulting recommendation for DB cache size, 2,709,096,544 bytes in this case, is a
minimum estimate. Round up when configuring backend settings for db-cache-
percent or db-cache-size. If the system in this example has 8 GB available memory,
use the default setting of db-cache-percent: 50.(50% * 8 GB =4 GB, which is larger
than the minimum estimate.)

Database Log File Settings

With default settings, if the database has more than 200 files on disk, then the JE
backend must start closing one log file in order to open another. This has serious impact
on performance when the file cache starts to thrash.

Having the JE backend open and close log files from time to time is okay. Changing the
settings is only necessary if the JE backend has to open and close the files very
frequently.

A JE backend stores data on disk in append-only log files. The maximum size of each log
file is configurable. A JE backend keeps a configurable maximum number of log files
open, caching file handles to the log files. The relevant JE backend settings are the
following:

db-log-file-max
Maximum size of a database log file.

Default: 1 GB

db-log-filecache-size
File handle cache size for database log files.

Default: 200

With these defaults, if the size of the database reaches 200 GB on disk (1 GB x 200 files),
the JE backend must close one log file to open another. To avoid this situation, increase
db-log-filecache-size until the JE backend can cache file handles to all its log files.

When changing the settings, make sure the maximum number of open files is sufficient.

Cache for Large Groups

DS servers implement an entry cache designed for a few large entries that are regularly
updated or accessed, such as large static groups. An entry cache is used to keep such

67/85

groups in memory in a format that avoids the need to constantly read and deserialize
the large entries.

When configuring an entry cache, take care to include only the entries that need to be
cached. The memory devoted to the entry cache is not available for other purposes. Use
the configuration properties include-filter and exclude-filter for this.

The following example adds a Soft Reference entry cache to hold entries that match the
filter (ou=Large Static Groups) . A Soft Reference entry cache releases entries when
the JVM runs low on memory. It does not have a maximum size setting. The number of
entries cached is limited only by the include-filter and exclude-filter settings:

$ dsconfig \

create-entry-cache \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--cache-name "Large Group Entry Cache" \

--type soft-reference \

--set cache-level:1 \

--set include-filter:"(ou=Large Static Groups)" \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

The entry cache configuration takes effect when the entry cache is enabled.

Log Settings

Debug logs trace the internal workings of DS servers, and should be used sparingly. Be
particularly careful when activating debug logging in high-performance deployments.

In general, leave other logs active for production environments to help troubleshoot any
issues that arise.

For servers handling 100,000 operations per second or more, the access log can be a
performance bottleneck. Each client request results in at least one access log message.
Test whether disabling the access log improves performance in such cases.

The following command disables the JSON-based LDAP access logger:

S dsconfig \
set-log-publisher-prop \
--hostname localhost \

68/85

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "Json File-Based Access Logger" \

--set enabled:false \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

The following command disables the HTTP access logger:

S dsconfig \
set-log-publisher-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--publisher-name "File-Based HTTP Access Logger" \
--set enabled:false \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Changelog Settings

By default, a replication server indexes change numbers for replicated user data. This
allows legacy applications to get update notifications by change number, as described in
Align Draft Change Numbers. Indexing change numbers requires additional CPU, disk
accesses and storage, so it should not be used unless change number-based browsing is
required.

Disable change number indexing if it is not needed. For details, see Disable Change
Number Indexing.

Troubleshooting

Define the problem

To solve your problem, save time by clearly defining it first. A problem statement
compares the difference between observed behavior and expected behavior:

e What exactly is the problem?

69/85

file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-legacy-format
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer
file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#ecl-configure-changenumber-indexer

What is the behavior you expected?

What is the behavior you observed?
e How do you reproduce the problem?

e When did the problem begin?

Under similar circumstances, when does the problem not occur?

e Isthe problem permanent?
Intermittent?

s it getting worse? Getting better? Staying the same?

Installation problems

Use the logs

Installation and upgrade procedures result in a log file tracing the operation. Look for
this in the command output:

See file for a detailed log of this operation.

Antivirus interference
Prevent antivirus and intrusion detection systems from interfering with DS software.

Before using DS software with antivirus or intrusion detection software, consider the
following potential problems:

Interference with normal file access
Antivirus and intrusion detection systems that perform virus scanning, sweep
scanning, or deep file inspection are not compatible with DS file access, particularly
write access.

Antivirus and intrusion detection software have incorrectly marked DS files as
suspect to infection, because they misinterpret normal DS processing.

Prevent antivirus and intrusion detection systems from scanning DS files, except these
folders:
/path/to/opendj/bat/

Windows command-line tools

/path/to/opendj/bin/
UNIX/Linux command-line tools

70/85

/path/to/opendj/extlib/
Optional additional .jar files used by custom plugins

/path/to/opendj/1ib/
Scripts and libraries shipped with DS servers

Port blocking

Antivirus and intrusion detection software can block ports that DS uses to provide
directory services.

Make sure that your software does not block the ports that DS software uses. For
details, see Administrative Access.

Negative performance impact
Antivirus software consumes system resources, reducing resources available to
other services including DS servers.

Running antivirus software can therefore have a significant negative impact on DS
server performance. Make sure that you test and account for the performance
impact of running antivirus software before deploying DS software on the same
systems.

JE initialization

When starting a directory server on a Linux system, make sure the server user can watch
enough files. If the server user cannot watch enough files, you might see an error
message in the server log such as this:

InitializationException: The database environment could not be
opened:

com.sleepycat.je.EnvironmentFailureException: (JE version)
/path/to/opendj/db/userData

or its sub-directories to WatchService.

UNEXPECTED_EXCEPTION: Unexpected internal Exception, may have side
effects.

Environment is invalid and must be closed.

File notification

A directory server backend database monitors file events. On Linux systems, backend
databases use the inotify API for this purpose. The kernel tunable
fs.inotify.max_user_watches indicates the maximum number of files a user can
watch with the inotify API.

Make sure this tunable is set to at least 512K:

71/85

file:///home/pptruser/Downloads/build/site/ds/security-guide/os.html#os-admin

S sysctl fs.inotify.max_user_watches

fs.inotify.max_user_watches = 524288

If this tunable is set lower than that, update the /etc/sysctl.conf file to change the
setting permanently, and use the sysctl -p command to reload the settings:

S echo fs.inotify.max_user_watches=524288 | sudo tee -a
/etc/sysctl.conf
[sudo] password for admin:

$ sudo sysctl -p
fs.inotify.max_user_watches = 524288

Forgotten superuser password

By default, DS servers store the entry for the directory superuser in an LDIF backend.
Edit the file to reset the password:

1. Generate the encoded version of the new password:

$ encode-password --storageScheme PBKDF2-HMAC-SHA256 --
clearPassword password

{PBKDF2-HMAC-SHA256 }10<hash>

2. Stop the server while you edit the LDIF file for the backend:

$ stop-ds
3. Replace the existing password with the encoded version.

Inthe db/rootUser/rootUser.1dif file, carefully replace the userPassword
value with the new, encoded password:

dn: uid=admin

uid: admin
userPassword: <encoded-password>

Trailing whitespace is significant in LDIF. Take care not to add any trailing
whitespace at the end of the line.

72/85

4. Restart the server:

S start-ds

5. Verify that you can use the directory superuser account with the new
password:

$ status \

--bindDn uid=admin \

--bindPassword password \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file
/path/to/opendj/config/keystore.pin \

--script-friendly

"isRunning" : true,

Debug logging

CAUTION

DS debug logging can generate a high volume of debug messages. Use debug
logging very sparingly on production systems.

1. Create one or more debug targets.

No debug targets are enabled by default:

$ dsconfig \
list-debug-targets \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--publisher-name "File-Based Debug Logger" \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--no-prompt

73/85

Debug Target : enabled : debug-exceptions-only

A debug target specifies a fully qualified DS Java package, class, or method:

S dsconfig \

create-debug-target \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "File-Based Debug Logger" \
--type generic \

--target-name org.opends.server.api \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--no-prompt

2. Enable the debug log, opendj/logs/debug :

$ dsconfig \
set-log-publisher-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword password \
--publisher-name "File-Based Debug Logger" \
--set enabled:true \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file
/path/to/opendj/config/keystore.pin \
--no-prompt

The server immediately begins to write debug messages to the log file.

3. Read messages in the debug log file:

§ tail -f /path/to/opendj/logs/debug

4. Disable the debug log as soon as it is no longer required.

Lockdown Mode

74/85

Misconfiguration can put the DS server in a state where you must prevent users and
applications from accessing the directory until you have fixed the problem.

DS servers support lockdown mode . Lockdown mode permits connections only on the
loopback address, and permits only operations requested by superusers, such as
uid=admin.

To put the DS server into lockdown mode, the server must be running. You cause the
server to enter lockdown mode by starting a task. Notice that the modify operation is
performed over the loopback address (accessing the DS server on the local host):

$ ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: ds-task-id=Enter Lockdown Mode, cn=Scheduled Tasks, cn=tasks
objectClass: top
objectClass: ds-task
ds-task-id: Enter Lockdown Mode
ds-task-class-name: org.opends.server.tasks.EnterLockdownModeTask
EOF

The DS server logs a notice message in logs/errors when lockdown mode takes
effect:

...msg=Lockdown task Enter Lockdown Mode finished execution

Client applications that request operations get a message concerning lockdown mode:

$ ldapsearch \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--baseDN "" \
--searchScope base \
"(objectclass=*)" \
+

The LDAP search request failed: 53 (Unwilling to Perform)

75/85

Additional Information: Rejecting the requested operation
because the server is in lockdown mode and will only accept
requests from root users over loopback connections

Leave lockdown mode by starting a task:

S ldapmodify \
--hostname localhost \
--port 1636 \
--useSsl \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--bindDN uid=admin \
--bindPassword password << EOF
dn: ds-task-id=Leave Lockdown Mode, cn=Scheduled Tasks, cn=tasks

objectClass: top

objectClass: ds-task

ds-task-id: Leave Lockdown Mode

ds-task-class-name: org.opends.server.tasks.LeaveLockdownModeTask

EOF
The DS server logs a notice message when leaving lockdown mode:

...msg=Leave Lockdown task Leave Lockdown Mode finished execution

LDIF import

e By default, DS directory servers check that entries you import match the LDAP
schema.

You can temporarily bypass this check with the import-1dif --
skipSchemaValidation option.

e By default, DS servers ensure that entries have only one structural object class.

You can relax this behavior with the advanced global configuration property,
single-structural-objectclass-behavior.

This can be useful when importing data exported from Sun Directory Server.
For example, warn when entries have more than one structural object class, rather

than rejecting them:

S dsconfig \
set-global-configuration-prop \

76/85

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set single-structural-objectclass-behavior:warn \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin
\

--no-prompt

o By default, DS servers check syntax for several attribute types. Relax this behavior
using the advanced global configuration property, invalid-attribute-syntax-

behavior.

e Usethe import-1dif -R rejectFile --countRejects options to log rejected
entries and to return the number of rejected entries as the command’s exit code.

Once you resolve the issues, reinstate the default behavior to avoid importing bad data.

Security problems

Incompatible Java versions

Due to a change in Java APIs, the same DS deployment ID generates different CA key
pairs with Java 11 and Java 17 and later. When running the dskeymgr and setup
commands, use the same Java environment everywhere in the deployment.

Using different Java versions is a problem if you use deployment ID-based CA
certificates. Replication breaks, for example, when you use the setup command for a
new server with a more recent version of Java than was used to set up existing servers.
The error log includes a message such as the following:

...category=SYNC severity=ERROR msgID=119 msg=Directory server
DS(server_id)

encountered an unexpected error while connecting to replication
server host:port for domain "base_dn":

ValidatorException: PKIX path validation failed:
java.security.cert.CertPathValidatorException:

signature check failed

To work around the issue, follow these steps:
1. Update all DS servers to use the same Java version.

Make sure you have a required Java environment installed on the system.

77185

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#invalid-attribute-syntax-behavior
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#invalid-attribute-syntax-behavior

If your default Java environment is not appropriate, use one of the following
solutions:

o Editthe default.java-home settingin the
opendj/config/java.properties file.

o Set OPENDJ_JAVA_HOME to the path to the correct Java environment.
o Set OPENDJ_JAVA_BIN to the absolute path of the java command.
2. Export CA certificates generated with the different Java versions.

a. Export the CA certificate from an old server:

$ keytool \
-exportcert \
-alias ca-cert \
-keystore /path/to/old-server/config/keystore \
-storepass:file /path/to/old-server/config/keystore.pin \
-file javall-ca-cert.pem

b. Export the CA certificate from a new server:

S keytool \
-exportcert \
-alias ca-cert \
-keystore /path/to/new-server/config/keystore \
-storepass:file /path/to/new-server/config/keystore.pin \
-file javal7-ca-cert.pem

3. On all existing DS servers, import the new CA certificate:

S keytool \
-importcert \
-trustcacerts \
-alias alt-ca-cert \
-keystore /path/to/old-server/config/keystore \
-storepass:file /path/to/old-server/config/keystore.pin \
-file javal7-ca-cert.pem \
-noprompt

4. On all new DS servers, import the old CA certificate:

S keytool \
-importcert \
-trustcacerts \
-alias alt-ca-cert \
-keystore /path/to/new-server/config/keystore \

78/85

-storepass:file /path/to/new-server/config/keystore.pin \
-file javall-ca-cert.pem \
-noprompt

The servers reload their keystores dynamically and replication works as expected.

Certificate-based authentication

Replication uses TLS to protect directory data on the network. Misconfiguration can
cause replicas to fail to connect due to handshake errors. This leads to repeated error
log messages in the replication log file such as the following:

...msg=Replication server accepted a connection from address
to local address address but the SSL handshake failed.

This is probably benign, but may indicate a transient network
outage

or a misconfigured client application connecting to this
replication server.

The error was: Received fatal alert: certificate_unknown

You can collect debug trace messages to help determine the problem. To see the TLS
debug messages, start the server with javax.net.debug set:

S OPENDJ_JAVA_ARGS="-Djavax.net.debug=all" start-ds

The debug trace settings result in many, many messages. To resolve the problem, review
the output of starting the server, looking in particular for handshake errors.

If the chain of trust for your PKI is broken somehow, consider renewing or replacing
keys, as described in Key Management. Make sure that trusted CA certificates are
configured as expected.

Compromised keys
How you handle the problem depends on which key was compromised:

e For keys generated by the server, or with a deployment key, see Retire secret keys.

e For a private key whose certificate was signed by a CA, contact the CA for help. The
CA might choose to publish a certificate revocation list (CRL) that identifies the
certificate of the compromised key.

Replace the key pair that has the compromised private key.

e For a private key whose certificate was self-signed, replace the key pair that has the
compromised private key.

79/85

file:///home/pptruser/Downloads/build/site/ds/security-guide/key-management.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/key-management.html#retire-secret-keys

Make sure the clients remove the compromised certificate from their truststores.
They must replace the certificate of the compromised key with the new certificate.

Client problems

Use the logs

By default, DS servers record messages for LDAP client operations in the logs/1ldap-
access.audit.json log file.

v Show example log messages

[
{
"eventName": "DJ-LDAP",
"client": {
"ip": "<clientIp>",
"port": 12345
}
"server": {
"ip": "<clientIp>",
"port": 1389
}
"request": {
"protocol”: "LDAP",
"operation”: "CONNECT",
“connId": ©
H
"transactionId": "@",
"response": {
"status”: "SUCCESSFUL",
"statusCode": "0",
"elapsedTime": 0,
"elapsedTimeUnits": "MILLISECONDS"
}
"timestamp": "<timestamp>",
"_id": "<uuid>"
}
{

"eventName": "DJ-LDAP",
"client": {
"ip": "<clientIp>",
"port": 12345
)

"server": {

80/85

ip": "<clientIp>",
“port": 1389

H

"request": {
"protocol”: "LDAP",
"operation”: "SEARCH",
"connId": O,

"msgId": 1,
"dn": "dc=example, dc=com",
"scope": "sub",
"filter": "(uid=bjensen)”,
"attrs": ["ALL"]

}.

"transactionId": "@",

"response": {
"status": "SUCCESSFUL",
"statusCode": "0",
"elapsedTime": 9,
"elapsedTimeUnits": "MILLISECONDS",
"nentries": 1

H
"timestamp”: "<timestamp>",
"_id": "<uuid>"
+
{
"eventName": "DJ-LDAP",
"client": {
"ip": "<clientIp>",
"port": 12345
H
"server": {
"ip": "<clientIp>",
"port": 1389
H
"request": {
"protocol”: "LDAP",
"operation”: "UNBIND",
"connId": O,
"msgId": 2
}.
"transactionId": "@",
"timestamp": "<timestamp>",
"_id": "<uuid>"
}
{

81/85

"eventName": "DJ-LDAP",
"“client": {
"ip": "<clientIp>",
"port": 12345
H

"server": {
"ip": "<clientIp>",
"port": 1389

H

"request": {
"protocol”: "LDAP",
"operation”: "DISCONNECT",
"connId": ©

H

“transactionId": "0",

"response": {
"status": "SUCCESSFUL",
"statusCode": "0",
"elapsedTime": 0,
"elapsedTimeUnits"”: "MILLISECONDS",

"reason": "Client Unbind"
H
"timestamp": "<timestamp>",
Il_idll: Il<uuid>ll

Each message specifies the operation performed, the client that requested the
operation, and when it completed.

By default, the server does not log internal LDAP operations corresponding to HTTP
requests. To match HTTP client operations to internal LDAP operations:

1. Prevent the server from suppressing log messages for internal operations.

Set suppress-internal-operations:false on the LDAP access log publisher.

2. Match the request/connId field in the HTTP access log with the same field in the
LDAP access log.

Client access

To help diagnose client errors due to access permissions, see Effective rights.

Simple paged results

82/85

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html#get-effective-rights

For some versions of Linux, you see a message in the DS access logs such as the
following:

The request control with Object Identifier (OID)
"1.2.840.113556.1.4.319"
cannot be used due to insufficient access rights

This message means clients are trying to use the simple paged results control® without
authenticating. By default, a global ACI allows only authenticated users to use the
control.

To grant anonymous (unauthenticated) user access to the control, add a global ACI for
anonymous use of the simple paged results control:

S dsconfig \
set-access-control-handler-prop \
--hostname localhost \
--port 4444 \
--bindDN uid=admin \
--bindPassword "password" \
--add global-aci:"(targetcontrol=\"SimplePagedResults\") \
(version 3.0; acl \"Anonymous simple paged results access\";
allow(read) \
userdn=\"1ldap:///anyone\";)" \
--usePkcs12TrustStore /path/to/opendj/config/keystore \
--trustStorePassword:file /path/to/opendj/config/keystore.pin \
--no-prompt

Replication problems

Replicas do not connect

If you set up servers with different deployment keys, they cannot share encrypted data.
By default, they also cannot trust each other’s secure connections. You may see
messages like the following in the logs/replication log file:

msg=Replication server accepted a connection from /address:port
to local address /address:port but the SSL handshake failed.

Unless the servers use your own CA, make sure their keys are generated with the same
deployment key/password. Either set up the servers again with the same deployment
key, or see Replace Deployment Keys.

83/85

https://www.rfc-editor.org/info/rfc2696
https://www.rfc-editor.org/info/rfc2696
https://www.rfc-editor.org/info/rfc2696
file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html#replace-deployment-keys

Temporary Delays

Replication can generally recover from conflicts and transient issues. Temporary delays
are normal and expected while replicas converge, especially when the write load is
heavy. This is a feature of eventual convergence, not a bug.

For more information, see Replication Delay (LDAP).

Use the Logs

Replication uses its own error log file, logs/replication. Error messages in the log file
have category=SYNC.

The messages have the following form. The following example message is folded for
readability:

...msg=Replication server accepted a connection from
10.10.0.10/10.10.0.10:52859

to local address 0.0.0.0/0.0.0.0:8989 but the SSL handshake
failed.

This is probably benign, but may indicate a transient network
outage

or a misconfigured client application connecting to this
replication server.

The error was: Remote host closed connection during handshake

Stale Data

DS servers maintain historical information to bring replicas up to date, and to resolve
conflicts. To prevent historical information from growing without limit, servers purge
historical information after a configurable delay (replication-purge-delay, default: 3
days). A replica can become irrevocably out of sync if you restore it from a backup that is
older than the purge delay, or if you stop it for longer than the purge delay. If this
happens, reinitialize the replica from a recent backup or from a server that is up to date.

Incorrect configuration

When replication is configured incorrectly, fixing the problem can involve adjustments
on multiple servers. For example, adding or removing a bootstrap replication server
means updating the bootstrap-replication-server settings in the synchronization
provider configuration of other servers. (The settings can be hard-coded in the
configuration, or read from the environment at startup time, as described in Property
Value Substitution. In either case, changing them involves at least restarting the other
servers.)

84/85

file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/ldap-monitoring.html#monitoring-replication-delay-ldap
file:///home/pptruser/Downloads/build/site/ds/configref/objects-replication-synchronization-provider.html#replication-purge-delay
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html
file:///home/pptruser/Downloads/build/site/ds/configref/expressions.html

For details, see sections in Replication.

Support

Sometimes you cannot resolve a problem yourself, and must ask for help or technical
support. In such cases, identify the problem and how you reproduce it, and the version
where you see the problem:

S status --offline --version

ForgeRock Directory Services 7.1.8
Build <datestamp>

Be prepared to provide the following additional information:

e TheJava home setin config/java.properties.

e Access and error logs showing what the server was doing when the problem started
occurring.

o A copy of the server configuration file, config/config.1dif, in use when the
problem started occurring.

e Other relevant logs or output, such as those from client applications experiencing
the problem.

e Adescription of the environment where the server is running, including system
characteristics, hostnames, IP addresses, Java versions, storage characteristics, and
network characteristics. This helps to understand the logs, and other information.

e The .zip file generated using the supportextract command.

For an example showing how to use the command, see supportextract.

Was this helpful? &

Copyright © 2010-2024 ForgeRock, all rights reserved.

85/85

file:///home/pptruser/Downloads/build/site/ds/config-guide/replication.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/supportextract.html

