
1 / 213

This guide helps you to reduce risk and mitigate threats to directory service security.

Security



Understand security

threats.

Threats



Enforce secure

authentication.

Authentication



Manage certificates and

keys.

Cryptographic Keys



Secure network

connections.

Connections



Store and manage

passwords.

Passwords



Protect data on disk.

Data Encryption

IMPORTANT

file:///home/pptruser/Downloads/build/site/ds/security-guide/threats.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/connections.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/data.html

2 / 213

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive
Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of
their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

The ForgeRock® Common REST API works across the platform to provide common ways

to access web resources and collections of resources.

Review common threats to directory services, which you can mitigate by following the
instructions in this guide.

Directory services make a good, central, distributed store for identity data and
credentials.

Standard access protocols, and delegated access and data management mean you
might not know which client applications use your services. Some client applications

may behave insecurely:

Prevent insecure connections.

Require that applications connect with LDAPS and HTTPS, and restrict the protocol
versions and cipher suites for negotiating secure connections to those with no

known vulnerabilities. For details, see Secure Connections.

A guide to securing directory services can go wrong for many reasons, including at

least the following:

The author fails to understand or to properly explain the subject.

The reader fails to understand or to act on what is written.

Bugs exist in the directory’s security-related features.

The authors of this guide aim to understand directory security features and issues
before attempting to explain how to manage them.

The reader would do well to gain grounding in securing services and systems, and
in applying and designing processes that prevent or mitigate threats, before

reading the guide with a critical eye, and a grain of salt. This is not a guide to getting
started with security.

IMPORTANT



Threats

Insecure Client Applications

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ds/security-guide/connections.html

3 / 213

Accept only secure management of sensitive data.

Nothing in LDAPv3 or HTTP prevents a client application from sending credentials
and other sensitive account data insecurely. You can configure the directory to

discourage the practice, however.

Encourage secure authentication.

For details, see Authentication Mechanisms.

Encourage best practices for client applications, such as scrubbing input to avoid

injection vulnerabilities.

For details, see Client Best Practices.

Client applications can misuse directory services. They may be poorly built or incorrectly
configured, and waste server resources. If your organization owns the client, help the

owner fix the problem.

Misuse can be intentional, as in a denial-of-service attack. Protect the directory service to

limit attacks.

Unreasonable requests from client applications include the following:

Unindexed searches that would require the directory to evaluate all entries.

Unindexed searches are not allowed by default for normal accounts, adjustable

with the unindexed-search privilege.

The access log records attempts to perform unindexed searches.

Excessive use of overly broad persistent searches, particularly by clients that do not
process the results quickly.

Review requests before setting ACIs to grant access to use the persistent search
control. Alternatively, let client applications read the external change log.

Extremely large requests, for example, to update directory entries with large values.

By default, requests larger than 5 MB are refused. The setting is per connection

handler, max-request-size .

Requests that make excessive demands on server resources.

Set resource limits. See Resource Limits.

Requests to read entire large group entries only to check membership.

Encourage client applications to read the isMemberOf attribute on the account
instead.

Client Applications

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/clients.html
file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/resource-limits.html

4 / 213

Despite efforts to improve how people manage passwords, users have more passwords

than ever before, and many use weak passwords. You can use identity and access
management services to avoid password proliferation, and you can ensure the safety of

passwords that you cannot eliminate.

As a central source of authentication credentials, directory services provide excellent

password management capabilities. DS servers have flexible password policy settings,
and a wide range of safe password storage options. Be sure that the passwords stored

in your directory service are appropriately strong and securely stored.

For details, see Passwords.

Manage passwords for server administration securely as well. Passwords supplied to
directory server tools can be provided in files, interactively, through environment

variables, or as system property values. Choose the approach that is most appropriate
and secure for your deployment.

Make sure that directory administrators manage their passwords well. To avoid
password proliferation for directory administrators, consider assigning administration

privileges and granting access to existing accounts for delegated administrative
operations. For details, see Administrative Roles and Access Control.

With the power to administer directory services comes the responsibility to make sure

the configuration is correct. Misconfiguration can arise from bad or mistaken
configuration decisions, and from poor change management.

Bad configuration decisions can result in problems such as the following:

A particular feature stops working.

Depending on the configuration applied, features can stop working in obvious or
subtle ways.

For example, suppose a configuration change prevents the server from making
LDAPS connections. Many applications will no longer be able to connect, and so the

problem will be detected immediately. If the configuration change simply allows
insecure TLS protocol versions or cipher suites for LDAPS connections, some

applications will negotiate insecure TLS, but they will appear to continue to work
properly.

Access policy is not correctly enforced.

Incorrect parameters for secure connections and incorrect ACIs can lead to overly

permissive access to directory data, and potentially to a security breach.

Poor Password Management

Misconfiguration

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

5 / 213

The server fails to restart.

Although failure to start a server is not directly a threat to security, it can affect
dependent identity and access management systems.

Generally a result of editing the server configuration LDIF incorrectly, this problem
can usually be avoided by using configuration tools. A server that started correctly

saves a copy of the configuration in the var/config.ldif.startok file. You can
compare this with the config/config.ldif file if the server fails to restart.

To guard against bad configuration decisions, implement good change management:

For all enabled features, document why they are enabled and what your

configuration choices mean.

This implies review of configuration settings, including default settings that you

accept.

Validate configuration decisions with thorough testing.

For details, see Tests.

Maintain a record of your configurations, and the changes applied.

For example, use a filtered directory audit log. Use version control software for any
configuration scripts and to record changes to configuration files.

Make sure you also maintain a record of external changes on the system, such as
changes to operating system configuration, and updates to software such as the

JVM that introduce security changes.

Strongly encourage owners of applications that change ACIs, collective attributes,

and similar settings in directory data to also follow good change management
practices.

Data theft can occur when access policies are too permissive, and when the credentials
to gain access are too easily cracked. It can also occur when the data is not protected,

when administrative roles are too permissive, and when administrative credentials are
poorly managed.

To protect against unauthorized access over the network, see the suggestions in
Insecure Client Applications, Poor Password Management, and Access Control.

To protect against unauthorized access by administrators, see the suggestions in Data
Encryption, and Administrative Roles.

Unauthorized Access

Poor Risk Management

file:///home/pptruser/Downloads/build/site/ds/security-guide/testing.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/data.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/data.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html

6 / 213

Threats can arise when plans fail to account for outside risks.

Develop appropriate answers to at least the following questions:

What happens when a server or an entire data center becomes unavailable?

How do you remedy a serious security issue in the service, either in the directory
service software or the underlying systems?

How do you validate mitigation plans and remedial actions?

How do client applications work when the directory service is offline?

If client applications require always-on directory services, how do your operations
ensure high availability, even when a server or data center goes offline?

For a critical directory service, you must test both normal, expected operation, and
disaster recovery.

This short introduction provides an overview of DS security features.

When DS servers must store sensitive data, and file permissions alone are not sufficient,
they use encryption and digests:

Encryption turns source data into a reversible code. Good design makes it extremely
hard to recover the data from the code without the decryption key.

Encryption uses keys and cryptographic algorithms to convert source data into
encrypted codes and back again. Given the decryption key and the details of the

algorithm, converting an encrypted code back to source data is straightforward,
though it can be computationally intensive.

DS software does not implement its own versions of all encryption algorithms.
Instead, it often relies on cryptographic algorithms provided by the underlying JVM.

DS servers do manage access to encryption keys, however. An important part of
server configuration concerns key management.

DS servers use encryption to protect data and backup files on disk. They can
encrypt password values when you configure a reversible storage scheme. Another

important use of encryption is to make network connections secure.

A digest (also called a hash) is a non-reversible code generated from source data

using a one-way hash function. (A hash function is one that converts input of
arbitrary size into output of fixed size.) Good one-way hash design design makes it

Security Features

Encryption and Digests

7 / 213

effectively impossible to retrieve the source data even if you have access to the

hash function.

The hash function makes it simple to test whether a given value matches the

original. Convert the value into a digest with the same hash function. If the new
digest matches the original digest, then the values are also identical.

DS server use digests to store hashed passwords, making the original passwords
extremely hard to recover. They also use digests for authentication and signing.

In DS software, two types of encryption keys are used:

1. Symmetric keys , also called secret keys, because they must be kept secret.

A single symmetric key is used for both encryption and decryption.

2. Asymmetric key pairs , consisting of a sharable public key and a secret private key.

Either key can be used for encryption and the other for decryption.

DS servers manage incoming client connections using connection handlers. Each

connection handler is responsible for accepting client connections, reading requests,
and sending responses. Connection handlers are specific to the protocol and port used.

For example, a server uses one connection handler for LDAPS and another for HTTPS.

The connection handler configuration includes optional security settings. When you

configure a handler, specify a key manager provider and a trust manager provider:

The key manager provider retrieves the server certificate when negotiating a secure

connection.

A key manager provider is backed by a keystore , which stores the server’s key pairs.

The trust manager provider retrieves trusted certificates, such as CA certificates, to
verify trust for a certificate presented by a peer when setting up a secure

connection.

A trust manager provider is backed by a keystore that contains trusted certificates,

referred to as a truststore when used in this way.

DS servers support file-based keystores and PKCS#11 security tokens, such as HSMs.

Always use secure connections when allowing access to sensitive information. For
details, see Secure Connections.

Connection Management

Cryptographic Key Management

file:///home/pptruser/Downloads/build/site/ds/security-guide/connections.html

8 / 213

DS servers use cryptographic mechanisms for more than setting up secure connections:

Encrypted backup files must be decrypted when restored.

Passwords can be protected by encryption rather than hashing, although this is not

recommended.

Database backends can be encrypted for data confidentiality and integrity.

For all operations where data is stored in encrypted form, all replicas must be trusted to
access the secret key.

Trust between servers depends on a public key infrastructure. This type of infrastructure
is explained in more detail in Public Key Infrastructure.

Replication requires trust between the servers. Trust enables servers to secure network
connections, and to share symmetric keys securely. Servers encrypt symmetric keys with

a shared master key, and store them in replicated data. When a server needs the
symmetric key for decryption or further encryption, it decrypts its copy with the master

key.

The component that provides a common interface for cryptographic functions is called

the DS Crypto Manager.

You can configure the following Crypto Manager features with the dsconfig command:

Protection for symmetric keys.

The alias of the shared master key to use for protecting secret keys.

Cipher key lengths, algorithms, and other advanced properties.

Authentication is the act of confirming the identity of a principal, such as a user,

application, or device. The main reason for authentication is that authorization decisions
are based on the identity of the principal.

Servers should require authentication before allowing access to any information that is
not public.

Authentication mechanisms depend on the access protocol. HTTP has a number of
mechanisms, such as HTTP Basic. LDAP has other mechanisms, such as anonymous bind

and external SASL. For details on supported mechanisms, see Authentication
Mechanisms.

Authorization is the act of determining whether to grant a principal access to a resource.

Authentication

Authorization

file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html#pki-defined
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html

9 / 213

DS servers authorize access based on these mechanisms:

Access control instructions (ACI)

Access control instructions provide fine-grained control over LDAP operations

permitted for a principal.

ACIs can be replicated.

Administrative privileges

Privileges control access to administrative tasks, such as backup and restore

operations, making changes to the configuration, and other tasks.

Privileges can be replicated.

Global access control policies

Global access control policies provide coarse-grained access control for proxy

servers, where the lack of local access to directory data makes ACIs a poor fit.

For details about ACIs and global access control policies with proxy servers, see Access

Control.

For details about privileges, see Administrative Roles.

You must monitor deployed services for evidence of threats and other problems.
Interfaces for monitoring include the following:

Remote monitoring facilities that clients applications can access over the network.

These include JMX and SNMP connection handlers, and the monitor backend that is

accessible over LDAP and HTTP.

Alerts to notify administrators of significant problems or notable events over JMX or

by email.

Account status notifications to send users alerts by email, or to log error messages

when an account state changes.

Logging facilities, including local log files for access, debugging, entry change

auditing, and errors. ForgeRock Common Audit event handlers support local logging
and sending access event messages to a variety of remote logging and reporting

systems.

For details, see Monitoring.

Monitoring and Logging

Operating Systems

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html
file:///home/pptruser/Downloads/build/site/ds/monitoring-guide/preface.html

10 / 213

When you deploy Directory Services software, secure the host operating system. The

suggestions that follow are not exhaustive. Familiarize yourself with the specific
recommendations for the host operating systems you use.

Over the lifetime of a directory services deployment, the operating system might be
subject to vulnerabilities. Some vulnerabilities require system upgrades, whereas others

require only configuration changes. All updates require proactive planning and careful
testing.

For the operating systems used in production, put a plan in place for avoiding and
resolving security issues. The plan should answer the following questions:

How does your organization become aware of system security issues early?

This could involve following bug reports, mailing lists, forums, and other sources of

information.

How do you test security fixes, including configuration changes, patches, service

packs, and system updates?

Validate the changes first in development, then in one or more test environments,

then in production in the same way you would validate other changes to the
deployment.

How do you roll out solutions for security issues?

In some cases, fixes might involve both changes to the service, and specific actions

by those who use the service.

What must you communicate about security issues?

How must you respond to security issues?

Software providers often do not communicate what they know about a vulnerability

until they have a way to mitigate or fix the problem. Once they do communicate about
security issues, the information is likely to become public knowledge quickly. Make sure

that you can expedite resolution of security issues.

To resolve security issues quickly, make sure you are ready to validate any changes that

must be made. When you validate a change, check the fix resolves the security issue.
Validate that the system and DS software continue to function as expected in all the

ways they are used.

By default, operating systems include many features, accounts, and services that DS
software does not require. Each optional feature, account, and service on the system

System Updates

Disable Unused Features

11 / 213

brings a risk of additional vulnerabilities. To reduce the surface of attack, enable only

required features, system accounts, and services. Disable or remove those that are not
needed for the deployment.

The features needed to run and manage DS software securely include the following:

A Java runtime environment, required to run DS software.

Software to secure access to service management tools; in particular, when
administrators access the system remotely.

Software to secure access for remote transfer of software updates, backup files,
and log files.

Software to manage system-level authentication, authorization, and accounts.

Firewall software, intrusion-detection/intrusion-prevention software.

Software to allow auditing access to the system.

System update software to allow updates that you have validated previously.

If required for the deployment, system access management software such as
SELinux.

If the DS server sends email alerts locally, mail services.

If you use SNMP with DS servers, an SNMP agent.

Any other software that is clearly indispensable to the deployment.

Consider the minimal installation options for your operating system, and the options to

turn off features.

Consider configuration options for system hardening to further limit access even to

required services.

For each account used to run a necessary service, limit the access granted to the

account to what is required. This reduces the risk that a vulnerability in access to one
account affects multiple services across the system.

Make sure that you validate the operating system behavior every time you deploy new
or changed software. When preparing the deployment and when testing changes,

maintain a full operating system with DS software that is not used for any publicly
available services, but only for troubleshooting problems that might stem from the

system being too minimally configured.

Limit access to the system by protecting network ports and reducing access granted to

administrative accounts. This further reduces the attack surface and reduces the
advantage to be gained from exploiting a vulnerability.

Administrative Access

12 / 213

DS servers listen for protocols listed in the following table. When protecting network

ports, you must open some to remote client applications, and for replication. If
administrators can connect over SSH, you can restrict access to the administrative port

to the localhost only.

Protocols Ports Active by

Default?

Description

LDAP 389 , 1389 No Port for insecure LDAP requests and for

StartTLS requests to enable a secure
connection.

The reserved LDAP port number is 389 .

If LDAP is used, leave this port open to

client applications.

LDAPS 636 , 1636 No Port for secure LDAPS requests.

The standard LDAPS port number is 636 .

If LDAPS is used, leave this port open to

client applications.

HTTP,

HTTPS

80 / 8080 ,

443 / 8443

No Port for HTTP client requests, such as

RESTful API calls.

The standard HTTP port number is 80 .

The standard HTTPS port number is 443 .

If HTTP or HTTPS is used, leave this port

open to client applications.

For production deployments, use HTTPS

instead of HTTP.

Administrati

on

4444 Yes Port for administrative requests, such as

requests from the dsconfig command.

Initial setup secures access to this port.

Replication 8989 No Port for replication requests, using the
DS-specific replication protocol.

If replication is used, leave this port open
to other replicas.

For production deployments, secure
access to this port.

(1)

13 / 213

Protocols Ports Active by

Default?

Description

JMX 1689 No Port for Java Management Extensions
requests (1689), and JMX RMI requests.

The default setting for the JMX RMI port is
0 , meaning the service chooses a port of

its own. This can be configured using the
JMX connection handler rmi-port

setting

If used in production deployments,

secure access to this port.

SNMP 161 , 162 No Reserved ports are 161 for regular

SNMP requests, and 162 for traps.

If used in production deployments,

secure access to these ports.

 You choose actual port numbers at setup time.

When setting up system accounts to manage directory services:

Set up a separate DS system account for the server.

Prevent other system accounts from accessing DS files.

Configure the system to prevent users from logging in as the DS system account

user.

Configure the system to restrict the DS account to server management operations.

DS logs provide a record of directory service events, but they do not record system-level
events. Use the auditing features of the host operating system to record access that is

not recorded in DS logs.

System audit logs make it possible to uncover system-level security policy violations,

such as unauthorized access to DS files. Such violations are not recorded in DS logs or
monitoring information.

Also consider how to prevent or at least detect tampering. A malicious user violating
security policy is likely to try to remove evidence of how security was compromised.

(1)

(1)

System Audits

14 / 213

Security updates are regularly released for the Java runtime environment. Plan to deploy
Java security updates to systems where you run DS software:

1. If the DS server relies on any CA certificates that were added to the Java
runtime environment truststore, $JAVA_HOME/Home/lib/security/cacerts ,

for the previous update, add them to the truststore for the update Java runtime
environment.

2. Edit the default.java-home setting in the config/java.properties file to
use the new path.

The setting should reflect the updated Java home:

default.java-home=/path/to/updated/java/jre

When you set up DS servers, the path to the Java runtime environment is saved
in the configuration. The server continues to use that Java version until you

change the configuration.

3. Restart the DS server to use the updated Java runtime environment:

The DS DSML and DS REST to LDAP gateways run as web applications in containers like
Apache Tomcat. Security settings depend on the container, and the gateway

configuration files.

Security settings are covered in the documentation for supported web application
containers. The documentation to use depends on the web application container.

For example, the Apache Tomcat 9 documentation includes the following:

For instructions on setting up HTTPS, see SSL/TLS Configuration HOW-TO .

For other security-related settings, see Security Considerations .

Java Updates

$ stop-ds --restart

Gateway Security

Container Security Settings





https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/ssl-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html
https://tomcat.apache.org/tomcat-9.0-doc/security-howto.html

15 / 213

Make sure the web application container protects traffic to the gateway with HTTPS.

Review the following settings DSML gateway settings:

ldap.port

Use an LDAP port that supports StartTLS or LDAPS.

Using StartTLS or LDAPS is particularly important if the gateway ever sends

credentials over LDAP.

ldap.usessl

If ldap.usestarttls is not used, set this to true .

ldap.usestarttls

If ldap.usessl is not used, set this to true .

ldap.trustall

Make sure this is set to false .

ldap.truststore.path

Set this to a truststore with the appropriate certificate(s) for remote LDAP servers.

ldap.truststore.password

If ldap.truststore.path is set, and the truststore requires a password, set this
appropriately.

Make sure the web application container protects traffic to the gateway with HTTPS.

Review the following settings in the gateway configuration file, config.json :

security/keyManager

If the LDAP server expects client authentication for TLS, set this to access the
gateway’s keystore.

security/trustManager

Set this to a truststore with the appropriate certificate(s) for remote LDAP servers.

ldapConnectionFactories/bind/connectionSecurity

Use ssl or startTLS .

ldapConnectionFactories/bind/sslCertAlias

If the LDAP server expects client authentication for TLS, set this to access the

gateway’s certificate alias.

DSML Settings

REST to LDAP Settings

16 / 213

ldapConnectionFactories/primaryLdapServers/port

Use an LDAP port that supports StartTLS or LDAPS.

Using StartTLS or LDAPS is particularly important if the gateway ever sends

credentials over LDAP.

authorization/resolver

Check the endpointUrl of the resolver to make sure that OAuth 2.0 tokens are sent
over HTTPS.

For details on settings, see REST to LDAP Reference.

Secure DS server installations as outlined below.

Do not run DS servers as the system superuser (root) or Windows Administrator.

Run the server under its own account, and use system capabilities to let the server
account:

Access privileged ports, such as 389 , 443 , and 636 , as required.

Read and write to server files, and execute server commands.

Log in to the local system.

Use system capabilities to:

Allow administrator users to run commands as the server user.

Allow other user to run commands, such as the ldapsearch command.

Prevent other users from reading configuration files.

On UNIX, set a umask such as 027 to prevent users in other groups from accessing

server files.

On Windows, use file access control to do the same.

By default, only passwords are protected (hashed rather than encrypted). Encrypt other

content to protect your data:

Backend files

To encrypt entries and index content, see Data Encryption.

Server Security

Server Account

Encryption

file:///home/pptruser/Downloads/build/site/ds/rest-guide/rest2ldap.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/data.html

17 / 213

Backup files

Backup files are always encrypted. The server uses its Crypto Manager configuration
to determine how to encrypt the backup files, and which HMAC algorithm to use to

sign and verify backup file integrity. Backup file permissions depend on the UNIX
umask or Windows file access control settings.

Changelog files

To encrypt change log files, see Encrypt External Changelog Data.

LDIF exports

When you use the export-ldif command, encrypt the LDIF output.

Many DS server file permissions depend on the software distribution, not the UNIX file
mode creation mask. For example, the server commands are generally executable by all

users, but only the server user can read PIN code files.

The following table recommends file permission settings:

Setting Impact

umask of 027 A UNIX umask setting of 027 for the server account

prevents members of other groups from reading files,
and listing keystore contents.

Members of the server user’s group can still read the
files.

Use this setting when other processes read the files to
process them independently. For example, other

processes might copy backup files to a remote system,
or parse the logs to look for particular patterns.

umask of 077 A UNIX umask setting of 077 for the server account
prevents members of the server user’s group from

reading files, and listing keystore contents.

This setting can be useful when no other processes

need access to server files.

Other users can still run commands delivered with the

server.

File Permissions

file:///home/pptruser/Downloads/build/site/ds/config-guide/changelog.html#encrypt-ecl

18 / 213

Setting Impact

log-file-permissions This setting applies to DS-native file-based log

publishers on UNIX systems. It does not apply to
Common Audit file-based log publishers. Its value is a

UNIX mode string.

The impact of the setting is independent of the server

user’s umask setting.

The default for file-based log publishers is 600 . A value

of 640 allows only the user read/write access to the
logs.

Windows NTFS ACLs On Windows systems, set folder ACLs on the NTFS
volume where the server files are installed. Apply folder

permissions that are inherited by all old and new files.

Consider setting ACLs on at least the following folders:

The backup folder, by default
/path/to/opendj/bak .

The configuration folder,
/path/to/opendj/config .

The logs folder, by default
/path/to/opendj/logs .

Use the status command to check which connection handlers are enabled.

Disable any unused connection handlers with the dsconfig set-connection-
handler-prop --set enabled:false command.

By default, DS servers write log messages on error and when the server is accessed.
Access logs tend to be much larger than error logs.

The default DS server log levels and rotation and retention policies facilitate
troubleshooting while preventing the logs from harming performance or filling up the

disk. If you change log settings for more advanced troubleshooting, reset the log
configuration to conservative settings when you finish.

Disable Unused Features

Log Settings

19 / 213

Make sure you keep passwords secret in production.

By default, DS servers keystore passwords in configuration files with .pin extensions.

These files contain the cleartext, randomly generated passwords. Keep the PIN files
readable and writable only by the user running the server.

Alternatively, configure the server to store keystore passwords in environment variables
or Java properties. Key Manager Provider and Trust Manager Provider settings let you

make this change.

DS commands supply credentials for any operations that are not anonymous. Password
credentials can be supplied as arguments, such as the --bindPassword password

option shown in the documentation.

In production, do not let the password appear in commands. Omit the --

bindPassword option to provide the password interactively:

Notice that the password appears neither in the shell history, nor in the terminal

session.

When using scripts where the password cannot be supplied interactively, passwords can

be read from files. For example, the --bindPassword:file file option takes a file
that should be readable only by the user running the command.

Password Management

In Configuration Files

In Command Arguments

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--baseDN uid=admin \

"(&)" \

userPassword

Password for user 'uid=admin':

dn: uid=admin

userPassword: {PBKDF2}10000:<hash>

20 / 213

By default, DS servers hash passwords before storing them. DS servers support many

password storage schemes.

Password policies define password storage schemes, and characteristics of valid

passwords. Configure your policies to use strong password storage, and to prevent
users from using weak passwords or reusing passwords.

DS servers use cryptographic keys for encryption, signing, and securing network
connections.

A deployment key is a random string generated by DS software. A deployment key

password is a secret string at least 8 characters long that you choose. The two are a pair.

You must have a deployment key’s password to use the key.

Each deployment requires a single, unique deployment key and its password. DS uses the

pair to:

Protect the keys to encrypt and decrypt backup files and directory data.

Generate the TLS key pairs to protect secure connections, unless you provide your
own.

Store your deployment key and password in a safe place, and reuse them when
configuring other servers in the same deployment.

The DS setup and dskeymgr commands use the pair to generate the following:

(Required) A shared master key for the deployment.

DS replicas share secret keys for data encryption and decryption. DS servers
encrypt backend data, backup files, and passwords, and each replica must be able

to decrypt data encrypted on another peer replica.

To avoid exposing secret keys, DS servers encrypt secret keys with a shared master

key. DS software uses a deployment key and its password to derive the master key.

(Optional) A private PKI for trusted, secure connections.

A PKI serves to secure network connections from clients and other DS servers. The
PKI is a trust network, requiring trust in the CA that signs public key certificates.

In Directory Data

Cryptographic Keys

Deployment Keys

21 / 213

Building a PKI can be complex. You can use self-signed certificates, but you must

distribute each certificate to each server and client application. You can pay an
existing CA to sign certificates, but that has a cost, and leaves control of trust with a

third party. You can set up a CA or certificate management software, but that can be
a significant effort and cost. As a shortcut to setting up a private CA, DS software

uses deployment keys and passwords.

DS software uses the deployment key and its password to generate key pairs

without storing the CA private key.

Initially, you start without a deployment key.

To generate a new deployment key, either:

Use the dskeymgr create-deployment-key command to create a new key

prior to installation.

Run the setup command for the first time without specifying a deployment

key. The command displays a deployment key in its output.

You provide the deployment key password when generating the deployment key or

setting up the server.

DS software uses the deployment key and password together to generate a CA key

pair.

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

22 / 213

Every time you use the same deployment key and password, you get the same CA

key.

Protect the deployment key password with the same care you would use to protect

the CA private key.

DS software generates a server key pair used for secure communications in a new

PKCS#12 keystore.

DS software signs the server certificate with the CA key.

DS software derives the shared master key for protecting secret keys, storing the
master key in the PKCS#12 keystore.

DS software writes the CA certificate to the PKCS#12 keystore.

DS software discards the CA private key temporarily held in memory.

You can use the dskeymgr command with an existing deployment key and password to
add keys to keystores, or to export them in PEM file format.

This private CA alternative, using a deployment key and password instead, is not
appropriate for signing server certificates in some situations:

External applications you do not control must be able to trust the server certificates.

In this case, use server certificates signed by a well-known CA.

Your deployment requires high security around CA private keys.

If the CA private key needs to be stored in an HSM that it never leaves, you cannot

achieve the same level of security with a deployment key and password. The
deployment key and password must be provided to sign a certificate, and cannot

remain secure in an HSM. Furthermore, the CA private key used to sign the
certificate is present in memory during the operation.

DS software uses two types of cryptographic keys:

Symmetric keys (also known as secret keys)

Asymmetric key pairs (public/private key pairs)

Symmetric (Secret) Keys Asymmetric Key Pairs

Content Single key, such as a
random array of bits.

Pair of keys, one public,
the other private.

Secret Keys and Key Pairs

23 / 213

Symmetric (Secret) Keys Asymmetric Key Pairs

Encryption A single key serves to

encrypt and to decrypt.

Data encrypted with a

public key can only be
decrypted with the private

key, and vice versa.

Generation Easier to generate, can be

a random array of bits.

Harder to generate a

matched pair of keys.

Speed Faster. Slower.

Distribution Must be kept secret.

Each party must have a

copy.

Secure channels must be

established to exchange
secret keys.

Public key can be shared
with any party.

Private key must be kept
secret by owner.

No secure channel is
required to distribute

public keys.

Proving that a public key is

valid and belongs to the
issuer requires a trust

network, such as a public
key infrastructure (PKI).

24 / 213

Symmetric (Secret) Keys Asymmetric Key Pairs

Uses Encrypting shared data.

DS servers use secret keys
for data confidentiality,

and for encrypted backup
files.

Public key encryption:

Encrypt a message
with a public key; only

the private key owner
can decrypt the

message.

Digital signatures:

Sign a message with
the private key; any

party can verify the
signature with the

public key.

DS software uses

public/private key pairs to
establish secure

connections. DS servers
can use public keys to

authenticate clients.

DS software stores asymmetric key pairs and trusted certificates in keystores or PEM

files. In the DS server configuration, key manager providers reference Java keystores or
PEM files. (Except for some ForgeRock Common Audit event handlers that manage their

own keystores.) Trust manager providers also reference Java keystores or PEM files.
Components that access keys reference key manager providers for their certificates and

private keys, and trust manager providers for trusted certificates. This enables, but does
not require, reuse:

Asymmetric Keys

25 / 213

DS servers use keystores or PEM files for server keys and trusted certificates. By default,

each server stores keys in a file-based keystore, /path/to/opendj/config/keystore .
The cleartext password is stored in a keystore.pin file next to the keystore file. This

password serves as the password for the keystore and each private key.

The password for the keystore and for private keys must be the same. DS servers do not

support using different passwords for the keystore and private keys.

By default, the keystore file holds these keys based on the deployment key and

password:

The CA certificate

The shared master key

A key pair for secure communications

26 / 213

DS servers encrypt data using symmetric keys. Servers store symmetric keys, encrypted

with the shared master key, with the data they encrypt. As long as servers have the
same shared master key, any server can recover symmetric keys needed to decrypt

data.

Symmetric keys for (deprecated) reversible password storage schemes are the exception

to this rule. When you configure a reversible password storage scheme, enable the

adminRoot backend, and configure a replication domain for cn=admin data .

A public key infrastructure (PKI) is a set of procedures, roles, and policies required to

enable parties to trust each other. A PKI makes it possible to trust that a public key
belongs to its owner by enabling the following steps:

1. Each party in the PKI trusts one or more certificate authorities (CAs).

Trusting a CA means trusting that it owns its public key, that it maintains its private

key secret, and that it only signs another party’s certificate according to standard
operating procedures.

The decision to trust a CA is a prerequisite for other operations, such as negotiating
secure connections.

Trusting a CA equates to storing a trusted copy of the CA’s certificate. The trusted
copy is used to verify CA signatures.

2. Other trusted parties get their keys certified in one of the following ways:

A party wanting to use public key cryptography requests a CA-signed certificate

for its key pair:

The owner generates a key pair with a public key to share and a private key

to keep secret.

This key pair is generated for the public key subject (or owner).

The owner makes a certificate signing request to a trusted CA. The request
includes the public key.

The CA verifies that the party making the request is indeed the party
making the request. If so, the CA signs the certificate request, resulting in

the signed public key certificate. The CA responds to the owner with the
signed certificate as the response to the request.

Notice that the certificate is a digital document that certifies ownership of
the public key. The certificate includes the public key and other

Symmetric Keys

Public Key Infrastructure

27 / 213

information, such as the validity period, who the subject (owner) is, and

the digital signature of the issuer CA who signed the certificate.

A party registers for an account with a service provider that uses certificate-

based authentication.

The service provider, acting as a CA, issues a key pair including a certificate to

the account owner over a secure channel. The service provider stores a copy of
the certificate with the owner’s account.

3. The owner stores the signed certificate, and shares it when necessary with other
parties for public key encryption and signature verification.

It stores the private key in a safe manner and never shares it.

4. Another party wanting to trust the certificate must verify that the certificate is valid.

Certificate verification involves checking certificate information such as the
following:

Whether the current time is in the range of the validity dates.

Whether the owner’s subject identifier in the certificate matches some

externally verifiable attribute of the owner, such as the DNS record of the host
FQDN or the owner’s email address.

Whether the certificate has been signed by a trusted party.

A public CA does not sign certificates with its root certificate directly. Instead,

the CA issues signing certificates to itself, and uses them to sign other
certificates. Trust is verified for the certificate chain, whereby the root

certificate signature on the signing certificate makes it possible to trust the
signing certificate. The signing certificate signature on the owner’s certificate

makes it possible to trust the owner’s certificate.

Whether the party providing the certificate with the public key can prove that is

has the corresponding private key.

For example, the verifier supplies a nonce for the party to sign with the private

key, and verifies the signature with the public key in the certificate.

5. Ultimately, the chain of verification must:

End by determining that the issuer’s signature is valid and trusted, and that the
party providing the certificate is authenticated.

Fail at some point, in which case, the signature cannot be trusted.

This does not mean that the certificate is invalid. It does mean, however, that

the party that wants to use the public key cannot be certain that it belongs to
the owner, and so, cannot trust the public key.

This can happen when the party trying to use the public key does not have a
means to trust the issuer who signed the certificate. For example, it has no

28 / 213

trusted copy of the issuer’s certificate.

Secure connections between server and client applications are based on TLS. TLS
depends on the use of digital certificates. By default, DS servers present their certificates

when establishing a secure connection. This process fails if the client cannot trust the
server certificate.

By default, DS client tools prompt you if they do not recognize the server certificate. DS
servers have no one to prompt, so they refuse to accept a connection with an untrusted

certificate. For ease of use, your deployment should enable secure connections without
user interaction.

Automating trust is based on configuring applications to trust the CAs who sign the
certificates. To achieve this, operating systems, JVMs, and web browsers ship with many

trusted public CA certificates. On one hand, this prevents end users from having to
understand PKI before using secure connections. On the other hand, it also introduces

some risk. When public CAs are installed by default, the user must trust:

The software distribution mechanism used to obtain the original software and

subsequent updates.

The software distributor to vet each CA and make sure the CA remains worthy of

trust.

The CAs to perform their CA duties correctly.

The whole process to be safe from serious bugs.

Stronger security requires that you take more control. You can do this by using a private

CA to distribute keys used for private communications.

Use Private CA Public CA Rationale

Private connections ✓ You control both
parties making the

connection.

Trusted Certificates

29 / 213

Use Private CA Public CA Rationale

Public connections ✓ Your service

publishes
information over

HTTPS or LDAPS to
unknown end user

clients.

Your service

connects as a client
to public HTTPS or

LDAPS services.

Mutual TLS ✓ When your private

CA signs the client
certificate, store

certificate
information for

authentication on
the client’s entry in

the directory.

Replication ✓ Replication

messages are
private to your

service.

Service

administration

✓ Service

administration is
private to your

service.

When you update keys, DS servers load them and begin using them for new
connections. This section covers common rotation operations, such as renewing and

replacing keys.

Key Management

Update Keys

Renew a TLS Certificate

30 / 213

1. Choose the appropriate method to renew an expiring certificate:

a. If you set up the server with a deployment key, renew it with the
dskeymgr command:

For more command options, refer to dskeymgr. The default validity for the
certificate is one year.

b. If you use a CA, renew the CA signature:

Create a certificate signing request.

Have the request signed by the CA you use.

Import the signed certificate from the CA reply.

c. If you used a self-signed certificate, sign it again, and distribute the new
certificate as appropriate.

Have each server and client application that trusted the old certificate
import the renewed certificate.

For details, see Trust a Server Certificate.

1. Choose the appropriate method to replace or rotate a key pair used for secure

communications:

a. If the certificate depends on a deployment ID and password, use the

dskeymgr command:

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin \

--hostname localhost \

--hostname ds.example.com \

--subjectDn CN=DS,O=ForgeRock

Replace a TLS Key Pair

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html
file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

31 / 213

The default validity for the certificate is one year.

b. If you provided your own keys in the server keystore, do the following:

Generate a new key pair in the server keystore with a new alias.

If you use a CA, get the certificate signed by the CA.

If you use a self-signed certificate, distribute the certificate for import
by all servers and clients that trust your server.

Once the old key pair is no longer used anywhere, delete the keys
using the keytool -delete command with the old alias.

You do not need to retire secret keys for the following, because encryption is only
performed once per key:

Backup uses a new secret key for each file.

Confidential replication changelog backends use a new secret key for each file.

You can retire secret keys for confidential database backends:

1. Change the cipher-key-length property for the backend.

Each time you change the setting, the server generates a new secret key. After
you retire the key, DS servers will only use that key for decryption, not for

encryption.

Follow these steps if you must:

Renew an expiring deployment key-based CA.

The default validity period is 10 years.

Replace a lost or compromised deployment key password.

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin \

--hostname localhost \

--hostname ds.example.com \

--subjectDn CN=DS,O=ForgeRock

Retire Secret Keys

Replace Deployment Keys

file:///home/pptruser/Downloads/build/site/ds/configref/objects-pluggable-backend.html#cipher-key-length

32 / 213

1. Generate a new deployment key with a new password:

For more command options, refer to dskeymgr. The default validity for the
deployment key is 10 years.

2. On each server, add the new shared master key:

Servers continue to use the existing shared master key to decrypt existing

symmetric keys. Do not overwrite a shared master key that is already in use.

3. On each server that uses the deployment key for PKI, add the new CA

certificate:

Also distribute the new CA certificate to any client applications that rely on the

old CA certificate.

4. On each server that uses the deployment key for PKI, renew the key pair used

for secure communications.

Before completing this step, make sure you have added the new CA certificate

on all servers. Any peer servers missing the new CA certificate will not trust the
new keys:

$ dskeymgr \

create-deployment-key \

--outputFile new.deployment.key \

--deploymentKeyPassword password

$ dskeymgr \

export-master-key-pair \

--alias new-master-key \

--deploymentKey "$(<new.deployment.key)" \

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin

$ dskeymgr \

export-ca-cert \

--alias new-ca-cert \

--deploymentKey "$(<new.deployment.key)" \

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

33 / 213

For more command options, refer to dskeymgr. The default validity for the

certificate is one year.

Also renew any client application key pairs that were generated using the old

deployment key and password.

5. On each server, update the master key alias to use the new key:

6. Stop trusting the old CA certificate by removing all references to it.

For example, remove the old CA certificate from all client and server
truststores.

7. When installing a new server after replacing deployment keys:

Use the new deployment key to set up the server, and do not start the

server at setup time.

Copy the keystore and PIN from an existing server, overwriting the existing

keystore and PIN.

This adds the older shared master key to the new server’s keystore.

Renew the local key pair used for secure communications using the new
deployment key.

$ dskeymgr \

create-tls-key-pair \

--deploymentKey "$(<new.deployment.key)" \

--deploymentKeyPassword password \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin \

--hostname localhost \

--hostname ds.example.com \

--subjectDn CN=DS,O=ForgeRock

$ dsconfig \

set-crypto-manager-prop \

--set master-key-alias:new-master-key \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

34 / 213

Start the server.

A wildcard certificate uses a * to replace the top-level subdomain in the subject FQDN.

It can list domains in the subject alternative domain list:

1. Generate a key pair with a wildcard certificate:

For more command options, refer to dskeymgr. The default validity for the
certificate is one year.

1. Generate a server key pair in the existing server keystore.

Many client applications will check that the server’s DNS name in the certificate
matches the server hostname.

Find the hostname for the server in the status command output. When
creating the key pair, set it as a DNSName in the certificate’s

SubjectAlternativeName list. If the server can respond on multiple FQDNs,
use multiple subject alternative names.

2. Create a certificate signing request .csr file for the generated certificate.

3. Have the CA sign the request in the .csr file.

See the instructions from your CA on how to provide the request.

Use New Keys

Generate a Key Pair (Wildcard Certificate)

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--hostname localhost \

--hostname "*.example.com" \

--subjectDn CN=DS,CN=Example,CN=com \

--keyStoreFile /path/to/opendj/config/keystore \

--keyStorePassword:file

/path/to/opendj/config/keystore.pin

Generate a Key Pair (CA-Signed Certificate)

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

35 / 213

The CA returns the signed certificate, for example, in a .crt file.

4. If you have set up your own CA and signed the certificate, or are using a CA
whose certificate is not included in the Java runtime environment, import the

CA certificate into the DS keystore and truststore so that it can be trusted.

For an example command, see Trust a CA Certificate.

5. Import the signed certificate, such as the .crt file, from the CA reply into the
keystore where you generated the key pair.

6. If you use a CA certificate that is not known to clients, such as a CA that you set
up yourself rather than a well-known CA, import the CA certificate into the

client application truststore. For an example command, see Trust a CA
Certificate.

Otherwise, the client application cannot trust the signature on the server
certificate.

1. Generate a server key pair in the existing server keystore.

The certificate is considered self-signed, because the issuer DN and subject DN

are the same.

Many client applications will check that the server’s DNS name in the certificate

matches the server hostname.

Find the hostname for the server in the status command output. When

creating the key pair, set it as a DNSName in the certificate’s

SubjectAlternativeName list.

To use an alternative keystore implementation, start with a different keystore type when

generating the keypair.

1. Use one of the keystore types supported by the Java runtime environment:

Generate a Key Pair (Self-Signed Certificate)

Use an Alternative Keystore Type

When generating a key pair for TLS with the keytool command, set the -keyalg
option to EC or RSA for compatibility with TLSv1.3.

The -keyalg DSA option is not compatible with TLSv1.3.

IMPORTANT

36 / 213

Java Keystore

The basic Java keystore type is JKS :

This is the keystore type if you do not specify a -storetype option.

Java Cryptography Extension Keystore

The JCEKS type implements additional Java cryptography extensions and

stronger protection for private keys:

PKCS#11 device

A PKCS#11 device, such as an HSM, can be used as a keystore.

For details, refer to PKCS#11 Hardware Security Module.

PKCS#12 Keystore

The PKCS12 type lets you use a PKCS#12 format file. This is the default for

DS servers. It is a standard format and is interoperable with other systems
that do not use Java:

$ keytool \

-genkeypair \

-keyalg EC \

-alias new-keys \

-ext "san=dns:ds.example.com" \

-dname "CN=ds.example.com,O=Example Corp,C=FR" \

-keystore /path/to/new-keystore.jks \

-storetype JKS \

-storepass:env KEYSTORE_PASSWORD \

-keypass:env KEYSTORE_PASSWORD

$ keytool \

-genkeypair \

-keyalg EC \

-alias new-keys \

-ext "san=dns:ds.example.com" \

-dname "CN=ds.example.com,O=Example Corp,C=FR" \

-keystore /path/to/new-keystore.jceks \

-storetype JCEKS \

-storepass:env KEYSTORE_PASSWORD \

-keypass:env KEYSTORE_PASSWORD

$ keytool \

-genkeypair \

-keyalg EC \

-alias new-keys \

file:///home/pptruser/Downloads/build/site/ds/security-guide/pki-hsm.html

37 / 213

2. After setting up an alternate keystore type, make sure that you configure:

A key manager provider to open the correct keystore with the correct
credentials.

Any components using the key manager provider to use the correct
certificate alias.

These steps demonstrate adding a new PKCS#12 keystore with existing server keys.
Follow these steps if you have existing keys in a PKCS#12 keystore:

1. Create a Key Manager Provider that references your keystore:

2. For each configuration object that needs to use the keys in the keystore,

update the key-manager-provider and ssl-cert-nickname properties:

-ext "san=dns:ds.example.com" \

-dname "CN=ds.example.com,O=Example Corp,C=FR" \

-keystore /path/to/new-keystore \

-storetype PKCS12 \

-storepass:env KEYSTORE_PASSWORD \

-keypass:env KEYSTORE_PASSWORD

Add a New Keystore

$ dsconfig \

create-key-manager-provider \

--provider-name MyKeystore \

--type file-based \

--set enabled:true \

--set key-store-file:/path/to/keystore \

--set key-store-pin:password \

--set key-store-type:PKCS12 \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-connection-handler-prop \

--handler-name LDAPS \

file:///home/pptruser/Downloads/build/site/ds/configref/objects-key-manager-provider.html

38 / 213

Many configuration objects use key manager providers. For a full list, see the

page of configuration properties that start with K, and review the key-
manager-provider properties links.

Do not update the key manager provider for the Crypto Manager. The Crypto
Manager needs access to the shared master key.

1. Use the dskeymgr command to generate a deployment key for testing.

This example records the deployment key in a file:

If you do not specify the deployment key password or file containing the
password, the tool prompts you for the password interactively.

Use this deployment key when setting up test servers. The test servers trust
each others' certificates.

These steps let the DS server trust a self-signed client application certificate:

--set key-manager-provider:MyKeystore \

--set ssl-cert-nickname:ssl-key-pair \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Generate a Test Deployment Key

$ dskeymgr \

create-deployment-key \

--deploymentKeyPassword password \

--outputFile test.deployment.key

Trust Certificates

Trust a Client Certificate

NOTE

file:///home/pptruser/Downloads/build/site/ds/configref/properties.html#K

39 / 213

1. Import the self-signed client certificate.

The following example imports the client certificate into the default truststore:

If the truststore was provided during the setup process, specify the truststore
and password.

These steps let a client trust the DS server.

If the server certificate was signed by a well-known CA, the client may not have to

configure any further trust.

To trust a certificate signed using a deployment key and password, get the CA certificate.

Either:

Copy the server’s truststore file and PIN.

Export the CA certificate as a PEM format file, as described in PEM Format Keys.

For an unknown CA or a self-signed server certificate, follow these steps:

1. Export the CA certificate from its truststore or the server certificate from the
server keystore.

If you control the application, issue the client a certificate from a private CA instead.

For an example, see Certificate-Based Authentication.

NOTE

$ keytool \

-import \

-trustcacerts \

-alias myapp-cert \

-file myapp-cert.pem \

-keystore /path/to/opendj/config/keystore \

-storepass:file /path/to/opendj/config/keystore.pin \

-storetype PKCS12 \

-noprompt

Certificate was added to keystore

Trust a Server Certificate

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth

40 / 213

You can export the certificate in PEM format using the keytool -exportcert

-rfc command.

Some client applications can use the PEM format directly.

2. If the client uses a Java truststore, import the certificate into the client
truststore.

You can import the server certificate using the keytool -import -
trustcacerts command.

These steps let the DS server trust a CA. If the CA’s certificate is included with Java, you
can let the server use the JVM truststore.

If the CA is not well-known, you can import the trusted CA certificate into a
truststore:

1. Import the certificate as a CA certificate.

The following example imports the CA certificate into the default truststore:

If the truststore was provided during the setup process, specify the truststore

and password.

2. If no trust manager provider is configured to access the truststore, create one.

For reference, see create-trust-manager-provider.

Also, configure connection handlers to use the new trust manager provider.

Trust a CA Certificate

$ keytool \

-import \

-trustcacerts \

-alias my-ca-cert \

-file ca.pem \

-keystore /path/to/opendj/config/keystore \

-storepass:file /path/to/opendj/config/keystore.pin \

-storetype PKCS12 \

-noprompt

Certificate was added to keystore

Add a New Truststore

file:///home/pptruser/Downloads/build/site/ds/configref/subcommands-create-trust-manager-provider.html

41 / 213

These steps demonstrate adding a new PKCS#12 truststore with existing trusted

certificates. Follow these steps if you have existing certificates in a PKCS#12 truststore:

1. Create a Trust Manager Provider that references your truststore:

2. For each configuration object that needs to trust the certificates in the
truststore, update the trust-manager-provider property:

Many configuration objects use trust manager providers. For a full list, see the
page of configuration properties that start with T, and review the trust-

manager-provider properties links.

$ dsconfig \

create-trust-manager-provider \

--provider-name MyTruststore \

--type file-based \

--set enabled:true \

--set trust-store-file:/path/to/truststore \

--set trust-store-pin:password \

--set trust-store-type:PKCS12 \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-connection-handler-prop \

--handler-name LDAPS \

--set trust-manager-provider:MyTruststore \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

file:///home/pptruser/Downloads/build/site/ds/configref/objects-trust-manager-provider.html
file:///home/pptruser/Downloads/build/site/ds/configref/properties.html#T

42 / 213

DS servers can read keys and trusted certificates from files that contain keys in Privacy-

Enhanced Mail (PEM) format:

1. Choose or create a directory for PEM format keys.

This example uses /path/to/opendj/pem :

2. Use the dskeymgr command to generate PEM format keys.

Add a master key using the deployment key and password, even if you

have your own CA and server keys:

Add a trusted CA certificate.

This example exports a deployment key CA certificate:

Add server keys.

This example exports a server key pair based on a deployment key:

PEM Format Keys

$ mkdir -p /path/to/opendj/pem

$ dskeymgr \

export-master-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--outputFile /path/to/opendj/pem/master-key.pem

$ dskeymgr \

export-ca-cert \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--outputFile /path/to/opendj/pem/ca-cert.pem

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--hostname localhost \

--hostname ds.example.com \

--subjectDn CN=DS,O=ForgeRock \

--outputFile /path/to/opendj/pem/ssl-key-pair.pem

43 / 213

For more command options, refer to dskeymgr. The default validity for the

certificate is one year.

3. Allow only the user running the server to read any PEM files that contain

private keys.

The keys are not encrypted, so you must protect the PEM files. For example, if

the server runs with user ID opendj , restrict access to that user:

4. Configure a PEM key manager provider for the master key and server keys:

5. Configure a PEM trust manager provider for trusted certificates, such as CA

certificates:

$ sudo chown opendj /path/to/opendj/pem/*.pem && \

sudo chmod 600 /path/to/opendj/pem/master-key.pem && \

sudo chmod 600 /path/to/opendj/pem/ssl-key-pair.pem

$ dsconfig \

create-key-manager-provider \

--provider-name PEM \

--type pem \

--set enabled:true \

--set pem-directory:/path/to/opendj/pem \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

create-trust-manager-provider \

--provider-name PEM \

--type pem \

--set enabled:true \

--set pem-directory:/path/to/opendj/pem \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

44 / 213

6. Configure other components to use the new providers by setting their key-

manager-provider and trust-manager-provider properties.

When using PEM keys, the alias or ssl-cert-nickname property is filename

of the key. In this example:

The master key alias is master-key.pem .

The CA certificate alias is ca-cert.pem .

The TLS keys alias is ssl-key-pair.pem .

Notice that the PEM key manager provider, and the PEM trust manager provider
share the same pem-directory . This works because the key manager provider

loads key pairs, and the trust manager provider loads trusted certificates. When the
PEM files change, the server regularly reloads the files. For details, see Pem Key

Manager Provider and Pem Trust Manager Provider.

DS servers support key management using a PKCS#11 token store. The PKCS#11
standard defines a cryptographic token interface, a platform-independent API for storing

keys in an HSM, for example.

/path/to/opendj/config/keystore.pin \

--no-prompt

PKCS#11 Hardware Security Module

IMPORTANT

file:///home/pptruser/Downloads/build/site/ds/configref/objects-pem-key-manager-provider.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-pem-key-manager-provider.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-pem-trust-manager-provider.html

45 / 213

Using a PKCS#11 device for storing DS keys involves:

Storing the keys on the PKCS#11 device.

How you store keys in a device such as an HSM depends on the device. For details,

see the documentation for your device.

Creating the DS PKCS11 key manager provider to access the device.

The DS server accesses a PKCS#11 device using a PIN. The PIN can be provided in
the server configuration, in a separate file, or as the value of an environment

variable or Java system property. The PIN must be stored as a cleartext value, so
take care to protect it in production environments.

Configuring other components to use the key manager provider.

For example, DS connection handlers and OAuth 2.0 authorization mechanisms

requiring mutual TLS can reference the key manager provider in their
configurations.

The following procedures demonstrate how to use the SoftHSM PKCS#11 software
device for evaluation, development, and testing:

DS servers use an HSM only to hold asymmetric key pairs and, optionally, CA

certificates.

Since the CA certificate holds the CA’s public key, ForgeRock recommends storing it

in a separate, file-based keystore or PEM file, not in the HSM.

The asymmetric key pairs include the server’s TLS keys, and the shared master key

for the deployment.

DS servers use the shared master key to wrap symmetric (secret) keys. DS servers

store secret keys in the data they encrypt. Therefore, DS servers do not use the
HSM for secret keys.

You can store the master key, technically an asymmetric key pair, on the HSM as
long as the HSM supports importing the master key. Generate the master key (pair)

into a PKCS#12 keystore, or PEM file, and import the keys into the HSM.

If you store the shared master key in an HSM, the HSM must share the same master

key with all DS servers in the deployment. Each server unwraps secret keys with the
master key. Without access to the shared master key, DS servers cannot read each

others' encrypted data.

IMPORTANT



Prepare the HSM Simulator

https://www.opendnssec.org/softhsm/
https://www.opendnssec.org/softhsm/
https://www.opendnssec.org/softhsm/

46 / 213

The procedures uses the sun.security.pkcs11.SunPKCS11 provider implementation

with SoftHSM. If you use a different Java implementation, see the documentation for
details on how to use PKCS#11 devices with your JVM:

1. Install SoftHSM, including the configuration and the SOFTHSM2_CONF
environment variable.

For details, see the SoftHSM documentation, using the following hints:

Make sure you can write tokens to SoftHSM:

Keep track of the PINs that you enter when initializing the device:

The SO PIN is to reinitialize the token.

The user PIN is the one the DS server needs to access the device.

2. Generate a key pair on the device:

To use the Java keytool command with the device, create a PKCS#11

configuration file that is used by the security provider implementation:

$ cat $SOFTHSM2_CONF

SoftHSM v2 configuration file

You must be able to write to the token dir when

initializing the device:

directories.tokendir = /path/to/softhsm/tokens

objectstore.backend = file

ERROR, WARNING, INFO, DEBUG

log.level = INFO

$ softhsm2-util --init-token --slot 0 --label "My token

1"

*** SO PIN (4-255 characters) ***

Please enter SO PIN:

Please reenter SO PIN:

*** User PIN (4-255 characters) ***

Please enter user PIN:

Please reenter user PIN:

The token has been initialized.

47 / 213

Notes regarding the configuration file:

The format is described in the Java PKCS#11 Reference Guide .

The library must point to the SoftHSM libsofthsm2.so library.

The slot must be one used when initializing the device.

Using the configuration file, generate the key pair.

The following example generates a key pair with the alias server-cert :

The keystore password is the user PIN.

$ cat /path/to/softhsm/hsm.conf

name = SoftHSM

library =

/path/to/softhsm/2.0.0/lib/softhsm/libsofthsm2.so

slot = 0

attributes(generate, *, *) = {

CKA_TOKEN = true

}

attributes(generate, CKO_CERTIFICATE, *) = {

CKA_PRIVATE = false

}

attributes(generate, CKO_PUBLIC_KEY, *) = {

CKA_PRIVATE = false

}

attributes(*, CKO_SECRET_KEY, *) = {

CKA_PRIVATE = false

}



$ keytool \

-genkeypair \

-alias server-cert \

-keyalg EC \

-keysize 2048 \

-ext "san=dns:ds.example.com" \

-dname "CN=ds.example.com,O=Example Corp,C=FR" \

-keystore NONE \

-storetype PKCS11 \

-providerClass sun.security.pkcs11.SunPKCS11 \

-providerArg /path/to/softhsm/hsm.conf

Enter keystore password:

https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html
https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html
https://docs.oracle.com/en/java/javase/11/security/pkcs11-reference-guide1.html

48 / 213

Self-sign the public key certificate:

The keystore password is the user PIN.

Using a CA-signed cert is similar, but not shown here.

1. Make sure you have the plain text PIN.

With SoftHSM, this is the user PIN set when initializing the slot where you
stored the keys.

2. Make sure that the Java environment can find SoftHSM with its configuration.

For example, add a provider definition by using an extra Java security

properties file as in the following example. In this example, 10 security
providers are already defined in the system java.security file. The

configuration must use the next available key, which is

security.provider.11 :

$ keytool \

-selfcert \

-alias server-cert \

-keystore NONE \

-storetype PKCS11 \

-providerClass sun.security.pkcs11.SunPKCS11 \

-providerArg /path/to/softhsm/hsm.conf

Enter keystore password:

Create a PKCS#11 Key Manager Provider

Define the additional security provider in the extra

file:

$ cat /path/to/opendj/config/java.security

Security provider for accessing SoftHSM:

security.provider.11=sun.security.pkcs11.SunPKCS11

/path/to/softhsm/hsm.conf

Use the extra file when starting the DS server:

$ grep java.security

/path/to/opendj/config/java.properties

start-ds.java-args=-server -

49 / 213

3. Create the PKCS#11 key manager provider configuration.

The following example creates a provider for SoftHSM with a protected PIN file:

DS key manager providers also support storing the PIN in the configuration, in

an environment variable, or in a Java property.

1. Set a connection handler or authorization mechanism to use the PKCS#11 key

manager provider.

The following example configures the LDAPS connection handler to use the

SoftHSM provider:

Djava.security.properties=/path/to/opendj/config/java.secu

rity

Restart the DS server so the changes take effect:

$ stop-ds --restart

$ touch /path/to/opendj/config/softhsm.pin

$ chmod 600 /path/to/opendj/config/softhsm.pin

$ vi /path/to/opendj/config/softhsm.pin

Add the user PIN on the first and only line in the file,

and save your work.

$ dsconfig \

create-key-manager-provider \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--provider-name SoftHSM \

--type pkcs11 \

--set enabled:true \

--set key-store-pin:"&

{file:/path/to/opendj/config/softhsm.pin}" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Use the PKCS#11 Key Manager Provider

50 / 213

2. Verify that the secure connection negotiation works with the HSM configured:

Securing connections depends on PKI and asymmetric, public/private key pairs. For

details, see Cryptographic Keys.

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAPS \

--set listen-port:1636 \

--set enabled:true \

--set use-ssl:true \

--set key-manager-provider:SoftHSM \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapsearch \

--hostname ds.example.com \

--port 1636 \

--useSSL \

--baseDN dc=example,dc=com \

"(uid=bjensen)" \

cn

The server is using the following certificate:

Subject DN: CN=ds.example.com, O=Example Corp, C=FR

Issuer DN: CN=ds.example.com, O=Example Corp, C=FR

Validity: <validity-period>

Do you wish to trust this certificate and continue

connecting to the server?

Please enter "yes" or "no": yes

dn: uid=bjensen,ou=People,dc=example,dc=com

cn: Barbara Jensen

cn: Babs Jensen

Secure Connections

file:///home/pptruser/Downloads/build/site/ds/security-guide/pki.html

51 / 213

Incoming connections are from clients to the directory. To match port numbers with

protocols, see Administrative Access.

Outgoing connections are from the directory to another service.

Recommendations For Incoming Connections

Protocol Recommendations

Administration DS servers use an Administration Connector for connections

from administration tools.

Leave the Administration Connector configured to use SSL/TLS

unless you are certain the connections are already secured by
some other means.

DSML DSML support is available through the DS DSML gateway.

Use HTTPS to protect client connections.

HTTP HTTP connections that are not protected by SSL/TLS use
cleartext messages. When you permit insecure connections,

you cannot prevent client applications from sending sensitive
data. For example, a client could send unprotected credentials

in an HTTP Authorization header. Even if the server were to
reject the request, the credentials would already be leaked to

any eavesdroppers.

HTTP could be allowed instead of HTTPS with anonymous

connections if only public information is exposed, and no client
applications send credentials or other sensitive information.

Configure the HTTP connection handler to use only the default
HTTP Anonymous authorization mechanism.

About Secure Connections

file:///home/pptruser/Downloads/build/site/ds/security-guide/os.html#os-admin

52 / 213

Protocol Recommendations

HTTPS Prefer HTTPS for secure connections over HTTP.

When using an HTTP connection handler, use HTTPS to protect
client connections.

Some client applications require a higher level of trust, such as
clients with additional privileges or access. Client application

deployers might find it easier to manage public keys as
credentials than to manage user name/password credentials.

Client applications can use SSL client authentication.

When using DS REST to LDAP gateway, use HTTPS to protect

client connections.

JMX Secure JMX access with the SSL/TLS-related properties, such as

use-ssl and others.

LDAP LDAP connections that are not protected by SSL/TLS use

cleartext messages. When you permit insecure connections,
you cannot prevent client applications from sending sensitive

data. For example, a client could send unprotected credentials
in an LDAP simple bind request. Even if the server were to

reject the request, the credentials would already be leaked to
any eavesdroppers.

If all the LDAP applications are under your control, make sure
that the only "insecure" requests are anonymous binds, SASL

binds, or StartTLS requests.

LDAPS Prefer LDAPS for secure connections, or make sure that

applications use StartTLS after establishing an insecure LDAP
connection and before performing other operations.

Some client applications require a higher level of trust, such as
clients with additional privileges or access. Client application

deployers might find it easier to manage public keys as
credentials than to manage user name/password credentials.

Client applications can use SSL client authentication. See
Certificate-Based Authentication.

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth

53 / 213

Protocol Recommendations

Replication Replication is required in all but a few deployments.

If any of the following are true, replication is required:

Client applications require highly available access to critical

services, such as authentication and updates.

Client applications have specific quality of service

requirements.

Client applications use the directory service to share

common data.

Directory service downtime, either planned or unplanned,

can lead to lost organizational or business opportunities.

Backup operations must be performed while the service is

online.

Update and upgrade operations must be performed while

the service is online.

Load sometimes exceeds the service that a single server

can provide.

Global directory services must be available at more than

one location.

Configure replication to use secure connections.

SNMP Secure SNMP access with settings for security-level and
related properties.

54 / 213

Protocol Recommendations

SSH DS administration tools can connect securely.

If the firewall is configured to prevent remote access to the
administration connector port, then use a secure third-party

tool to access the system remotely. A recommended choice for
UNIX and Linux systems is Secure Shell (SSH).

The user account for running directory services should not be
the same user account for connecting remotely. Instead,

connect as a another user who can then assume the role of the
directory services account. The following example

demonstrates this approach:

Secure Copy (SCP) uses SSH to transfer files securely. SCP is an
appropriate protocol for copying backup data, for example.

Recommendations For Outgoing Connections

Client Recommendations

Common Audit
event handlers

Configure ForgeRock Common Audit event handlers to use
HTTPS or TLS when connecting to external log services.

DSML gateway The DS DSML gateway connects to remote LDAP directory
servers. Use LDAP and StartTLS or LDAPS to protect the

connections.

OAuth 2.0-based

HTTP authorization
mechanisms

HTTP authorization can be based on OAuth 2.0, where DS

servers act as resource servers, and make requests to resolve
OAuth 2.0 tokens.

Use HTTPS to protect the connections to OAuth 2.0
authorization servers.

Log in to ds.example.com:

me@my-laptop $ ssh user@ds.example.com

user@ds.example.com's password:

Logged in to ds.example.com as user.

Last login: ... from ...

Run dsconfig interactively as opendj:

user@ds.example.com $ sudo -i -u opendj dsconfig

55 / 213

Client Recommendations

Pass-Through

Authentication

When DS servers use pass-through authentication, they

connect to remote LDAP directory servers for authentication.

Use LDAP with StartTLS or LDAPS to protect the connections.

Proxy Requests A DS directory proxy server can connect to remote directory
servers with a bind DN and bind password.

Use LDAP with StartTLS or LDAPS to protect requests to remote
directory servers.

Replication Configure replication to use secure connections.

REST to LDAP

gateway

The DS REST to LDAP gateway connects to remote LDAP

directory servers. Use LDAP with StartTLS or LDAPS to protect
the connections.

SMTP account
notification and

alert handlers

DS servers can send email account notifications and alerts. Use
TLS to protect the connections.

You can configure an HTTPS port, and no HTTP port, at setup time, or later, as described

below. For details on configuring the DS gateway applications to use HTTPS, see your
web container documentation.

At setup time use the --httpsPort option.

Later, follow these steps to set up an HTTPS port:

1. Create an HTTPS connection handler.

The following example sets the port to 8443 and uses the default server
certificate:

Require HTTPS

Set the HTTPS Port

$ dsconfig \

create-connection-handler \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

56 / 213

If the key manager provider has multiple key pairs that DS could use for TLS,

where the secret key was generated with the same key algorithm, such as EC
or RSA , you can specify which key pairs to use with the --set ssl-cert-

nickname:server-cert option. The server-cert is the certificate alias of the key
pair. This option is not necessary if there is only one server key pair, or if each

secret key was generated with a different key algorithm.

2. Enable the HTTP access log.

a. The following command enables JSON-based HTTP access logging:

b. The following command enables HTTP access logging:

--bindPassword password \

--handler-name HTTPS \

--type http \

--set enabled:true \

--set listen-port:8443 \

--set use-ssl:true \

--set key-manager-provider:PKCS12 \

--set trust-manager-provider:"JVM Trust Manager" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--publisher-name "Json File-Based HTTP Access Logger"

\

--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore

\

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

$ dsconfig \

set-log-publisher-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

57 / 213

3. If the deployment requires SSL client authentication, set the properties ssl-

client-auth-policy and trust-manager-provider appropriately.

4. After you set up an HTTPS port, enable an HTTP endpoint.

For details, see Configure HTTP User APIs, or Use Administrative APIs.

You can configure an LDAPS port, and no LDAP port, at setup time, or later, as described

below.

At setup time, use the --ldapsPort option.

Later, follow these steps to set up an LDAPS port:

1. Configure the server to activate LDAPS access:

--bindPassword password \

--publisher-name "File-Based HTTP Access Logger" \

--set enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore

\

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Require LDAPS

Set the LDAPS port

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAPS \

--set enabled:true \

--set listen-port:1636 \

--set use-ssl:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-rest2ldap-endpoint
file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-admin-endpoint

58 / 213

2. If the deployment requires SSL client authentication, set the ssl-client-

auth-policy and trust-manager-provider properties appropriately.

Configure the server to disable insecure LDAP access:

Server protocols like LDAP, HTTP, JMX, and replication rely on transport layer security to
protect connections. Configure connection handlers for TLS or StartTLS, and use access

control to enforce secure communications.

For directory servers, see ssf in ACI Subjects. Set the security strength factor to

achieve a balance; for example, with 128 or 256. If set too low, the server and client
can negotiate a connection that is not secure. If set too high, some clients might not

be able to connect.

For directory proxy servers, use a connection-minimum-ssf setting that enforces

use of transport layer security, such as 128 or 256.

When negotiating connection security, the server and client must use a common

security protocol and cipher suite. To update the security protocols and cipher suites,
see TLS Settings.

When a client and server set up an HTTPS or LDAPS connection, they use a protocol to

establish the security. They then encapsulate HTTP or LDAP messages in the secure
protocol. The process depends on digital certificates. The process uses client certificates

differently for mutual authentication and for SASL EXTERNAL binds.

Disable LDAP

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

--set enabled:false \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Message-Level Security

Transport Layer Security

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html#aci-subjects
file:///home/pptruser/Downloads/build/site/ds/security-guide/connections.html#tls-protocols-cipher-suites

59 / 213

A connection that uses TLS, a protocol based on the SSL protocol, is a connection that is

private and reliable. Communications on the connection are kept private by being
encrypted with a symmetric key for the session that only the client and server know.

Communications are reliable because their integrity is checked with a message
authentication code (MAC).

The TLS protocol is independent of the application protocol. TLS encapsulates
application level protocols like HTTP and LDAP. The client and server negotiate the

secure connection before any messages are sent using the application protocol.

When a client and server set up a secure connection, they negotiate a session with the

TLS handshake protocol. During the handshake the server and client use asymmetric
keys, their public key certificates and associated private keys, to authenticate (prove

their identities).

The default configuration for DS servers sends the server certificate during the

handshake. The client is not required to send its certificate. This lets the client
authenticate the server when negotiating security. It does not let the server authenticate

the client at this stage. This avoids requiring clients, such as browsers, to manage keys
and certificate signatures.

For client applications that are part of the software infrastructure, rather than end user
applications, managing keys and certificate signatures can be a better choice than

managing passwords. Such clients present their certificates during the handshake,
letting the server authenticate the client. When both the server and client present

certificates during the handshake, this is known as mutual authentication.

In TLS v1.2 , for example, a successful initial handshake has the client and server do

the following:

1. Exchange supported algorithms and random values.

2. Exchange cryptographic information to agree on an initial secret.

3. Exchange certificates and cryptographic information to permit authentication.

4. Generate a symmetric key for the sessions with the initial secret and the random
values exchanged.

5. Set the security parameters for the session.

6. Verify that each party uses the same security parameters, and that the handshake

was not tampered with.

The handshake completes before any HTTP or LDAP messages are sent over the

connection. HTTP authentications and LDAP binds happen after the secure connection
has been established.

DS support for TLS relies on the Java implementation. DS support for LDAP
authentication is part of the DS server. This is an important distinction:



https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc5246

60 / 213

When a client application presents its certificate for TLS mutual authentication, the

JVM checks the certificate independently of the client application’s directory entry.

When securing the transport layer with mutual authentication, the client certificate

must be trusted.

When the client application binds to the DS server with its certificate, the server

checks that the certificate presented matches the certificate stored in the client’s
directory entry. A certificate mapper finds the directory entry based on the client

certificate.

A first step in establishing a secure connection involves validating the certificate

presented by the other party. Part of this is trusting the certificate. The certificate
identifies the client or server and the signing certificate. The validating party checks that

the other party corresponds to the one identified by the certificate, and checks that the
signature can be trusted. If the signature is valid, and the signing certificate is trusted,

then the certificate can be trusted.

Certificates can be revoked after they are signed. Therefore, the validation process can

involve checking whether the certificate is still valid. This can be done with the Online
Certificate Status Protocol (OCSP) or Certificate Revocation Lists (CRLs). OCSP is a newer

solution that provides an online service to handle the revocation check for a specific
certificate. CRLs are potentially large lists of user certificates that are no longer valid or

that are on hold. A CRL is signed by the CA. The validating party obtains the CRL and
checks that the certificate being validated is not listed. For a brief comparison, see OCSP:

Comparison to CRLs . A certificate can include links to contact the OCSP responder or
to the CRL distribution point. The validating party can use these links to check whether

the certificate is still valid.

In both cases, the CA who signed the certificate acts as the OCSP responder or publishes

the CRLs. When establishing a secure connection with a client application, the server
relies on the CA for OCSP and CRLs. This is the case even when the DS server is the

repository for the CRLs.

DS directory services are logical repositories for certificates and CRLs. For example, DS

servers can store CRLs in a certificateRevocationList attribute:

Client Certificate Validation



dn: cn=My CA,dc=example,dc=com

objectClass: top

objectClass: applicationProcess

objectClass: certificationAuthority

cn: My CA

authorityRevocationList;binary: Base64-encoded ARL

https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol#Comparison_to_CRLs
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol#Comparison_to_CRLs
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol#Comparison_to_CRLs
https://en.wikipedia.org/wiki/Online_Certificate_Status_Protocol#Comparison_to_CRLs

61 / 213

Replicate the CRL for high availability. (The ARL in the entry is like a CRL, but for CA

certificates.)

Despite being a repository for CRLs, the DS server does check client certificates with its

CRLs directly. Instead, when negotiating a secure connection, the server depends on the
JVM security configuration. The JVM configuration governs whether validation uses

OCSP, CRLs, or both. The JVM relies on system properties that define whether to use the
CRL distribution points defined in certificates, and how to handle OCSP requests. These

system properties can be set system-wide in
$JAVA_HOME/lib/security/java.security . The JVM handles revocation checking

without the DS server’s involvement. For details, see Support for the CRL Distribution

Points Extension, and Appendix C: On-Line Certificate Status Protocol (OCSP) Support in the

Java PKI Programmer’s Guide .

After a connection is negotiated, the client can bind with its certificate using SASL

EXTERNAL authentication. For details, see Certificate-Based Authentication.

OCSP and obtaining CRLs depend on network access to the CA. If DS servers or the

DSML or REST to LDAP gateways run on a network where the CA is not accessible, and
the deployment requires OSCP or checking CRLs for client application certificates, then

you must provide some alternative means to handle OCSP or CRL requests. Configure
the JVM to use a locally available OCSP responder, for example. If the solution depends

on CRLs, regularly update the CRLs in the directory with downloaded copies of the CA
CRLs.

Use a server’s global configuration properties, to restrict how clients access the server.
These global configuration settings are per server, and are not replicated:

bind-with-dn-requires-password

Whether the server rejects simple bind requests containing a DN but no password.

Default: true

To change this setting use the following command:

cACertificate;binary:: Base64-encoded CA certificate

certificateRevocationList;binary:: Base64-encoded CRL



Restrict Client Access

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

https://docs.oracle.com/en/java/javase/11/security/java-pki-programmers-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-pki-programmers-guide.html
https://docs.oracle.com/en/java/javase/11/security/java-pki-programmers-guide.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#bind-with-dn-requires-password

62 / 213

max-allowed-client-connections

Restricts the number of concurrent client connections to this server.

Default: 0, meaning no limit is set.

To set a limit of 64K use the following command:

allowed-client

Restrict which clients can connect to the server.

restricted-client

Restrict the number of concurrent connections per client.

unauthenticated-requests-policy

This setting can take the following values:

reject

Reject requests (other than bind or StartTLS requests) received from a client:

Who has not yet authenticated.

Whose last authentication was unsuccessful.

Whose last authentication attempt used anonymous authentication.

allow-discovery

Like reject , but allows unauthenticated base object searches of the root DSE.

This setting supports applications that read the root DSE to discover server
capabilities, and applications that target the root DSE for keep-alive heartbeats.

allow (default)

Allow all unauthenticated requests, subject to privileges and access control.

--set bind-with-dn-requires-password:false \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set max-allowed-client-connections:65536 \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#max-allowed-client-connections
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#allowed-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#restricted-client
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#unauthenticated-requests-policy

63 / 213

Although this is the default setting, all setup profiles except ds-evaluation use

allow-discovery .

To allow anonymous binds, use the following command:

return-bind-error-messages

Does not restrict access, but prevents a server from returning extra information
about why a bind failed, as that information could be used by an attacker. Instead,

the information is written to the server errors log.

Default: false .

To have the server return additional information about why a bind failed, use the
following command:

To negotiate a secure connection, the server and client must agree on a common
protocol and cipher suite. Otherwise, they fail to establish a secure connection.

By default, DS servers use only security protocols and cipher suites considered secure at
the time of release. DS servers do, however, support all the security protocols and

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set unauthenticated-requests-policy:allow \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

$ dsconfig \

set-global-configuration-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--set return-bind-error-messages:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

TLS Settings

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global.html#return-bind-error-messages

64 / 213

cipher suites provided by the JVM. For details, see the documentation for the JVM, such

as the JDK Providers Documentation for the The SunJSSE Provider.

Researchers continue to find vulnerabilities in protocols and cipher suites. If a server

supports vulnerable protocols or cipher suites, clients can use them. Attackers can then
exploit the vulnerabilities. You might therefore need to restrict the list of accepted

protocols and cipher suites at any time.

1. To list the protocols and cipher suites that DS servers accept, read the root DSE

attributes, supportedTLSProtocols and supportedTLSCiphers :

A supportedTLSCiphers name, such as

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384 for use with TLSv1.2, identifies

the key attributes of the cipher suite:

TLS

Specifies the protocol, in this case TLS.

ECDHE_RSA

Specifies the key exchange algorithm used to determine how the client and
server authenticate during the handshake phase.

The algorithm in this example uses an elliptic curve variant of the Diffie-
Hellman key exchange. In ECDHE_RSA , the server signs the ephemeral

ECDH public key in the ServerKeyExchange message with its RSA private
key.

Ideally the server certificate would have a KeyUsage extension with only
the digitalSignature bit set to prevent it being used for encryption.

WITH_AES_256_GCM



List Protocols and Cipher Suites

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN "" \

--searchScope base \

"(objectclass=*)" \

supportedTLSCiphers supportedTLSProtocols

https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html
https://docs.oracle.com/en/java/javase/11/security/oracle-providers.html

65 / 213

Specifies the bulk encryption algorithm, including the key size or

initialization vectors.

This example specifies the Advanced Encryption Standard (AES) with 256-bit

key size and Galois/Counter Mode (GCM) block cipher mode.

SHA384

Specifies the message authentication code algorithm used to create the
message digest, which is a cryptographic hash of each block in the message

stream.

In this example, the SHA-2 hash function, SHA-384, is used.

A supportedTLSProtocols name identifies the protocol and version, such as
TLSv1.2 or TLSv1.3 .

Cipher suites compatible with TLSv1.3 do not include the key exchange algorithm. In
TLSv1.3, the signature algorithm and key exchange are negotiated separately.

You can limit the protocols and cipher suites that DS servers accept by setting the
properties, ssl-protocol and ssl-cipher-suite on the appropriate

components.

This following settings derive from the server-side TLS recommendations

published by the Mozilla Operations Security team at the time of this writing.
Recommendations evolve. Make sure you use current recommendations when

configuring security settings:

1. For each cipher suite key algorithm to support, create a key pair using the

supported key algorithm.

The following example adds a key pair to the default PKCS#12 keystore:

Restrict Protocols and Cipher Suites



$ keytool \

-genkeypair \

-alias ssl-key-pair-ec \

-keyalg EC \

-ext "san=dns:ds.example.com" \

-dname "CN=ds.example.com,O=Example Corp,C=FR" \

-keystore /path/to/opendj/config/keystore \

-storetype PKCS12 \

-storepass:file /path/to/opendj/config/keystore.pin \

-keypass:file /path/to/opendj/config/keystore.pin

https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS

66 / 213

2. On the components you use, explicitly set the supported protocols and cipher

suites.

The following example adjusts settings for the LDAP and LDAPS connection

handlers:

3. Use the appropriate settings for your connection handlers:

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

--add ssl-protocol:TLSv1.3 \

--add ssl-cipher-suite:TLS_AES_128_GCM_SHA256 \

--add ssl-cipher-suite:TLS_AES_256_GCM_SHA384 \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAPS \

--add ssl-protocol:TLSv1.3 \

--add ssl-cipher-suite:TLS_AES_128_GCM_SHA256 \

--add ssl-cipher-suite:TLS_AES_256_GCM_SHA384 \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

67 / 213

You can specify which protocol versions to allow when command-line tools

negotiate secure connections with LDAP servers.

The command-line tools depend on a system property,

org.opends.ldaps.protocols . This property takes a comma-separated list of
protocols. The default is constructed from the list of all protocols the JVM supports,

removing protocol names starting with SSL . For example, if support is enabled in
the JVM for versions 1.0, 1.1, and 1.2 of the TLS protocol, then the default is

"TLSv1,TLSv1.1,TLSv1.2" .

1. Restrict the protocols to use by setting the property in one of the following

ways:

a. Set the property by editing the java-args for the command in

config/java.properties .

--set enabled:true \

--set listen-port:1389 \

--set allow-start-tls:true \

--set key-manager-provider:PKCS12 \

--set trust-manager-provider:PKCS12 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAPS \

--set listen-port:1636 \

--set enabled:true \

--set use-ssl:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Restrict Protocols For Command-Line Tools

68 / 213

For example, to restrict the protocol to TLS v1.2 when the status

command negotiates a secure administrative connection, edit the
corresponding line in config/java.properties :

status.java-args=-Xms8m -client -

Dorg.opends.ldaps.protocols=TLSv1.2

b. Set the property at runtime when running the command.

The following example restricts the protocol to TLS v1.2 when the status

command negotiates a secure administrative connection:

Authentication is the process of verifying who is requesting access to a resource. The
user or application making the request presents credentials, making it possible to prove

that the requester is who they claim to be. The goal is to authorize access to directory
resources depending on the confirmed identity of the user or application making the

request.

LDAP is a stateful protocol, where the client sets up and maintains a connection with the

server, potentially performing many operations or long-lived operations before
disconnecting from the LDAP server. One of the LDAP operations, a bind, authenticates

the client to the server. A bind is the first operation that a client performs after setting
up a connection. Clients can bind again on the same connection to reauthenticate.

At the transport layer, DS servers support SSL and TLS protocols with mutual client
authentication. This level of authentication is useful to properly secure connections. The

authentication at this level is handled by the underlying JVM. The client identity verified

$ export OPENDJ_JAVA_ARGS="-

Dorg.opends.ldaps.protocols=TLSv1.2"

$ status \

--bindDn uid=admin \

--bindPassword password \

--hostname localhost \

--port 4444 \

--usePkcs12TrustStore /path/to/opendj/config/keystore

\

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Authentication Mechanisms

69 / 213

at this level is not available to the DS server for the purpose of fine-grained

authorization. For fine-grained authorization, you need LDAP authentication.

DS servers support multiple authentication mechanisms for LDAP operations:

Simple bind (name/password) authentication

The client application presents a bind DN/password combination. The server checks

that the password matches the password on the entry with the specified bind DN.

This mechanism involves sending the credentials over the network. Always use

secure connections at the transport layer when you expect simple LDAP binds. You
can configure either or both LDAPS and StartTLS, depending on what the client

applications support.

For additional information, see Simple Binds.

Anonymous authentication

Simple bind authentication without credentials.

Anonymous authentication lets the server make authorization decisions when the
client identity is unknown.

Allow anonymous authentication for publicly readable resources, such as root DSE
attributes. Configure access control to let anonymous and other users read them.

For additional information, see Anonymous Access.

SASL authentication

Simple Authentication and Security Layer (SASL) is a framework, rather than a
single method. DS servers provide handlers for a number of SASL mechanisms,

including strong authentication choices like the External SASL mechanism handler for
certificate-based authentication, and the GSSAPI SASL mechanism handler for use

with Kerberos v5 systems.

Certificate-based authentication is well-suited for applications where distributing

keys is easier than protecting passwords. For additional information, see Certificate-
Based Authentication.

GSSAPI-based authentication is useful for interoperation with Kerberos. For
additional information, see Authenticate With Kerberos.

Authentication with proxied authorization

The client application binds with its credentials, and uses proxied authorization to

perform operations as another user.

Client applications can use another means to authenticate the user before

requesting proxied authorization. For details, see Proxied Authorization.

Pass-through authentication to another LDAP directory



https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc4422
https://tools.ietf.org/html/rfc4422
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#auth-kerberos
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/proxied-authz.html

70 / 213

The client application binds with its credentials, and another LDAP directory service

handles the authentication. This is known as pass-through authentication.

Pass-through authentication is useful when credentials are stored in a remote

directory service, and the DS directory service stores part of the user profile. For
details, see Pass-Through Authentication.

DS servers and DS REST to LDAP gateway support multiple HTTP authentication
mechanisms.

The identity from the HTTP request is mapped to an LDAP account for use in
authorization decisions, so the mechanisms are known as authorization mechanisms.

Their configuration is described in Configure HTTP Authorization. The following
authorization mechanisms are available:

HTTP Basic authorization

The client application sends an HTTP request that uses HTTP Basic authentication.

The client application can alternatively send an HTTP request with username and
password headers.

You configure DS software to map the HTTP username to an LDAP DN. The result is
like a simple name/password bind.

This mechanism involves sending the credentials over the network. Always use
secure connections at the transport layer when you allow HTTP Basic.

Anonymous authorization

The client application sends an HTTP request without authenticating.

You configure DS software either to map the HTTP request to anonymous
authentication at the LDAP level, or to bind at the LDAP level as a specific user.

OAuth 2.0 authorization

The client application sends an HTTP request bearing an OAuth 2.0 access token that

includes at least one scope whose value makes it possible to determine the user
identity.

You configure DS software to resolve the access token, and to map the user identity
from the scope to an LDAP account.

This mechanism involves sending the credentials over the network. Always use
secure connections at the transport layer for OAuth 2.0 authorization.

In LDAP, an anonymous bind is a bind operation using simple authentication with an
empty DN and an empty password. DS servers apply access controls (ACIs) to let

Anonymous Access

file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-http-authorization

71 / 213

anonymous clients access only fully public information. Examples include information

about the directory server in the root DSE, and LDAP schema definitions.

By default, DS servers disable anonymous access to directory data. ACIs take a user DN

subject, ldap:///anyone , that matches anonymous and authenticated users.

When a client accesses the directory over HTTP, anonymous operations can be mapped

either to a specific user identity or to an anonymous user (default). This is set using the
HTTP Anonymous authorization mechanism for the HTTP endpoint.

In LDAP, a simple bind is name/password authentication. The client application presents
a bind DN/password combination. The DS server checks that the password matches the

password on the entry with the specified bind DN.

The LDAP connection transport layer must be secure for a simple bind. Otherwise,

eavesdroppers can read the credentials.

DS servers provide two alternatives to secure the connection for a simple bind, both of

which depend on certificates and public key infrastructure:

LDAPS

To support LDAP over SSL and TLS, DS servers have a separate connection handler
that listens for traffic on a port dedicated to secure connections.

LDAP with StartTLS

DS servers support using the StartTLS extended operation on an insecure LDAP port.

With StartTLS, the client initiates the connection on the LDAP port, and then
negotiates a secure connection.

Pass-Through Authentication (PTA), a remote LDAP service to determine the response to

an authentication request. A typical use case for PTA involves passing authentication
through to Active Directory for users coming from Microsoft Windows systems.

You use PTA when the credentials for authenticating are stored in a remote directory

service. In effect, the DS server redirects the bind operation against a remote LDAP
server.

The method a server uses to redirect the bind depends on the mapping from the user
entry in the DS server to the corresponding user entry in the remote directory. DS

servers provide you several choices to set up the mapping:

Simple Binds

Pass-Through Authentication

About PTA

72 / 213

When both the local entry in the DS server and the remote entry in the other server

have the same DN, you do not have to set up the mapping. By default, the DS server
redirects the bind with the original DN and password from the client application.

When the local entry in the DS server has an attribute holding the DN of the remote
entry, you can specify which attribute holds the DN. The DS server redirects the

bind on the remote server using the DN value.

When you cannot get the remote bind DN directly, you need an attribute and value

on the DS entry that corresponds to an identical attribute and value on the remote
server. In this case, you also need the bind credentials for a user who can search for

the entry on the remote server. The DS server performs a search for the entry using
the matching attribute and value, and then redirects the bind with the DN from the

remote entry.

You configure PTA as an authentication policy that you associate with a user’s entry in

the same way that you associate a password policy with a user’s entry. Either a user has
an authentication policy for PTA, or the user has a local password policy.

When setting up PTA, you need to know define:

Which remote server(s) to redirect binds to

How you map user entries in the DS server to user entries in the remote directory

When performing PTA, you protect communications between the DS server and the
authenticating server. When you test secure connections with a CA that is not well-

known, make sure the authentication server’s certificate is trusted by the DS server.

If the authentication server’s CA is well-known or already trusted by the DS server, you

can skip these steps:

1. Export the CA or server certificate from the authentication server.

How you perform this step depends on the authentication directory server.

2. Record the hostname used in the certificate.

You use the hostname when configuring the secure connection.

3. Import the trusted authentication server certificate into the DS server’s

keystore.

Set Up PTA

Secure Connections

Configure a PTA Policy

73 / 213

Configure authentication policies with the dsconfig command. Notice that

authentication policies are part of the server configuration, and therefore not
replicated:

1. Set up an authentication policy for PTA to the authentication server:

The policy shown here maps identities with this password policy to identities

under dc=example,dc=com on the authentication server. Users must have the
same uid values on both servers. This policy uses LDAPS between the DS

server and the authentication server.

2. Check that your policy has been added to the list:

$ dsconfig \

create-password-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "PTA Policy" \

--type ldap-pass-through \

--set primary-remote-ldap-server:remote-

server.example.com:1636 \

--set mapped-attribute:uid \

--set mapped-search-base-dn:"dc=example,dc=com" \

--set mapping-policy:mapped-search \

--set use-ssl:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

list-password-policies \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--property use-ssl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

74 / 213

The steps below demonstrate how to set up PTA to Active Directory. The information
that follows will help you make sense of the steps.

Entries on the DS side use uid as the naming attribute, and entries also have cn
attributes. Active Directory entries use cn as the naming attribute. User entries on both

sides share the same cn values. The mapping between entries therefore uses cn .

Consider a deployment where the DS account with cn=LDAP PTA User and DN

uid=ldapptauser,ou=People,dc=example,dc=com corresponds to an Active
Directory account with DN CN=LDAP PTA
User,CN=Users,DC=internal,DC=forgerock,DC=com . The steps below enable the
user with cn=LDAP PTA User on the DS server to authenticate through Active

Directory:

Password Policy : Type : use-ssl

------------------------:-------------------:--------

Default Password Policy : password-policy : -

PTA Policy : ldap-pass-through : true

Root Password Policy : password-policy : -

Use PTA To Active Directory

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery

--baseDN dc=example,dc=com \

uid=ldapptauser \

cn

dn: uid=ldapptauser,ou=People,dc=example,dc=com

cn: LDAP PTA User$ ldapsearch \

--hostname ad.example.com \

--port 636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--baseDN "CN=Users,DC=internal,DC=forgerock,DC=com" \

--bindDN

"cn=administrator,cn=Users,DC=internal,DC=forgerock,DC=com" \

75 / 213

The DS server must map the uid=ldapptauser,ou=People,dc=example,dc=com entry

to the Active Directory CN=LDAP PTA
User,CN=Users,DC=internal,DC=forgerock,DC=com entry. In order to do the

mapping, the DS server must search for the user in Active Directory, using the cn value
that it recovers from its own entry for the user. Active Directory does not allow

anonymous searches, so part of the authentication policy configuration consists of the
administrator DN and password the DS server uses to bind to Active Directory to search.

Finally, before setting up the PTA policy, make sure the DS server can connect to Active
Directory over a secure connection to avoid sending passwords in the clear.

1. Export the certificate from the Windows server.

Select start > All Programs > Administrative Tools > Certification Authority,

then right-click the CA and select Properties.

In the General tab, select the certificate and select View Certificate.

In the Certificate dialog, select the Details tab, then select Copy to File.

Use the Certificate Export Wizard to export the certificate to a file, such as

windows.cer .

2. Copy the exported certificate to the system running the DS server.

3. Import the server certificate into the DS keystore:

At this point, the DS server can connect securely to Active Directory.

4. Set up an authentication policy for DS users to authenticate to Active Directory:

--bindPassword password \

"(cn=LDAP PTA User)" \

cn

dn: CN=LDAP PTA User,CN=Users,DC=internal,DC=forgerock,DC=com

cn: LDAP PTA User

$ keytool \

-importcert \

-alias ad-cert \

-keystore /path/to/opendj/config/keystore \

-storepass:file /path/to/opendj/config/keystore.pin \

-storetype PKCS12 \

-file ~/Downloads/windows.cer \

-noprompt

Certificate was added to keystore

76 / 213

5. Assign the authentication policy to a test user:

Create a trust manager provider to access the Active

Directory certificate:

$ dsconfig \

create-trust-manager-provider \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--provider-name PKCS12 \

--type file-based \

--set enabled:true \

--set trust-store-type:PKCS12 \

--set trust-store-file:config/keystore \

--set trust-store-pin:"&{file:config/keystore.pin}" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Use the trust manager provider in the PTA policy:

$ dsconfig \

create-password-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--type ldap-pass-through \

--policy-name "AD PTA Policy" \

--set primary-remote-ldap-server:ad.example.com:636 \

--set mapped-attribute:cn \

--set mapped-search-base-

dn:"CN=Users,DC=internal,DC=forgerock,DC=com" \

--set mapped-search-bind-

dn:"cn=administrator,cn=Users,DC=internal,DC=forgerock,DC=

com" \

--set mapped-search-bind-password:password \

--set mapping-policy:mapped-search \

--set trust-manager-provider:PKCS12 \

--set use-ssl:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

77 / 213

6. Check that the user can bind using PTA to Active Directory:

Notice that to complete the search, the user has authenticated with a password
to Active Directory. No userpassword value is present in the DS service.

You assign authentication policies in the same way as you assign password policies, by
using the ds-pwp-password-policy-dn attribute.

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=ldapptauser,ou=People,dc=example,dc=com

changetype: modify

add: ds-pwp-password-policy-dn

ds-pwp-password-policy-dn: cn=AD PTA Policy,cn=Password

Policies,cn=config

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

--bindDN uid=ldapptauser,ou=People,dc=example,dc=com \

--bindPassword password \

"(cn=LDAP PTA User)" \

userpassword cn

dn: uid=ldapptauser,ou=People,dc=example,dc=com

cn: LDAP PTA User

Assign PTA Policies

NOTE

78 / 213

Users depending on PTA no longer need a local password policy, as they no longer
authenticate locally.

Examples in the following procedure work for this user, whose entry is as shown below.
Notice that the user has no userPassword attribute. The user’s password on the

authentication server is password :

This user’s entry on the authentication server has uid=ptaUser . The PTA policy
performs the mapping to find the user entry in the authentication server:

1. Give an administrator access to update a user’s password policy:

Although you assign the PTA policy using the same attribute as for password policy,

the authentication policy is not in fact a password policy. Therefore, the user with a
PTA policy does not have the operational attribute pwdPolicySubentry .

NOTE

Assign a PTA Policy To a User

dn: uid=ptaUser,ou=People,dc=example,dc=com

uid: ptaUser

objectClass: top

objectClass: person

objectClass: organizationalperson

objectClass: inetorgperson

uid: ptaUser

cn: PTA User

sn: User

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "ds-pwp-password-policy-dn")

(version 3.0;acl "Allow Kirsten Vaughan to assign

password policies";

79 / 213

2. Update the user’s ds-pwp-password-policy-dn attribute:

3. Check that the user can authenticate through to the authentication server:

Examples in the following steps use the PTA policy defined previously. The

administrator’s entry is present on the authentication server:

allow (all) (userdn =

"ldap:///uid=kvaughan,ou=People,dc=example,dc=com");)

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: uid=ptaUser,ou=People,dc=example,dc=com

changetype: modify

replace: ds-pwp-password-policy-dn

ds-pwp-password-policy-dn: cn=PTA Policy,cn=Password

Policies,cn=config

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

--bindDN uid=ptaUser,ou=People,dc=example,dc=com \

--bindPassword chngthspwd \

"(uid=ptaUser)" \

1.1

dn: uid=ptaUser,ou=People,dc=example,dc=com

Assign a PTA Policy To a Group

80 / 213

1. Give an administrator the privilege to write subentries, such as those used for

password policies:

Notice here that the directory superuser, uid=admin , assigns privileges. Any

administrator with the privilege-change privilege can assign privileges.
However, if the administrator can update administrator privileges, they can

assign themselves the bypass-acl privilege. Then they are no longer bound
by access control instructions, including both user data ACIs and global ACIs.

For this reason, do not assign the privilege-change privilege to normal
administrator users.

2. Create a subentry for a collective attribute that sets the ds-pwp-password-
policy-dn attribute for group members' entries:

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: subentry-write

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=PTA Policy for Dir Admins,dc=example,dc=com

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

cn: PTA Policy for Dir Admins

81 / 213

The base entry identifies the branch that holds administrator entries.

3. Check that the DS server has applied the policy.

Make sure you can bind as the user on the authentication server:

Check that the user can authenticate through to the authentication server
from the DS server:

ds-pwp-password-policy-dn;collective: cn=PTA

Policy,cn=Password Policies,cn=config

subtreeSpecification: { base "ou=People",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)"}

EOF

$ ldapsearch \

--hostname remote-server.example.com \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore

\

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=People,dc=example,dc=com" \

--bindPassword bribery \

--baseDN "dc=example,dc=com" \

"(uid=kvaughan)" \

1.1

dn: uid=kvaughan,ou=People,dc=example,dc=com

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore

\

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=kvaughan)" \

1.1

82 / 213

One alternative to simple binds with user name/password combinations consists of

storing a digital certificate on the LDAP entry, and using the certificate as credentials
during the bind. You can use this mechanism, for example, to let applications bind

without using passwords.

By setting up a secure connection with a certificate, the client is in effect authenticating

to the server. The server must close the connection if it cannot trust the client certificate.
However, the certificate presented when establishing a secure connection does not

authenticate the client. The secure connection is established by the JVM at the transport
layer, independently of the LDAP protocol.

When binding with a certificate, the client must request the SASL external mechanism.
The DS server maps the certificate to the client’s entry in the directory. When it finds a

matching entry, and the entry contains a certificate, the DS server can check whether the
certificate in the entry matches the certificate from the request. It depends on the

certificate-validation-policy setting of the SASL external handler. On success,
the server sets the authorization identity for the connection, and the bind is successful.

For the whole process of authenticating with a certificate to work smoothly, the DS
server and the client must trust each others' certificates, and the DS server must be

configured to map the certificate to the client entry.

Before a client tries to bind to DS servers using a certificate, create a certificate, and add
appropriate certificate attributes to the client’s entry.

The ds-evaluation setup profile includes the entry, cn=My
App,ou=Apps,dc=example,dc=com , used in these examples. The client key store

password is stored in a MY_KEYSTORE_PIN environment variable:

1. Create a certificate using the DN of the client entry as the subject DN.

This example uses the dskeymgr command to generate a key pair. The
certificate is signed by the private CA based on the deployment key used when

setting up DS servers. Servers set up with the same deployment key trust the
CA, and so can trust the client’s certificate:

dn: uid=kvaughan,ou=People,dc=example,dc=com

Certificate-Based Authentication

Add Certificate Attributes to the Client Entry

83 / 213

For more command options, refer to dskeymgr. The default validity for the

certificate is one year.

2. Make note of the certificate SHA-256 fingerprint.

Later in this procedure you update the client application entry with the SHA-
256 fingerprint, referred to henceforth as SHA265_FINGERPRINT :

3. Modify the entry to add attributes related to the certificate.

For example, add the client certificate fingerprint on the ds-certificate-

fingerprint attribute. This example uses the SHA-256 fingerprint, which is
the default for the fingerprint certificate mapper.

To require that the certificate is issued by a known CA, use the ds-
certificate-issuer-dn attribute. Use this to verify the certificate issuer

whenever multiple CAs are trusted in order to prevent impersonation. Different
CAs can issue certificates with the same subject DN, but not with the same

issuer DN. You must also specify the issuer attribute in the certificate mapper
configuration, as shown below.

To map the certificate subject DN to an attribute of the entry, use the ds-
certificate-subject-dn attribute.

The following entry demonstrates all these attributes. Save the entry in a file
addcert.ldif in order to edit the fingerprint:

$ dskeymgr \

create-tls-key-pair \

--deploymentKey $DEPLOYMENT_KEY \

--deploymentKeyPassword password \

--alias myapp-cert \

--subjectDn "cn=My App,ou=Apps,dc=example,dc=com" \

--keyStoreFile /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN

$ keytool \

-list \

-v \

-alias myapp-cert \

-keystore /path/to/opendj/my-keystore \

-storepass $MY_KEYSTORE_PIN | awk '/SHA256:/{print $2}'

SHA256_FINGERPRINT

file:///home/pptruser/Downloads/build/site/ds/tools-reference/dskeymgr.html

84 / 213

Replace the certificate fingerprint with the actual fingerprint before adding the
certificate:

4. Check your work:

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

add: objectclass

objectclass: ds-certificate-user

-

add: ds-certificate-fingerprint

ds-certificate-fingerprint: SHA256_FINGERPRINT

-

add: ds-certificate-issuer-dn

ds-certificate-issuer-dn: CN=Deployment

key,O=ForgeRock.com

-

add: ds-certificate-subject-dn

ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example,

DC=com

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=People,dc=example,dc=com \

--bindPassword bribery \

addcert.ldif

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

"(cn=My App)"

dn: cn=My App,ou=Apps,dc=example,dc=com

ds-certificate-fingerprint: SHA256_FINGERPRINT

85 / 213

To trust the client certificate, a trust manager must be able to trust the signing certificate
(issuer). If the client certificate is self-signed or signed by an unknown CA, you must

update the server’s truststore:

1. Export the self-signed certificate or the CA certificate:

The command is similar for a CA certificate.

2. Import the exported, trusted certificate into a server truststore.

The following examples use the default server keystore and PIN:

a. The following example imports the self-signed certificate exported in Step

1:

objectClass: person

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: ds-certificate-user

objectClass: top

ds-certificate-issuer-dn: CN=My App, OU=Apps, DC=example,

DC=com

ds-certificate-subject-dn: CN=My App, OU=Apps, DC=example,

DC=com

cn: My App

sn: App

Trust a Third-Party Client Certificate

If you control the client application, use your private CA to sign its certificate. This

can be done as demonstrated in Add Certificate Attributes to the Client Entry. You
can then skip this procedure.

TIP

$ keytool \

-export \

-alias myapp-cert \

-keystore /path/to/opendj/my-keystore \

-storepass:env MY_KEYSTORE_PIN \

-keypass:env MY_KEYSTORE_PIN \

-file /path/to/opendj/myapp-cert.crt

Certificate stored in file </path/to/opendj/myapp-

cert.crt>

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#get-client-cert
file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#get-client-cert

86 / 213

b. The following example imports an exported CA certificate in a file called

ca.crt :

DS servers use certificate mappers during binds to establish a mapping between a client

certificate and the entry with the certificate. DS servers have the following certificate
mappers:

Fingerprint Certificate Mapper

Looks for the certificate fingerprint in an attribute of the entry (default: ds-
certificate-fingerprint).

Subject Attribute To User Attribute Mapper

Looks for a match between an attribute of the certificate subject and an attribute of
the entry (default: match cn in the certificate to cn on the entry, or match

emailAddress in the certificate to mail on the entry).

Subject DN to User Attribute Certificate Mapper

Looks for the certificate subject DN in an attribute of the entry (default: ds-

certificate-subject-dn).

$ keytool \

-import \

-alias myapp-cert \

-file /path/to/opendj/myapp-cert.crt \

-keystore /path/to/opendj/config/keystore \

-storetype PKCS12 \

-storepass:file /path/to/opendj/config/keystore.pin \

-noprompt

Certificate was added to keystore

$ keytool \

-import \

-alias ca-cert \

-file ca.crt \

-keystore /path/to/opendj/config/keystore \

-storetype PKCS12 \

-storepass:file /path/to/opendj/config/keystore.pin \

-noprompt

Certificate was added to keystore

Configure Certificate Mappers

87 / 213

Subject Equals DN Certificate Mapper

Looks for an entry whose DN matches the certificate subject DN.

The following steps demonstrate how to use the Fingerprint Mapper default algorithm of

SHA-256:

1. List the certificate mappers to retrieve the correct name:

2. Examine the current configuration:

$ dsconfig \

list-certificate-mappers \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Certificate Mapper : Type

: enabled

------------------------------------:---------------------

----------------:--------

Fingerprint Mapper : fingerprint

: true

Subject Attribute to User Attribute : subject-attribute-

to-user-attribute : true

Subject DN to User Attribute : subject-dn-to-user-

attribute : true

Subject Equals DN : subject-equals-dn

: true

$ dsconfig \

get-certificate-mapper-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--mapper-name "Fingerprint Mapper" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

88 / 213

3. Change the configuration as necessary.

4. Set the External SASL Mechanism Handler to use the appropriate certificate

mapper (default: Subject Equals DN):

Instead of providing a bind DN and password as for simple authentication, use the SASL

EXTERNAL authentication mechanism, and provide the certificate. As a test with example
data, you can try an anonymous search, then try with certificate-based authentication.

Before you try this example, make sure the DS server is set up to accept StartTLS from
clients, and that you have set up the client certificate as described above. The password

for the client key store is stored in a MY_KEYSTORE_PIN environment variable.

Also, if the DS server uses a certificate for StartTLS that was signed by a private CA,

reference a truststore containing the CA certificate. In this example, the DS server uses a
keystore with the CA certificate, and the client uses the keystore as its truststore.

--no-prompt

Property : Value(s)

----------------------:-----------------------------------

enabled : true

fingerprint-algorithm : sha256

fingerprint-attribute : ds-certificate-fingerprint

issuer-attribute : The certificate issuer DN will not

be verified.

user-base-dn : The server performs the search in

all public naming

: contexts.

$ dsconfig \

set-sasl-mechanism-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name External \

--set certificate-mapper:"Fingerprint Mapper" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Authenticate With the Client Certificate

89 / 213

Notice that the DS server does not allow an anonymous user to modify its description:

After the client binds successfully, it can modify its description:

You can also try the same test with other certificate mappers.

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin <<

EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

The LDAP modify request failed: 50 (Insufficient Access Rights)

Additional Information: The entry cn=My

App,ou=Apps,dc=example,dc=com cannot be modified due to

insufficient access rights

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--saslOption mech="EXTERNAL" \

--certNickName myapp-cert \

--keyStorePath /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN <<EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN cn=My

App,ou=Apps,dc=example,dc=com

90 / 213

This example uses the fingerprint mapper:

This example uses the subject attribute to user attribute mapper:

$ dsconfig \

set-sasl-mechanism-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name External \

--set certificate-mapper:"Fingerprint Mapper" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--saslOption mech="EXTERNAL" \

--certNickName myapp-cert \

--keyStorePath /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN <<EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN cn=My

App,ou=Apps,dc=example,dc=com

$ dsconfig \

set-sasl-mechanism-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name External \

--set certificate-mapper:"Subject Attribute to User Attribute" \

91 / 213

This example uses the subject DN to user attribute mapper:

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--saslOption mech="EXTERNAL" \

--certNickName myapp-cert \

--keyStorePath /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN <<EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN cn=My

App,ou=Apps,dc=example,dc=com

$ dsconfig \

set-sasl-mechanism-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name External \

--set certificate-mapper:"Subject DN to User Attribute" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--saslOption mech="EXTERNAL" \

92 / 213

When a client application authenticates with a self-signed certificate or a certificate

signed by a public CA, the easiest certificate mapper to use is the fingerprint mapper.
When using any other certificate mapper, make sure that the client certificate is in the

client’s entry, and that the SASL EXTERNAL handler has a certificate-validation-

policy:ifpresent (default), or certificate-validation-policy:always . Any

client certificate can be used to secure TLS for the connection. However, to trust the
certificate for authentication, the server must ensure a unique match between the

client’s certificate and the client’s entry.

A client application creating its own certificate can set subject DN, issuer DN, and other

fields as desired, so these cannot be used to established trust. When obtaining a
signature from a public CA, the client might set many fields as desired. The issuer DN

guarantees only that the CA signed the certificate.

The following example demonstrates safe use of blind trust and fingerprint mapping.

This demonstration is also appropriate when clients use certificates signed by public
CAs, in which case, you could use the JVM trust manager, for example.

Enable a blind trust manager:

--certNickName myapp-cert \

--keyStorePath /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN <<EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN cn=My

App,ou=Apps,dc=example,dc=com

Authenticate With a Third-Party Certificate

$ dsconfig \

create-trust-manager-provider \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--type blind \

--provider-name "Blind Trust" \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

93 / 213

Use SHA-256 as the fingerprint certificate mapper algorithm, which is the default.

Configure the handler for SASL EXTERNAL binds to use the fingerprint mapper, rather
than the default subject DN mapper. As in this example, do not enable a more lenient

mapper when using blind trust or public trust:

After making these configuration changes, enable the trust manager on the appropriate
connection handler. The following command enables blind trust on the LDAP connection

handler, where the client will use StartTLS. Notice that only blind trust is enabled. If you
want to allow blind trust for some applications and private CA trust for others, use a

separate connection handler listening on a separate port:

Make sure the client application certificate fingerprints use SHA-256. The following
command updates the example client entry to change the fingerprint appropriately:

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-sasl-mechanism-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name External \

--set certificate-mapper:"Fingerprint Mapper" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-connection-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--handler-name LDAP \

--set trust-manager-provider:"Blind Trust" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ SHA256_FINGERPRINT=$(keytool \

-list \

94 / 213

When the client binds successfully, it can modify its description. The server JVM checks
client certificate validity and proves the client has the private key during the process of

setting up TLS. During the SASL EXTERNAL bind, the server verifies that the fingerprint in
the client entry matches the certificate:

-v \

-alias myapp-cert \

-keystore /path/to/opendj/my-keystore \

-storepass $MY_KEYSTORE_PIN | awk '/SHA256:/{print $2}')

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=People,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: ds-certificate-fingerprint

ds-certificate-fingerprint: $SHA256_FINGERPRINT

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--saslOption mech="EXTERNAL" \

--certNickName myapp-cert \

--keyStorePath /path/to/opendj/my-keystore \

--keyStorePassword $MY_KEYSTORE_PIN <<EOF

dn: cn=My App,ou=Apps,dc=example,dc=com

changetype: modify

replace: description

description: New description

EOF

MODIFY operation successful for DN cn=My

App,ou=Apps,dc=example,dc=com

95 / 213

For additional verification during the bind, include the client certificate in the client’s

entry.

Windows, UNIX, and Linux systems support Kerberos v5 authentication, which can

operate safely on an open, unprotected network. In Kerberos authentication, the client
application obtains temporary credentials for a service from an authorization server, in

the form of tickets and session keys. The service server must be able to handle its part of
the Kerberos mutual authentication process.

DS servers can interoperate with Kerberos systems through their GSSAPI SASL
authentication mechanism.

Meet the following constraints when working with Kerberos systems:

The clocks on the host systems where the DS server runs must be kept in sync with

other hosts in the system.

For example, you can use Network Time Protocol (NTP) services to keep the clocks

in sync.

Each DS server needs its own keytab file, the file which holds its pairs of Kerberos

principals and keys.

DS server debug logging can display exceptions about unsupported encryption

types when a mismatch occurs. The exceptions are visible only when you activate
debug logging.

Follow these steps when setting up DS servers as Kerberos service servers:

1. Make sure the clock on the DS server host system is in sync with the other
hosts' clocks in the Kerberos system.

2. Make sure that DNS resolves fully qualified domain names correctly on all
systems involved.

3. Make sure the necessary ports are open on the DS server host system.

4. Make sure the encryption strengths required by the Kerberos system are

supported by the JVM that the DS server uses.

5. Make sure that Kerberos is operating correctly for other services, including

Kerberos client services on the DS server host.

This step depends on the implementation, but usually includes adding a

Kerberos principal for the host.

Authenticate With Kerberos

Configure DS as a Kerberos Service Server

96 / 213

6. Add a Kerberos principal for the DS server, such as ldap/ds.example.com .

7. Create a keytab file for the DS server.

This step depends on the Kerberos implementation, but generally consists of

extracting the key for the DS server Kerberos principal, such as
ldap/ds.example.com on the host where the DS server runs.

8. Make the keytab file readable only by the DS server, and copy it to the
/path/to/opendj/config/ directory.

9. Configure the DS server to handle GSSAPI SASL authentication:

10. If your Kerberos principal user identifiers are not of the form name@realm ,

configure an appropriate identity-mapper for the GSSAPI SASL mechanism
handler.

By default, the DS server uses the regular expression identity mapper, which
expects user identifiers to match the pattern ^([^@])@.$. It maps the string

before @ to the value of the UID attribute. This works well for identifiers like
bjensen@EXAMPLE.COM . For background information, see Identity Mappers.

11. Restart the DS server to ensure the configuration changes are taken into
account:

$ dsconfig \

set-sasl-mechanism-handler-prop \

--handler-name GSSAPI \

--set enabled:true \

--set keytab:/path/to/opendj/config/opendj.keytab \

--set server-fqdn:ds.example.com \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ stop-ds --restart

...GSSAPI SASL mechanism using a server fully qualified

domain name of:

ds.example.com

...GSSAPI mechanism using a principal name of:

principal="opendj/ds.example.com"

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/client-auth.html#client-auth-identity-mappers

97 / 213

12. Test that the mechanism works, by authenticating as a Kerberos user:

DS servers simplify safe, centralized password management. DS servers use password

policies to govern passwords.

The operational attribute, pwdPolicySubentry , identifies an account’s password policy.

The default global access control instructions prevent this operational attribute from
being visible to normal users. The following example grants access to a group of

administrators:

...The GSSAPI SASL mechanism handler initialization was

successful

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

--saslOption mech=GSSAPI \

--saslOption authid=bjensen@EXAMPLE.COM \

uid=bjensen \

cn

dn: uid=bjensen,ou=People,dc=example,dc=com

cn: Barbara Jensen

cn: Babs Jensen

Passwords

Which Password Policy Applies

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

98 / 213

You can reconfigure the default password policy, for example, to check that passwords

do not contain complete attribute values, and to prevent password reuse. The default
policy is a per-server password policy.

1. Apply the changes to the default password policy:

dn: ou=People,dc=example,dc=com

changetype: modify

add: aci

aci: (targetattr = "pwdPolicySubentry||ds-pwp-password-policy-dn")

(version 3.0;acl "Allow Administrators to manage user's password

policy";

allow (all) (groupdn = "ldap:///cn=Directory

Administrators,ou=Groups,dc=example,dc=com");)

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=bjensen)" \

pwdPolicySubentry

dn: uid=bjensen,ou=People,dc=example,dc=com

pwdPolicySubentry: cn=Default Password Policy,cn=Password

Policies,cn=config

Configure Password Policies

Adjust the Default Password Policy

$ dsconfig \

set-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

99 / 213

2. Check your work:

--set password-history-count:7 \

--set password-validator:Attribute\ Value \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

get-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

--:---------------

account-status-notification-handler : -

allow-expired-password-changes : false

allow-user-password-changes : true

default-password-storage-scheme : PBKDF2-HMAC-

SHA256

deprecated-password-storage-scheme : -

expire-passwords-without-warning : false

force-change-on-add : false

force-change-on-reset : false

grace-login-count : 0

idle-lockout-interval : 0 s

last-login-time-attribute : -

last-login-time-format : -

lockout-duration : 0 s

lockout-failure-count : 0

lockout-failure-expiration-interval : 0 s

max-password-age : 0 s

max-password-reset-age : 0 s

min-password-age : 0 s

password-attribute : userPassword

password-change-requires-current-password : false

100 / 213

3. Test changes to the default password policy.

For example, the following tests demonstrate the attribute value password

validator. The attribute value password validator rejects a new password when
the password is contained in attribute values on the user’s entry.

By default, the attribute value password validator checks all attributes, checks
whether portions of the password string match attribute values, where the

portions are strings of length 5, and checks the reverse of the password as well:

Consider the attributes present on Babs Jensen’s entry:

password-expiration-warning-interval : 5 d

password-generator : Random

Password Generator

password-history-count : 7

password-history-duration : 0 s

password-validator : Attribute

Value

previous-last-login-time-format : -

require-change-by-time : -

require-secure-authentication : true

require-secure-password-changes : true

$ dsconfig \

get-password-validator-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--validator-name Attribute\ Value \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

-----------------------:----------------------------------

check-substrings : true

enabled : true

match-attribute : All attributes in the user entry

will be checked.

min-substring-length : 5

test-reversed-password : true

101 / 213

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--baseDN dc=example,dc=com \

"(uid=bjensen)"

dn: uid=bjensen,ou=People,dc=example,dc=com

objectClass: person

objectClass: cos

objectClass: jsonObject

objectClass: inetOrgPerson

objectClass: organizationalPerson

objectClass: posixAccount

objectClass: top

classOfService: bronze

cn: Barbara Jensen

cn: Babs Jensen

departmentNumber: 3001

description: Original description

diskQuota: 10 GB

facsimileTelephoneNumber: +1 408 555 1992

gidNumber: 1000

givenName: Barbara

homeDirectory: /home/bjensen

json:

{"access_token":"123","expires_in":59,"token_type":"Bearer

","refresh_token":"456"}

l: San Francisco

mail: bjensen@example.com

mailQuota: 1 GB

manager: uid=trigden, ou=People, dc=example,dc=com

ou: Product Development

ou: People

preferredLanguage: en, ko;q=0.8

roomNumber: 0209

sn: Jensen

street: 201 Mission Street Suite 2900

telephoneNumber: +1 408 555 1862

uid: bjensen

uidNumber: 1076

102 / 213

Using the attribute value password validator, passwords like bjensen12 and

babsjensenspwd are not valid because substrings of the password match
complete attribute values:

The attribute value password validator does not check, however, whether the

password contains substrings of attribute values:

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--newPassword bjensen12

The LDAP password modify operation failed: 19 (Constraint

Violation)

Additional Information: The provided new password failed

the validation

checks defined in the server: The provided password was

found in another

attribute in the user entry

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--newPassword babsjensenspwd

The LDAP password modify operation failed: 19 (Constraint

Violation)

Additional Information: The provided new password failed

the validation

checks defined in the server: The provided password was

found in another

attribute in the user entry

103 / 213

To avoid the problem of the latter example, you could use a dictionary
password validator where the dictionary includes example.com .

You can configure a password policy inspired by NIST 800-63 requirements:

Use a strong password storage scheme.

Enforce a minimum password length of 8 characters.

Check for matches in a dictionary of compromised passwords.

Do not use composition rules for password validation.

In other words, do not require a mix of special characters, upper and lower case

letters, numbers, or other composition rules.

Do not enforce arbitrary password changes.

In other words, do not set a maximum password age.

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--newPassword babsp4ssw0rd

The LDAP password modify operation was successful

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword babsp4ssw0rd \

--newPassword example.com

The LDAP password modify operation was successful

Configure a NIST-Inspired Subentry Policy

104 / 213

Follow these steps to set up a replicated, NIST-inspired LDAP subentry password

policy:

1. Gzip a copy of a text file of common compromised passwords, one word per

line.

This example shows the gzipped text file as /tmp/10k_most_common.gz . After

successfully updating a subentry password policy with the dictionary data, the
input file is no longer required. Lists of common passwords can be found

online.

2. Make sure you have enabled a strong storage scheme.

Creating a password storage scheme requires access to edit the server
configuration, which you might not have when creating a subentry password

policy. This example therefore uses the PBKDF2-HMAC-SHA512 storage
scheme, which is enabled by default to use 10,000 iterations.

This scheme is intentionally much slower and more CPU-intensive than the
PBKDF2-HMAC-SHA256 scheme with 10 iterations used by the default password

policy when you install DS. Test that you have enough resources to sustain the
expected peak rates of impacted operations before using a much stronger

password storage scheme in your production deployment.

Impacted operations include:

Adding or importing entries with passwords.

Authenticating using a password, such as simple bind.

Updating or resetting a password.

3. Make sure password policy administrators have the subentry-write

privilege, and any required ACIs needed to write password policy subentries in
the directory data.

The following example grants access to password administrators. The
administrator accounts are in the data where the password policy is to be

stored:

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

105 / 213

Notice here that the directory superuser, uid=admin , assigns privileges. Any

administrator with the privilege-change privilege can assign privileges.
However, if the administrator can update administrator privileges, they can

assign themselves the bypass-acl privilege. Then they are no longer bound
by access control instructions, including both user data ACIs and global ACIs.

For this reason, do not assign the privilege-change privilege to normal
administrator users.

4. Create the password policy as one of the password policy administrators:

dn: cn=subentry-write privilege for

administrators,dc=example,dc=com

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

cn: subentry-write privilege for administrators

ds-privilege-name;collective: subentry-write

subtreeSpecification: {base "ou=people",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)" }

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (target="ldap:///dc=example,dc=com")

(targetattr = "*||ds-pwp-password-policy-

dn||pwdPolicySubentry||subtreeSpecification")

(version 3.0; acl "Admins can manage entries and password

policies"; allow(all)

groupdn = "ldap:///cn=Directory

Administrators,ou=Groups,dc=example,dc=com";)

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=NIST inspired policy,dc=example,dc=com

106 / 213

After successfully adding the policy with the dictionary data, you can delete the

input file.

5. Check the password policy works appropriately.

The following example shows a rejected password modification:

The following example shows an accepted password modification:

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

objectClass: ds-pwp-validator

objectClass: ds-pwp-length-based-validator

objectClass: ds-pwp-dictionary-validator

cn: NIST inspired policy

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA512

ds-pwp-length-based-min-password-length: 8

ds-pwp-dictionary-data:<file:///tmp/10k_most_common.gz

subtreeSpecification: {base "ou=people",

specificationFilter "(objectclass=person)" }

EOF

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--newPassword secret12

The LDAP password modify operation failed: 19 (Constraint

Violation)

Additional Information: The provided new password failed

the validation

checks defined in the server: The provided password was

found in another

attribute in the user entry

$ ldappasswordmodify \

--hostname localhost \

107 / 213

This example adds a per-server password policy for new users who have not yet used

their credentials to bind:

1. Create the new password policy:

As per-server password policies are not replicated, repeat this step on all
replica directory servers.

2. Check your work:

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--newPassword aET1OjQeVJECSMgxDPs3U6In

The LDAP password modify operation was successful

Create a Per-Server Password Policy

$ dsconfig \

create-password-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "New Account Password Policy" \

--set default-password-storage-scheme:PBKDF2-HMAC-SHA256

\

--set force-change-on-add:true \

--set password-attribute:userPassword \

--type password-policy \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

get-password-policy-prop \

--hostname localhost \

108 / 213

3. Change the user’s password policy after the password is successfully updated.

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "New Account Password Policy" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

--:---------------

account-status-notification-handler : -

allow-expired-password-changes : false

allow-user-password-changes : true

default-password-storage-scheme : PBKDF2-HMAC-

SHA256

deprecated-password-storage-scheme : -

expire-passwords-without-warning : false

force-change-on-add : true

force-change-on-reset : false

grace-login-count : 0

idle-lockout-interval : 0 s

last-login-time-attribute : -

last-login-time-format : -

lockout-duration : 0 s

lockout-failure-count : 0

lockout-failure-expiration-interval : 0 s

max-password-age : 0 s

max-password-reset-age : 0 s

min-password-age : 0 s

password-attribute : userPassword

password-change-requires-current-password : false

password-expiration-warning-interval : 5 d

password-generator : -

password-history-count : 0

password-history-duration : 0 s

password-validator : -

previous-last-login-time-format : -

require-change-by-time : -

require-secure-authentication : false

require-secure-password-changes : false

109 / 213

For instructions on assigning a per-server password policy, s See Assign a

Password Policy to a User.

Per-server password policies are part of the DS server configuration. Use the dsconfig
command to list, read, and edit them.

Subentry policies are part of the DS directory data. Use the ldapsearch command to

list and read them.

The following command lists the subentry password policies under

dc=example,dc=com :

Type To Assign…​

Per-server

password policy

Set the ds-pwp-password-policy-dn operational attribute on the

user’s account.

List Subentry Password Policies

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDn dc=example,dc=com \

"(&(objectClass=subEntry)(objectClass=ds-pwp-password-policy))"

dn: cn=NIST inspired policy,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

objectClass: ds-pwp-validator

objectClass: ds-pwp-length-based-validator

cn: NIST inspired policy

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA512

ds-pwp-length-based-min-password-length: 8

ds-pwp-password-attribute: userPassword

ds-pwp-dictionary-data: <data>

Assign Password Policies

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#assign-pwp-to-individual
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#assign-pwp-to-individual
file:///home/pptruser/Downloads/build/site/ds/schemaref/at-ds-pwp-password-policy-dn.html

110 / 213

Type To Assign…​

Subentry password

policy

Use one of the following methods:

Set the ds-pwp-password-policy-dn operational attribute
on the user’s account.

Add the policy to an LDAP subentry whose immediate
superior is the root of the subtree containing the accounts.

For example, add the subentry password policy under
ou=People,dc=example,dc=com . It applies to all accounts

under ou=People,dc=example,dc=com .

Use the capabilities of LDAP subentries . Refine the scope

of application by setting the subtreeSpecification attribute
on the policy entry.

1. Make sure the password administrator has access to manage password

policies:



Do not assign more than one password policy to the same account. Conflicting
password policies will yield inconsistent results.

You can review the password policy assigned to an account by reading the

pwdPolicySubentry attribute on the entry.

IMPORTANT

Assign a Password Policy to a User

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=subentry-write privilege for

administrators,dc=example,dc=com

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

file:///home/pptruser/Downloads/build/site/ds/schemaref/at-ds-pwp-password-policy-dn.html
https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc3672
file:///home/pptruser/Downloads/build/site/ds/schemaref/at-subtreeSpecification.html

111 / 213

Notice here that the directory superuser, uid=admin , assigns privileges. Any

administrator with the privilege-change privilege can assign privileges.
However, if the administrator can update administrator privileges, they can

assign themselves the bypass-acl privilege. Then they are no longer bound
by access control instructions, including both user data ACIs and global ACIs.

For this reason, do not assign the privilege-change privilege to normal
administrator users.

2. Set the user’s ds-pwp-password-policy-dn attribute as the password
administrator:

cn: subentry-write privilege for administrators

ds-privilege-name;collective: subentry-write

subtreeSpecification: {base "ou=people",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)" }

dn: dc=example,dc=com

changetype: modify

add: aci

aci: (target="ldap:///dc=example,dc=com")

(targetattr = "*||ds-pwp-password-policy-

dn||pwdPolicySubentry||subtreeSpecification")

(version 3.0; acl "Admins can manage entries and password

policies"; allow(all)

groupdn = "ldap:///cn=Directory

Administrators,ou=Groups,dc=example,dc=com";)

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: uid=newuser,ou=People,dc=example,dc=com

uid: newuser

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

objectClass: top

112 / 213

3. Check your work:

You can use a collective attribute to assign a password policy. Collective attributes
provide a standard mechanism for defining attributes that appear on all the entries in a

subtree. For details, see Collective Attributes:

1. Make sure the password administrator has the privilege to write subentries:

cn: New User

sn: User

ou: People

mail: newuser@example.com

userPassword: chngthspwd

ds-pwp-password-policy-dn: cn=NIST inspired

policy,dc=example,dc=com

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=newuser)" \

pwdPolicySubentry

dn: uid=newuser,ou=People,dc=example,dc=com

pwdPolicySubentry: cn=NIST inspired

policy,dc=example,dc=com

Assign a Password Policy to a Group

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html

113 / 213

Notice here that the directory superuser, uid=admin , assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.

However, if the administrator can update administrator privileges, they can
assign themselves the bypass-acl privilege. Then they are no longer bound

by access control instructions, including both user data ACIs and global ACIs.
For this reason, do not assign the privilege-change privilege to normal

administrator users.

2. Create a subentry defining the collective attribute that sets the ds-pwp-

password-policy-dn attribute for group members' entries:

3. Check your work:

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: subentry-write

EOF

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=Password Policy for Dir Admins,dc=example,dc=com

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

cn: Password Policy for Dir Admins

ds-pwp-password-policy-dn;collective: cn=Root Password

Policy,cn=Password Policies,cn=config

subtreeSpecification: { base "ou=People",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)"}

EOF

114 / 213

These steps apply only to subentry password policies:

1. Give an administrator the privilege to write subentries, such as those used for
setting password policies:

Notice here that the directory superuser, uid=admin , assigns privileges. Any
administrator with the privilege-change privilege can assign privileges.

However, if the administrator can update administrator privileges, they can

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=kvaughan)" \

pwdPolicySubentry

dn: uid=kvaughan,ou=People,dc=example,dc=com

pwdPolicySubentry: cn=Root Password Policy,cn=Password

Policies,cn=config

Assign a Password Policy to a Branch

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: subentry-write

EOF

115 / 213

assign themselves the bypass-acl privilege. Then they are no longer bound

by access control instructions, including both user data ACIs and global ACIs.
For this reason, do not assign the privilege-change privilege to normal

administrator users.

2. Configure a subentry password policy with a subtreeSpecification

attribute that defines which accounts are assigned the policy.

The following example assigns cn=NIST inspired policy to accounts under

ou=People,dc=example,dc=com :

The subtree specification assigns the policy to the people branch with { base

"ou=people" } . You could relax the subtree specification value to {} to apply
the policy to all entries anywhere underneath dc=example,dc=com . You could

further restrict the subtree specification by adding a specificationFilter .
For details, see About Subentry Scope.

3. Check your work to see that an account under ou=People has the policy:

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery << EOF

dn: cn=NIST inspired policy,dc=example,dc=com

changetype: modify

replace: subtreeSpecification

subtreeSpecification: { base "ou=people" }

EOF

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=alutz)" \

pwdPolicySubentry

116 / 213

LDAP subentries reside with the user data and so the server replicates them.

Subentries hold operational data. They are not visible in search results unless explicitly
requested. This section describes how a subentry’s subtreeSpecification attribute

defines the scope of the subtree that the subentry applies to.

An LDAP subentry’s subtree specification identifies a subset of entries in a branch of the

DIT. The subentry scope is these entries. In other words, these are the entries that the
subentry affects.

The attribute value for a subtreeSpecification optionally includes the following
parameters:

base

Indicates the entry, relative to the subentry’s parent, at the base of the subtree.

By default, the base is the subentry’s parent.

specificationFilter

Indicates an LDAP filter. Entries matching the filter are in scope.

DS servers extend the standard implementation to allow any search filter, not just an

assertion about the objectClass attribute.

By default, all entries under the base entry are in scope.

The following illustration shows this for an example collective attribute subentry:

dn: uid=alutz,ou=People,dc=example,dc=com

pwdPolicySubentry: cn=NIST inspired

policy,dc=example,dc=com

About Subentry Scope



https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc3672
https://tools.ietf.org/html/rfc3672

117 / 213

Notice that the base of ou=People on the subentry cn=Silver Class of

Service,dc=example,dc=com indicates that the base entry is
ou=People,dc=example,dc=com .

The filter "(classOfService=silver)" means that Kirsten Vaughan and Sam Carter’s
entries are in scope. Babs Jensen’s entry, with classOfService: bronze does not

match and is therefore not in scope. The ou=People organizational unit entry does not
have a classOfService attribute, and so is not in scope, either.

The difficulty with passwords is that they tend to be relatively easy to guess. Despite
decades of advice on how to pick strong passwords, people still routinely pick very weak

passwords using common words and phrases or simple variations of them. This makes
them extremely easy to guess. Attackers with access to even modest hardware can

make billions of guesses per second.

DS servers provide flexible password validation to fit your policies about password

content, and to reject weak passwords when users try to save them. It also provides a
variety of one-way and reversible password storage schemes. Password strength is a

function of both password minimum length, which you can set as part of password
policy, and password quality, which requires password validation.

Strong and Safe Passwords

118 / 213

When a password is added or updated, a password validator determines whether the

server should accept it. Validation does not affect existing passwords.

A user’s password policy specifies which password validators apply whenever that user

provides a new password.

Subentry password policies can include attributes of password validator object classes.

Each object class derives from the abstract ds-pwp-validator class:

ds-pwp-attribute-value-validator Attributes

ds-pwp-character-set-validator Attributes

ds-pwp-dictionary-validator Attributes

ds-pwp-length-based-validator Attributes

ds-pwp-repeated-characters-validator Attributes

ds-pwp-similarity-based-validator Attributes

ds-pwp-unique-characters-validator Attributes

The example that follows shows a password policy that requires new passwords to have
at least three of the following four character classes:

English lowercase characters (a through z)

English uppercase characters (A through Z)

Base 10 digits (0 through 9)

Punctuation characters (for example, !, $, #, %)

Notice how the character-set values are constructed. The initial 0: means the set is
optional, whereas 1: means the set is required:

Password Validation

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Policy with character set validation,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

objectClass: ds-pwp-validator

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-attribute-value-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-character-set-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-dictionary-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-length-based-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-repeated-characters-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-similarity-based-validator
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-unique-characters-validator

119 / 213

An attempt to set an invalid password fails as shown in the following example:

objectClass: ds-pwp-character-set-validator

cn: Policy with character set validation

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-character-set-allow-unclassified-characters: true

ds-pwp-character-set-character-set-ranges: 0:a-z

ds-pwp-character-set-character-set-ranges: 0:A-Z

ds-pwp-character-set-character-set-ranges: 0:0-9

ds-pwp-character-set-character-set: 0:!$%^.#

ds-pwp-character-set-min-character-sets: 3

subtreeSpecification: { base "ou=people", specificationFilter "

(uid=bjensen)" }

EOF

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--authzID "u:bjensen" \

--newPassword '!ABcd$%^'

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--authzID "u:bjensen" \

--newPassword hifalutin

The LDAP password modify operation failed: 19 (Constraint

Violation)

Additional Information: The provided new password failed the

validation

checks defined in the server: The provided password did not

contain characters

from at least 3 of the following character sets or ranges:

120 / 213

Per-server password policies use validators that are separate configuration objects. The

following example lists the password validators available by default for per-server
password policies. By default, no password validators are configured in the default

password policy:

For details, see Password Validator.

For an example showing how to test password quality, see Check Password Quality.

Password storage schemes, described in Password Storage Scheme, encode new
passwords and store the encoded version. When a client application authenticates with

the password, the server encodes the plaintext password using the configured storage
scheme, and checks whether the result matches the encoded value stored by the server.

If the encoded version is appropriately secure, it is difficult to guess the plaintext
password from its encoded value.

'!$%^.#', '0-9',

'A-Z', 'a-z'

$ dsconfig \

list-password-validators \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Password Validator : Type :

enabled

------------------------------------:---------------------:-------

-

At least 8 characters : length-based : true

Attribute Value : attribute-value : true

Character Set : character-set : true

Common passwords : dictionary : true

Dictionary : dictionary : false

Length-Based Password Validator : length-based : true

Repeated Characters : repeated-characters : true

Similarity-Based Password Validator : similarity-based : true

Unique Characters : unique-characters : true

Password Storage

file:///home/pptruser/Downloads/build/site/ds/configref/objects-password-validator.html
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/change-password.html#password-quality-check
file:///home/pptruser/Downloads/build/site/ds/configref/objects-password-storage-scheme.html

121 / 213

DS servers offer a variety of reversible and one-way password storage schemes. With a

reversible encryption scheme, an attacker who gains access to the server can recover
the plaintext passwords. With a one-way hash storage scheme, the attacker who gains

access to the server must still crack the password by brute force, encoding passwords
over and over to generate guesses until a match is found. If you have a choice, use a

one-way password storage scheme.

Some one-way hash functions are not designed specifically for password storage, but

also for use in message authentication and digital signatures. Such functions, like those
defined in the Secure Hash Algorithm (SHA-1 and SHA-2) standards, are designed for

high performance. Because they are fast, they allow the server to perform
authentication at high throughput with low response times. However, high-performance

algorithms also help attackers use brute force techniques. One estimate in 2017 is that a
single GPU can calculate over one billion SHA-512 hashes per second.

Modern hardware and techniques to pre-compute attempts, such as rainbow tables ,
make it increasingly easy for attackers to crack passwords by brute force. Password

storage schemes that use salt make brute force attacks more expensive. In this context,
salt is a random value appended to the password before encoding. The salt is then

stored with the encoded value and used when comparing an incoming password to the
stored password.

Reversible password storage schemes, such as AES and Blowfish, use symmetric keys for
encryption.

The following example lists available alternatives, further described in Password Storage
Schemes:

Some one-way hash functions are designed to be computationally expensive. Such
functions, like PBKDF2 and Bcrypt, are designed to be relatively slow even on

modern hardware. This makes them generally less susceptible to brute force
attacks.

However, computationally expensive functions reduce authentication throughput
and increase response times. With the default number of iterations, the GPU

mentioned above might only calculate 100,000 PBKDF2 hashes per second (or
0.01% of the corresponding hashes calculated with SHA-512). If you use these

functions, be aware of the potentially dramatic performance impact and plan your
deployment accordingly.

WARNING



$ dsconfig \

list-password-storage-schemes \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Rainbow_table
https://en.wikipedia.org/wiki/Rainbow_table

122 / 213

As shown in Adjust the Default Password Policy, the default password storage scheme
for users is PBKDF2-HMAC-SHA256. When you add users or import user entries with

userPassword values in plaintext, the DS server hashes them with the default
password storage scheme. The default directory superuser has a different password

policy, shown in Assign a Password Policy to a Group. The Root Password Policy uses
PBKDF2-HMAC-SHA256 by default.

--bindPassword password \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Password Storage Scheme : Type : enabled

------------------------:--------------------:--------

3DES : triple-des : false

AES : aes : false

Base64 : base64 : false

Bcrypt : bcrypt : true

Blowfish : blowfish : false

Clear : clear : false

CRYPT : crypt : false

PBKDF2 : pbkdf2 : false

PBKDF2-HMAC-SHA256 : pbkdf2-hmac-sha256 : true

PBKDF2-HMAC-SHA512 : pbkdf2-hmac-sha512 : true

PKCS5S2 : pkcs5s2 : false

Salted SHA-1 : salted-sha1 : false

Salted SHA-256 : salted-sha256 : false

Salted SHA-384 : salted-sha384 : false

Salted SHA-512 : salted-sha512 : false

SCRAM-SHA-256 : scram-sha256 : true

SCRAM-SHA-512 : scram-sha512 : true

SHA-1 : sha1 : false

TIP

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#default-pwp
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#assign-pwp-to-group

123 / 213

Password Storage Schemes

Name Type of

Algorithm

Notes

3DES Reversible

encryption

Triple DES (Data Encryption Standard) in EDE

(Encrypt Decrypt Encrypt) mode.

Key size: 168 bits.

AES Reversible
encryption

Advanced Encryption Standard, successor to DES,
published by the US National Institute of

Standards and Technology (NIST).

Key size: 128 bits.

Base64 Reversible
encoding

Transfer encoding for representing binary
password values in text.

Not intended as a secure storage scheme.

Bcrypt One-way hash Computationally intensive hashing function, based

on the Blowfish cipher.

Default cost: 12 (2^12 iterations).

Blowfish Reversible
encryption

Public domain cipher designed by Bruce Schneier
as a successor to DES.

Key size: 128 bits.

The choice of default password storage scheme for normal users can significantly

impact server performance. Each time a normal user authenticates using simple
bind (username/password) credentials, the directory server encodes the user’s

password according to the storage scheme in order to compare it with the encoded
value in the user’s entry.

Schemes such as Salted SHA-512 call for relatively high-performance encoding.
Schemes such as PBKDF2-HMAC-SHA256, which are designed to make the encoding

process computationally expensive, reduce the bind throughput that can be
achieved on equivalent hardware.

Take this performance impact into consideration when sizing your deployment.
With a computationally expensive scheme such as PBKDF2-HMAC-SHA256, make

sure the directory service has enough compute power to absorb the additional
load.

TIP

(1)

(2)

(1)

(2)

(1)

(2)

124 / 213

Name Type of

Algorithm

Notes

Clear Cleartext, no
encoding

For backwards compatibility and use with certain
legacy applications.

Not intended as a secure storage scheme.

CRYPT One-way hash Based on the UNIX Crypt algorithm.

For backwards compatibility and use with certain
legacy applications.

Not intended as a secure storage scheme.

Default algorithm: unix .

MD5 One-way hash Based on the MD5 algorithm defined in RFC 1321
.

For backwards compatibility and use with certain
legacy applications.

Not intended as a secure storage scheme.

PBKDF2 One-way hash Computationally intensive hashing function, based

on PBKDF2 algorithm defined in RFC 8018, 5.2.
PBKDF2 .

Default iterations: 10000.

The pseudorandom function for the algorithm

corresponds to the HMAC based on SHA-1.

PBKDF2-

HMAC-SHA256

One-way hash Computationally intensive hashing function using

PBKDF2.

Default iterations: 10000.

The pseudorandom function for the algorithm
corresponds to the HMAC based on SHA-2, where

the hash function is SHA-256.





https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc8018#section-5.2
https://tools.ietf.org/html/rfc8018#section-5.2
https://tools.ietf.org/html/rfc8018#section-5.2
https://tools.ietf.org/html/rfc8018#section-5.2

125 / 213

Name Type of

Algorithm

Notes

PBKDF2-
HMAC-SHA512

One-way hash Computationally intensive hashing function using
PBKDF2.

Default iterations: 10000.

The pseudorandom function for the algorithm

corresponds to the HMAC based on SHA-2, where
the hash function is SHA-512.

PKCS5S2 One-way hash Computationally intensive hashing function, based
on Atlassian’s adaptation of the PBKDF2.

Number of iterations: 10000.

RC4 Reversible

encryption

Based on the Rivest Cipher 4 algorithm.

For backwards compatibility and use with certain
legacy applications.

Not intended as a secure storage scheme.

Key size: 128 bits.

Salted MD5 One-way hash Based on MD5, with 64 bits of random salt
appended to the plaintext before hashing, and

then appended to the hash.

Salted SHA-1 One-way hash Based on SHA-1, with 64 bits of random salt

appended to the plaintext before hashing, and
then appended to the hash.

Salted SHA-256 One-way hash Based on the SHA-256 hash function using 32-bit
words and producing 256-bit digests.

SHA-256 is defined in the SHA-2 (Secure Hash
Algorithm 2) standard developed by the US

National Security Agency (NSA) and published by
NIST.

The salt is applied as for Salted SHA-1.

(1)

(2)

126 / 213

Name Type of

Algorithm

Notes

Salted SHA-384 One-way hash Based on the SHA-384 hash function that
effectively truncates the digest of SHA-512 to 384

bits.

SHA-384 is defined in the SHA-2 (Secure Hash

Algorithm 2) standard developed by the NSA and
published by NIST.

The salt is applied as for Salted SHA-1.

Salted SHA-512 One-way hash Based on the SHA-512 hash function using 64-bit

words and producing 512-bit digests.

SHA-512 is defined in the SHA-2 (Secure Hash

Algorithm 2) standard developed by the NSA and
published by NIST.

The salt is applied as for Salted SHA-1.

127 / 213

Name Type of

Algorithm

Notes

SCRAM-SHA-
256

One-way hash For use with the standard SASL Salted Challenge
Response Authentication Mechanism (SCRAM),

named SCRAM-SHA-256 .

A SASL SCRAM mechanism provides a secure

alternative to transmitting plaintext passwords
during binds. It is an appropriate replacement for

DIGEST-MD5 and CRAM-MD5.

With a SCRAM SASL bind, the client must

demonstrate proof that it has the original
plaintext password. During the SASL bind, the

client must perform computationally intensive
processing to prove that it has the plaintext

password. This computation is like what the server
performs for PBKDF2, but the password is not

communicated during the bind.

Once the server has stored the password, the

client pays the computational cost to perform the
bind. The server only pays a high computational

cost when the password is updated, for example,
when an entry with a password is added or during

a password modify operation. A SASL SCRAM
mechanism therefore offers a way to offload the

high computational cost of secure password
storage to client applications during

authentication.

Passwords storage using a SCRAM storage scheme

is compatible with simple binds and SASL PLAIN
binds. When a password is stored using a SCRAM

storage scheme, the server pays the
computational cost to perform the bind during a

simple bind or SASL PLAIN bind.

The SCRAM password storage scheme must match

the SASL SCRAM mechanism used for
authentication. In other words, SASL SCRAM-SHA-

256 requires a SCRAM-SHA-256 password storage
scheme. SASL SCRAM-SHA-512 requires a SCRAM-

SHA-512 password storage scheme.

Default iterations: 10000.

128 / 213

Name Type of

Algorithm

Notes

The pseudorandom function for the algorithm

corresponds to the HMAC based on SHA-2, where
the hash function is SHA-256.

SCRAM-SHA-

512

One-way hash Like SCRAM-SHA-256, but the hash function is

SHA-512. The corresponding SASL mechanism is
named SCRAM-SHA-512 .

SHA-1 One-way hash SHA-1 (Secure Hash Algorithm 1) standard
developed by the NSA and published by NIST.

Not intended as a secure storage scheme.

 Reversible encryption schemes are deprecated.

 When you configure a reversible password storage scheme, enable the adminRoot
backend, and configure a replication domain for cn=admin data . These additional

steps let the replicas store and replicate the secret keys for password encryption.

Password storage schemes listed in the following table have additional configuration

settings.

Additional Password Storage Scheme Settings

Scheme Setting Description

Bcrypt bcrypt-cost The cost parameter specifies a key expansion

iteration count as a power of two.

A default value of 12 (2 iterations) is considered

in 2016 as a reasonable balance between
responsiveness and security for regular users.

rehash-

policy

Whether the server should rehash passwords
after the cost has been changed.

(1)

(2)

12

129 / 213

Scheme Setting Description

Crypt crypt-

password-

storage-

encryption-

algorithm

Specifies the crypt algorithm to use to encrypt

new passwords.

The following values are supported:

unix

The password is encrypted with the weak Unix

crypt algorithm.

This is the default setting.

md5

The password is encrypted with the BSD MD5

algorithm and has a 1 prefix.

sha256

The password is encrypted with the SHA256
algorithm and has a 5 prefix.

sha512

The password is encrypted with the SHA512

algorithm and has a 6 prefix.

PBKDF2

PBKDF2-
HMAC-SHA256

PBKDF2-
HMAC-SHA512

pbkdf2-

iterations

The number of algorithm iterations.

The default is 10000.

rehash-

policy

Whether the server should rehash passwords
after the cost has been changed.

SCRAM

SCRAM-SHA-

256

SCRAM-SHA-

512

scram-

iterations

The number of algorithm iterations.

The default is 10000.

You change the default password policy storage scheme for users by changing the

applicable password policy:

$ dsconfig \

set-password-policy-prop \

--hostname localhost \

--port 4444 \

130 / 213

Notice that the change in default password storage scheme does not cause the DS
server to update any stored password values. By default, the server only stores a

password with the new storage scheme the next time the password is changed.

For subentry password policies, set the ds-pwp-default-password-storage-scheme

attribute to the common name of an enabled password storage scheme. To list the
names of enabled password storage schemes, use the dsconfig list-password-

storage-schemes command. The name appears in the first column of the output. The
third column shows whether the scheme is enabled.

DS servers prefix passwords with the scheme used to encode them, which means it is
straightforward to see which password storage scheme is used. After the default

password storage scheme is changed to PBKDF2-HMAC-SHA512, old user passwords
remain encoded with PBKDF2-HMAC-SHA256:

When the password is changed, the new default password storage scheme takes effect:

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--set default-password-storage-scheme:PBKDF2-HMAC-SHA512 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword hifalutin \

--baseDN dc=example,dc=com \

"(uid=bjensen)" \

userPassword

dn: uid=bjensen,ou=People,dc=example,dc=com

userPassword: {PBKDF2-HMAC-SHA512}10000:<hash>

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

131 / 213

When you change the password storage scheme for users, realize that the user

passwords must change in order for the DS server to encode them with the chosen
storage scheme. If you are changing the storage scheme because the old scheme was

too weak, then you no doubt want users to change their passwords anyway.

If, however, the storage scheme change is not related to vulnerability, use the

deprecated-password-storage-scheme property in per-server password policies, or
the ds-pwp-deprecated-password-storage-scheme attribute in subentry password

policies. This setting causes the DS server to store the password in the new format after
successful authentication. This makes it possible to do password migration for active

users as users gradually change their passwords:

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--authzID "u:bjensen" \

--newPassword changeit

The LDAP password modify operation was successful

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword changeit \

--baseDN dc=example,dc=com \

"(uid=bjensen)" \

userPassword

dn: uid=bjensen,ou=People,dc=example,dc=com

userPassword: {PBKDF2-HMAC-SHA512}10000:<hash>

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=kvaughan)" \

132 / 213

Notice that with deprecated-password-storage-scheme set appropriately, Kirsten
Vaughan’s password was hashed again after she authenticated successfully.

DS servers use password generators when responding with a generated password for
the LDAP Password Modify extended operation . A directory administrator resetting a

user’s password has the server generate the new password, and the server sends the
new password in the response:

userPassword

dn: uid=kvaughan,ou=People,dc=example,dc=com

userPassword: {PBKDF2-HMAC-SHA256}10000:<hash>

$ dsconfig \

set-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--set deprecated-password-storage-scheme:PBKDF2-HMAC-SHA256 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=kvaughan,ou=people,dc=example,dc=com \

--bindPassword bribery \

--baseDN dc=example,dc=com \

"(uid=kvaughan)" \

userPassword

dn: uid=kvaughan,ou=People,dc=example,dc=com

userPassword: {PBKDF2-HMAC-SHA512}10000:<hash>

Password Generation



$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062
https://tools.ietf.org/html/rfc3062

133 / 213

The default password policy uses the Random Password Generator, described in
Random Password Generator:

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--authzID "u:bjensen"

The LDAP password modify operation was successful

Generated Password: <random>

$ dsconfig \

get-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--property password-generator \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

-------------------:--------------------------

password-generator : Random Password Generator

$ dsconfig \

get-password-generator-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--generator-name "Random Password Generator" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

-----------------------:--

enabled : true

password-character-set :

file:///home/pptruser/Downloads/build/site/ds/configref/objects-random-password-generator.html

134 / 213

Notice that the default configuration for the Random Password Generator sets the
password-character-set property, and references the settings in the password-

format property. Generated passwords have eight characters: three from the alpha
set, followed by two from the numeric set, followed by three from the alpha set. The

password-character-set name must be ASCII.

Subentry password policies configure ds-pwp-random-generator object class

attributes. The following example creates a password with password generation, and
demonstrates its use:

alphanum:abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRS

: TUVWXYZ0123456789

password-format : alphanum:10

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Policy with random password generation,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

objectClass: ds-pwp-validator

objectClass: ds-pwp-length-based-validator

objectClass: ds-pwp-random-generator

cn: Policy with random password generation

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-random-password-character-set:

alpha:ABCDEFGHIJKLMNOPQRSTUVWabcdefghijklmnopqrstuvwxyz

ds-pwp-random-password-character-set: punct:,.!&+=-_

ds-pwp-random-password-character-set: numeric:0123456789

ds-pwp-random-password-format:

alpha:3,punct:1,numeric:2,punct:2,numeric:3,alpha:3,punct:2

ds-pwp-length-based-min-password-length: 8

subtreeSpecification: { base "ou=people" }

EOF

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

135 / 213

For details, see ds-pwp-random-generator Attributes.

When configuring both password validators and password generators, make sure the

generated passwords are acceptable to the validator. In this case, the minimum length is
less than the generated password length, for example.

To help you prevent brute-force attacks, where an attacker tries many passwords in the

hope of eventually guessing correctly, DS password policies support configurable
account lockout. This feature is an important part of a secure password policy.

The following commands demonstrate a subentry password policy that locks accounts

for five minutes after three consecutive bind failures. With this policy, the directory
server records failure times, and slowly discards them. As a result, a brute-force attack is

hopefully too slow to be effective, but no administrative action is needed when a user
temporarily forgets or mistypes their password.

Once an account is locked, binds continue to fail for the lockout period, even if the
credentials are correct. An account administrator can use the manage-account

command to view the account status, and to change it if necessary:

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--authzID "u:bjensen"

The LDAP password modify operation was successful

Generated Password: <random>

Sample Password Policies

Lock Accounts After Repeated Bind Failures

When you configure account lockout as part of password policy, DS servers lock an

account after the specified number of consecutive authentication failures. Account

lockout is not transactional across all replicas in a deployment. Global account lockout

occurs as soon as the authentication failure times have been replicated.

NOTE

Show example commands

Set the password policy:

$ ldapmodify \

--hostname localhost \

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#table-ds-pwp-random-generator

136 / 213

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Lock After Repeated Bind Failures,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Lock After Repeated Bind Failures

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-lockout-duration: 5 m

ds-pwp-lockout-failure-count: 3

ds-pwp-lockout-failure-expiration-interval: 2 m

subtreeSpecification: { base "ou=people", specificationFilter "

(objectClass=posixAccount)" }

EOF

Attempt to bind three times using the wrong password:

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword wrongPassword \

--baseDn dc=example,dc=com \

"(uid=bjensen)"

The LDAP bind request failed: 49 (Invalid Credentials)

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword wrongPassword \

--baseDn dc=example,dc=com \

"(uid=bjensen)"

137 / 213

The following commands configure a subentry password policy that sets age limits on
passwords, requiring that users change their passwords at least every 13 weeks, but not

more often than every 4 weeks. The policy also sets the number of passwords to keep in
the password history of the entry, preventing users from reusing the same password on

consecutive changes:

The LDAP bind request failed: 49 (Invalid Credentials)

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDn uid=bjensen,ou=people,dc=example,dc=com \

--bindPassword wrongPassword \

--baseDn dc=example,dc=com \

"(uid=bjensen)"

The LDAP bind request failed: 49 (Invalid Credentials)

Observe the results:

$ manage-account \

get-all \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--targetDN uid=bjensen,ou=people,dc=example,dc=com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

Password Policy DN: cn=Lock After Repeated Bind

Failures,dc=example,dc=com

Seconds Until Authentication Failure Unlock: <seconds>

Enforce Regular Password Changes

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

138 / 213

The following commands configure a subentry password policy that keeps track of the

last successful login:

1. Set up an attribute to which the DS directory server can write a timestamp value on

successful login.

For additional information, see Active Accounts:

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Enforce Regular Password Changes,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Enforce Regular Password Changes

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-max-password-age: 13 w

ds-pwp-min-password-age: 4 w

ds-pwp-password-history-count: 7

subtreeSpecification: { base "ou=people" }

EOF

Track Last Login Time

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=schema

changetype: modify

add: attributeTypes

attributeTypes: (lastLoginTime-oid

NAME 'lastLoginTime'

DESC 'Last time the user logged in'

EQUALITY generalizedTimeMatch

ORDERING generalizedTimeOrderingMatch

SYNTAX 1.3.6.1.4.1.1466.115.121.1.24

SINGLE-VALUE

NO-USER-MODIFICATION

file:///home/pptruser/Downloads/build/site/ds/ldap-guide/search-ldap.html#extensible-match-search

139 / 213

2. Create the password policy to write the timestamp to the attribute on successful
login:

The following commands configure a subentry password policy for deprecating a
password storage scheme. This policy uses elements from Enforce Regular Password

Changes. The DS server applies the new password storage scheme to re-encode
passwords:

When they change.

When the user successfully binds with the correct password, and the password is

currently hashed with a deprecated scheme.

USAGE directoryOperation

X-ORIGIN 'DS example documentation')

EOF

$ dsconfig \

create-password-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Track Last Login Time" \

--type password-policy \

--set default-password-storage-scheme:PBKDF2-HMAC-SHA256 \

--set password-attribute:userPassword \

--set last-login-time-attribute:lastLoginTime \

--set last-login-time-format:"yyyyMMddHH'Z'" \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--no-prompt

Deprecate a Password Storage Scheme

$ dsconfig \

set-password-storage-scheme-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--scheme-name "Salted SHA-512" \

--set enabled:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

140 / 213

The following commands configure a subentry password policy that locks accounts idle

for more than 13 weeks. This policy extends the example from Track Last Login Time.
The DS server must track last successful login time to calculate how long the account has

been idle. You must first add the lastLoginTime attribute type in order for the DS
server to accept this new password policy:

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Deprecate a Password Storage Scheme,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Deprecate a Password Storage Scheme

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-deprecated-password-storage-scheme: Salted SHA-512

ds-pwp-max-password-age: 13 w

ds-pwp-min-password-age: 4 w

ds-pwp-password-history-count: 7

subtreeSpecification: { base "ou=people" }

EOF

Lock Idle Accounts

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Lock Idle Accounts,dc=example,dc=com

objectClass: top

objectClass: subentry

141 / 213

The following commands configure a subentry password policy that lets users log in
twice with an expired password to set a new password:

The following commands configure a subentry password policy that requires new users

to change their password after logging in for the first time. This policy also requires
users to change their password after it is reset:

objectClass: ds-pwp-password-policy

cn: Lock Idle Accounts

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-idle-lockout-interval: 13 w

ds-pwp-last-login-time-attribute: lastLoginTime

ds-pwp-last-login-time-format: yyyyMMddHH'Z'

subtreeSpecification: { base "ou=people" }

EOF

Allow Log In to Change an Expired Password

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Allow Grace Login,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Allow Grace Login

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-grace-login-count: 2

subtreeSpecification: { base "ou=people" }

EOF

Require Password Change on Add or Reset

$ ldapmodify \

--hostname localhost \

--port 1636 \

142 / 213

DS password policies govern passwords, account lockout, and account status

notification.

DS servers support per-server password policies stored in the configuration, and

subentry password policies stored in the (replicated) directory data:

Type Notes

Per-Server Password
Policies

Use for default policies, and policies for top-level
administrative accounts.

You must manually apply policy updates to each
replica server configuration.

Updates require write access to the server
configuration.

DS Subentry Password
Policies

Use for all user accounts stored in application data.

Replication applies each policy update to all

replicas.

Updates require the subentry-write privilege,

and ACIs to write the policy.

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Require Password Change on Add or Reset,dc=example,dc=com

objectClass: top

objectClass: subentry

objectClass: ds-pwp-password-policy

cn: Require Password Change on Add or Reset

ds-pwp-password-attribute: userPassword

ds-pwp-default-password-storage-scheme: PBKDF2-HMAC-SHA256

ds-pwp-force-change-on-add: true

ds-pwp-force-change-on-reset: true

subtreeSpecification: { base "ou=people" }

EOF

About Password Policies

file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#pwp-per-server
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#pwp-per-server
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#pwp-replicated
file:///home/pptruser/Downloads/build/site/ds/security-guide/passwords.html#pwp-replicated

143 / 213

Figure 1. Per-Server and Subentry Password Policies

You manage per-server password policies with the dsconfig command. When
changing a per-server policy, you must update each replica in your deployment.

By default, there are two per-server password policies:

The Default Password Policy for users.

The Root Password Policy for the directory superuser, uid=admin .

The following example displays the default per-server password policy for users:

Per-Server Password Policies

$ dsconfig \

get-password-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Default Password Policy" \

--advanced \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Property : Value(s)

--:-----------------------

144 / 213

For detailed descriptions of each property, see Password Policy.

These settings are configured by default:

When granted access, users can change their passwords.

account-status-notification-handler : -

allow-expired-password-changes : false

allow-multiple-password-values : false

allow-pre-encoded-passwords : false

allow-user-password-changes : true

default-password-storage-scheme : PBKDF2-HMAC-SHA256

deprecated-password-storage-scheme : -

expire-passwords-without-warning : false

force-change-on-add : false

force-change-on-reset : false

grace-login-count : 0

idle-lockout-interval : 0 s

java-class :

org.opends.server.core.PasswordPoli

: cyFactory

last-login-time-attribute : -

last-login-time-format : -

lockout-duration : 0 s

lockout-failure-count : 0

lockout-failure-expiration-interval : 0 s

max-password-age : 0 s

max-password-reset-age : 0 s

min-password-age : 0 s

password-attribute : userPassword

password-change-requires-current-password : false

password-expiration-warning-interval : 5 d

password-generator : Random Password

Generator

password-history-count : 0

password-history-duration : 0 s

password-validator : At least 8 characters,

Common

: passwords

previous-last-login-time-format : -

require-change-by-time : -

require-secure-authentication : true

require-secure-password-changes : true

skip-validation-for-administrators : false

state-update-failure-policy : reactive

file:///home/pptruser/Downloads/build/site/ds/configref/objects-password-policy.html

145 / 213

DS servers use the standard userPassword attribute to store passwords.

DS servers also support the alternative standard authPassword attribute.

When you import LDIF with userPassword values, DS servers apply a one-way

hash to the passwords before storing them.

When a user provides a password value during a bind, for example, the server

hashes the incoming password, and compares it with the stored value. This
mechanism helps prevent even the directory superuser from recovering the plain

text password:

The server can set a random password when a password administrator resets a
user’s password.

Many capabilities are not set by default:

No lockout.

No password expiration.

No password validator to check that passwords contain the appropriate mix of

characters.

If the directory service enforces password policy, configure at least the default password

policy accordingly.

You manage password policies as LDAP subentries in the application data. Replication

applies updates to subentry password policies to all other replicas. Password policy
administrators do not need access to the server configuration.

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

\

--bindDN uid=admin \

--bindPassword password \

--baseDN dc=example,dc=com \

"(uid=bjensen)" \

userpassword

dn: uid=bjensen,ou=People,dc=example,dc=com

userpassword: {PBKDF2-HMAC-SHA256}10000:<hash>

DS Subentry Password Policies

146 / 213

The DS subentry password policy entries have the object classes:

ds-pwp-password-policy for most password policy features.

A set of password validator object classes for specific validators that derive from the

abstract ds-pwp-validator class for password validation configuration.

ds-pwp-random-generator for password generation on reset.

The following tables describe password policy attributes per object class:

ds-pwp-password-policy Attributes

Attribute Description

ds-pwp-password-attribute

(required)

The attribute type used to hold user

passwords.

ds-pwp-default-password-storage-

scheme (required)

Names of enabled password storage

schemes used to encode plaintext
passwords.

Default: PBKDF2-HMAC-SHA256.

cn Name of the password policy

ds-pwp-allow-user-password-

changes

Whether users can change their
passwords, assuming access control

allows it.

Default: true.

ds-pwp-account-status-

notification-handler

Names of enabled account status
notification handlers to use with this

policy.

Use the dsconfig list-account-

status-notification-handlers

command. The first column of the output

shows the names. The third column
shows whether the handler is enabled.

ds-pwp-allow-expired-password-

changes

Whether the user can change an expired
password with the password modify

extended operation.

Default: false.

147 / 213

Attribute Description

ds-pwp-allow-multiple-password-

values

Whether user entries can have multiple

distinct passwords. Any password is
sufficient to authenticate.

Default: false.

ds-pwp-allow-pre-encoded-

passwords

Whether users can change their

passwords by providing a pre-encoded
value.

Default: false.

ds-pwp-deprecated-password-

storage-scheme

Names of deprecated password storage

schemes for this policy.

On successful authentication, encode the

password with the default.

ds-pwp-expire-passwords-without-

warning

Whether to allow a user’s password to

expire even if that user has never seen an
expiration warning notification.

Default: false.

ds-pwp-force-change-on-add Whether users are forced to change their

passwords upon first authentication after
their accounts are added.

Default: false.

ds-pwp-force-change-on-reset Whether users are forced to change their

passwords after password reset by an
administrator. For this purpose, anyone

with permission to change a given user’s
password other than that user is an

administrator.

Default: false.

ds-pwp-grace-login-count Number of grace logins that a user is
allowed after the account has expired so

the user can update their password.

Default: 0 (disabled).

148 / 213

Attribute Description

ds-pwp-idle-lockout-interval Maximum number of seconds that an

account may remain idle (the associated
user does not authenticate to the server)

before that user is locked out. Requires
maintaining a last login time attribute.

Default: 0 seconds (inactive).

ds-pwp-last-login-time-attribute Name or OID of the attribute type that is

used to hold the last login time for users.

Default: The last-login-time-

attribute setting from the default
password policy. By default, last-

login-time-attribute is not set.

ds-pwp-last-login-time-format Format string that is used to generate the

last login time value for users.

The format string must match the syntax

of the ds-pwp-last-login-time-
attribute attribute, and must be a valid

format string for the
java.text.SimpleDateFormat class.

Default: yyyyMMddHHmmss’Z' .

ds-pwp-lockout-duration Duration that an account is locked after

too many authentication failures.

Default: 0 seconds (account remains

locked until the administrator resets the
password).

ds-pwp-lockout-failure-count Maximum number of authentication
failures that a user is allowed before the

account is locked out.

Default: 0 (disabled).

ds-pwp-lockout-failure-

expiration-interval

Duration before an authentication failure
is no longer counted against a user for

the purposes of account lockout.

Default: 0 seconds (never expire).

149 / 213

Attribute Description

ds-pwp-max-password-age Duration that a user can continue using

the same password before it must be
changed (the password expiration

interval).

Default: 0 seconds (passwords never

expire).

ds-pwp-max-password-reset-age Maximum number of seconds that users

have to change passwords after they
have been reset by an administrator

before they become locked.

Default: 0 seconds.

ds-pwp-min-password-age Minimum duration after a password
change before the user is allowed to

change the password again.

Default: 0 seconds.

ds-pwp-password-change-requires-

current-password

Whether user password changes must
include the user’s current password

before the change is allowed. This can be
done with either the password modify

extended operation, or a modify
operation using delete and add.

Default: false.

ds-pwp-password-expiration-

warning-interval

Duration before a user’s password

actually expires that the server begins to
include warning notifications in bind

responses for that user.

Default: 5 days.

150 / 213

Attribute Description

ds-pwp-password-history-count Maximum number of former passwords

to maintain in the password history.

A value of zero indicates that either no

password history is to be maintained if
the password history duration has a

value of zero seconds, or that there is no
maximum number of passwords to

maintain in the history if the password
history duration has a value greater than

zero seconds.

Default: 0.

ds-pwp-password-history-duration Maximum number of seconds that
passwords remain in the password

history.

Default: 0 seconds (inactive).

ds-pwp-previous-last-login-time-

format

Format string(s) that might have been
used with the last login time at any point

in the past for users associated with the
password policy.

Default: yyyyMMddHHmmss’Z' .

ds-pwp-require-change-by-time Time by which all users with the

associated password policy must change
their passwords. Specified in generalized

time form.

ds-pwp-require-secure-

authentication

Whether users with the associated

password policy are required to
authenticate in a secure manner.

Default: false.

ds-pwp-require-secure-password-

changes

Whether users with the associated

password policy are required to change
their password in a secure manner that

does not expose the credentials.

Default: false.

151 / 213

Attribute Description

ds-pwp-skip-validation-for-

administrators

Whether passwords set by administrators

are allowed to bypass the password
validation process.

Default: false.

ds-pwp-state-update-failure-

policy

How the server deals with the inability to

update password policy state information
during an authentication attempt.

One of the following:

ignore : If a bind attempt would

otherwise be successful, then do not
reject it if a problem occurs while

attempting to update the password
policy state information for the user.

proactive : Proactively reject any
bind attempt if it is known ahead of

time that it would not be possible to
update the user’s password policy

state information.

reactive (default): Even if a bind

attempt would otherwise be
successful, reject it if a problem

occurs while attempting to update
the password policy state

information for the user.

ds-pwp-attribute-value-validator Attributes

Attribute Description

ds-pwp-attribute-value-test-

reversed-password

Whether this password validator should

test the reversed value of the provided
password as well as the order in which it

was given.

Default: false.

152 / 213

Attribute Description

ds-pwp-attribute-value-match-

attribute

Name(s) of the attribute(s) whose values

should be checked to determine whether
they match the provided password.

If no values are provided, then the server
checks if the proposed password

matches the value of any user attribute in
the user’s entry. The server does not

check values of operational attributes.

153 / 213

Attribute Description

ds-pwp-attribute-value-check-

substrings

Whether this password validator is to

match portions of the password string
against attribute values.

When false, the server checks whether
the entire password matches any user

attribute values. When true, the server
checks whether the password contains

any user attribute values.

Consider the case of Babs Jensen (uid:

bjensen) changing her password. The
following table describes the effects of

the settings:

Setting New

Password

Password

Modificati

on Result

ds-pwp-

attribute

-value-

check-

substring

s: false

bjense Success

ds-pwp-

attribute

-value-

check-

substring

s: false

bjensen Failure: 19
(Constraint

Violation)

ds-pwp-

attribute

-value-

check-

substring

s: false

bjensens Success

154 / 213

Attribute Description

Setting New

Password

Password

Modificati

on Result

ds-pwp-

attribute

-value-

check-

substring

s: true

bjense Success

ds-pwp-

attribute

-value-

check-

substring

s: true

bjensen Failure: 19
(Constraint

Violation)

ds-pwp-

attribute

-value-

check-

substring

s: true

bjensens Failure: 19
(Constraint

Violation)

In summary:

bjense is allowed in both cases

because the password does not
contain any of the attribute values in

Babs’s entry.

bjensen is rejected in both cases

because the password exactly
matches and contains Babs’s user ID.

bjensens is allowed when the
setting is false because the password

does not exactly match, and rejected
when the setting is true because the

password contains Babs’s user ID.

Default: false.

155 / 213

Attribute Description

ds-pwp-attribute-value-min-

substring-length

The minimal length of the substring

within the password when substring
checking is enabled.

Default: 0.

ds-pwp-character-set-validator Attributes

Attribute Description

ds-pwp-character-set-allow-

unclassified-characters

Whether this password validator allows

passwords to contain characters outside
of any of the user-defined character sets

and ranges.

Default: false.

ds-pwp-character-set-min-

character-sets

Minimum number of character sets and
ranges that a password must contain.

Use in conjunction with optional
character sets and ranges (those

requiring zero characters). The value
must include any mandatory character

sets and ranges (those requiring greater
than zero characters). This is useful in

situations where a password must
contain characters from mandatory

character sets and ranges, and characters
from at least N optional character sets

and ranges. For example, it is quite
common to require that a password

contains at least one non-alphanumeric
character as well as characters from two

alphanumeric character sets (lower-case,
upper-case, digits). In this case, this

property should be set to 3.

156 / 213

Attribute Description

ds-pwp-character-set-character-

set

A character set containing characters that

a password may contain, and a value
indicating the minimum number of

characters required from that set.

Each value must be an integer (indicating

the minimum required characters from
the set which may be zero, indicating that

the character set is optional) followed by
a colon and the characters to include in

that set. For example,
3:abcdefghijklmnopqrstuvwxyz

indicates that a user password must
contain at least three characters from the

set of lowercase ASCII letters.

Multiple character sets can be defined in

separate values, although no character
can appear in more than one character

set.

ds-pwp-character-set-character-

set-ranges

A character range containing characters

that a password may contain, and a value
indicating the minimum number of

characters required from that range.
Each value must be an integer (indicating

the minimum required characters from
the range which may be zero, indicating

that the character range is optional)
followed by a colon and one or more

range specifications.

A range specification is 3 characters: the

first character allowed, a minus, and the
last character allowed. For example,

3:A-Za-z0-9 . The ranges in each value
should not overlap, and the characters in

each range specification should be
ordered.

ds-pwp-dictionary-validator Attributes

Attribute Description

157 / 213

Attribute Description

ds-pwp-dictionary-data (required) A gzipped password dictionary, one word
per line.

This is a single-valued attribute.

ds-pwp-dictionary-case-sensitive-

validation

Whether this password validator should

treat password characters in a case-
sensitive manner.

Default: false.

ds-pwp-dictionary-check-

substrings

Whether this password validator is to

match portions of the password string
against dictionary words.

Default: false (match only the entire
password against dictionary words).

ds-pwp-dictionary-min-substring-

length

The minimal length of the substring
within the password in case substring

checking is enabled.

Default: 0.

ds-pwp-dictionary-test-reversed-

password

Whether this password validator should
test the reversed value of the provided

password as well as the order in which it
was given.

Default: false.

ds-pwp-length-based-validator Attributes

Attribute Description

ds-pwp-length-based-max-password-

length

Minimum plaintext password length.

Default: 0 (undefined).

ds-pwp-length-based-min-password-

length

Minimum plaintext password length.

Default: 6.

ds-pwp-repeated-characters-validator Attributes

Attribute Description

158 / 213

Attribute Description

ds-pwp-repeated-characters-max-

consecutive-length

The maximum number of times that any
character can appear consecutively in a

password value.

Default: 0 (no maximum limit is

enforced).

ds-pwp-repeated-characters-case-

sensitive-validation

Whether this password validator should

treat password characters in a case-
sensitive manner.

Default: false.

ds-pwp-similarity-based-validator Attributes

Attribute Description

ds-pwp-similarity-based-min-

password-difference

The minimum difference the new and old

password.

The implementation uses the

Levenshtein Distance algorithm to
determine the minimum number of

changes (where a change may be
inserting, deleting, or replacing a

character) to transform one string into
the other. It can prevent users from

making only minor changes to their
current password when setting a new

password. Note that for this password
validator to be effective, it must have

access to the user’s current password.
Therefore, if this password validator is to

be enabled, also set ds-pwp-password-
change-requires-current-password:

true .

Default: 0 (no difference between

passwords is acceptable).

ds-pwp-unique-characters-validator Attributes

Attribute Description

159 / 213

Attribute Description

ds-pwp-unique-characters-case-

sensitive-validation

Whether this password validator should
treat password characters in a case-

sensitive manner.

Default: false.

ds-pwp-unique-characters-min-

unique-characters

The minimum number of unique
characters that a password will be

allowed to contain.

Default: 0 (no minimum value is

enforced).

ds-pwp-random-generator Attributes

Attribute Description

ds-pwp-random-password-character-

set (required)

Named character sets. The format of the

character set is the name of the set
followed by a colon and the characters

that are in that set. For example, the
value

alpha:abcdefghijklmnopqrstuvwxyz

defines a character set named alpha

containing all of the lower-case ASCII
alphabetic characters.

ds-pwp-random-password-format

(required)
The format to use for the generated
password. The value is a comma-

delimited list of elements in which each
of those elements is comprised of the

name of a character set defined in the
password-character-set property, a colon,

and the number of characters to include
from that set. For example, a value of

alpha:3,numeric:2,alpha:3

generates an 8-character password in

which the first three characters are from
the alpha set, the next two are from the

numeric set, and the final three are
from the alpha set.

Interoperable Subentry Password Policies

160 / 213

DS servers support the Internet-Draft, Password Policy for LDAP Directories (version

09). The password policies are expressed as LDAP subentries with objectClass:
pwdPolicy . An Internet-Draft password policy effectively overrides settings in the

default per-server password policy for users, inheriting settings that it does not support
or does not include from the per-server password policy.

The following table describes Internet-Draft policy attributes:

pwdPolicy Attributes

Attribute Description

pwdAttribute (required) The attribute type used to hold user

passwords.

pwdAllowUserChange Whether users can change their

passwords.

Default: true.

pwdExpireWarning Maximum number of seconds before a
user’s password actually expires that the

server begins to include warning
notifications in bind responses for that

user.

Default: 432000 seconds.

pwdFailureCountInterval Length of time before an authentication
failure is no longer counted against a

user for the purposes of account lockout.

Default: 0 seconds (never expire).

pwdGraceAuthNLimit Number of grace logins that a user is
allowed after the account has expired so

the user can update their password.

Default: 0 (disabled).

pwdInHistory Maximum number of former passwords
to maintain in the password history.

Default: 0 (disabled).



https://tools.ietf.org/html/draft-behera-ldap-password-policy-09
https://tools.ietf.org/html/draft-behera-ldap-password-policy-09
https://tools.ietf.org/html/draft-behera-ldap-password-policy-09

161 / 213

Attribute Description

pwdLockoutDuration Number of seconds that an account is

locked after too many authentication
failures.

Default: 0 seconds (account remains
locked indefinitely).

pwdMaxAge Maximum number of seconds that a user
can continue using the same password

before it must be changed (the password
expiration interval).

Default: 0 seconds (disabled).

pwdMaxFailure Maximum number of authentication

failures that a user is allowed before the
account is locked out.

Default: 0.

pwdMinAge Minimum number of seconds after a

password change before the user is
allowed to change the password again.

Default: 0 seconds (disabled).

pwdMustChange Whether users are forced to change their

passwords after password reset by an
administrator.

Default: false.

pwdSafeModify Whether user password changes must

use the password modify extended
operation, and must include the user’s

current password before the change is
allowed.

Default: false.

The following table lists Internet-Draft policy attributes that override the per-server

policy properties:

Internet-Draft Policy Attribute Overrides This Server Policy Property

pwdAllowUserChange allow-user-password-changes

162 / 213

Internet-Draft Policy Attribute Overrides This Server Policy Property

pwdMustChange force-change-on-reset

pwdGraceAuthNLimit grace-login-count

pwdLockoutDuration lockout-duration

pwdMaxFailure lockout-failure-count

pwdFailureCountInterval lockout-failure-expiration-

interval

pwdMaxAge max-password-age

pwdMinAge min-password-age

pwdAttribute password-attribute

pwdSafeModify password-change-requires-current-

password

pwdExpireWarning password-expiration-warning-

interval

pwdInHistory password-history-count

DS servers ignore the following Internet-Draft password policy attributes:

pwdCheckQuality , because DS servers have password validators.

pwdMinLength , because you can use a length-based password validator instead.

pwdLockout , because DS servers use other lockout-related password policy
attributes.

Internet-Draft based password policies inherit these settings from the default per-server
policy for users:

account-status-notification-handlers

allow-expired-password-changes

allow-multiple-password-values

allow-pre-encoded-passwords

default-password-storage-schemes

deprecated-password-storage-schemes

expire-passwords-without-warning

force-change-on-add

163 / 213

idle-lockout-interval

last-login-time-attribute

last-login-time-format

max-password-reset-age

password-generator

password-history-duration

password-validators

previous-last-login-time-formats

require-change-by-time

require-secure-authentication

require-secure-password-changes

skip-validation-for-administrators

state-update-failure-policy

The server setup process creates one directory superuser account. The directory

superuser has unrestricted access to manage the directory service and data.

For any directory service with more than one administrator, one account is not enough.

Instead, grant appropriate access to each administrator, based on their duties.

Only the directory superuser should have all the default access and privileges of that

account. Directory service administrators should have limited access, as outlined in the
following table:

Tasks Required Access and Privileges

Install and upgrade

servers

Access to file system.

Access to run server commands.

Delegate administration Access to write administration-related attributes on

others' entries.

DS server privileges: config-read , config-write ,

modify-acl , privilege-change .

Administrative Roles

Administrative Access

(1) (2)

164 / 213

Tasks Required Access and Privileges

Manage server processes

(start, restart, stop)

Access to run the start-ds and stop-ds commands.

DS server privileges: server-restart , server-
shutdown .

Manage changes to server
configuration, including

global and default settings

Access to read and write to cn=config , cn=schema ,
and potentially other administrative DNs, such as

cn=tasks .

DS server privileges: config-read , config-write ,

modify-acl (for global ACIs), update-schema .

Manage containers for

user data, including
backends and indexes

File system access for backup data and exported LDIF.

Access to create entries under cn=tasks .

DS server privileges: backend-backup , backend-

restore , config-read , config-write , ldif-
export , ldif-import , modify-acl (for ACIs in user

data), subentry-write .

Manage changes to server

schemas

Access to write to cn=schema .

File system access to add schema files.

DS server privilege: update-schema .

Manage directory server
data replication

File system access to read logs/replication .

Access to read and write to cn=admin data , if any

password policies configure a reversible password
storage scheme.

Access to run the dsrepl command.

DS server privileges: changelog-read , config-read ,

data-sync .

Monitor the directory

service

Access to read cn=monitor .

DS server privileges: monitor-read , jmx-notify ,
jmx-read , jmx-write (the last three being useful

when using JMX for monitoring).

(1) (2)

165 / 213

Tasks Required Access and Privileges

Back up and restore

directory data

File system access for backup data and exported LDIF.

Access to create entries under cn=tasks .

DS server privileges: backend-backup , backend-

restore , ldif-export , ldif-import .

Troubleshoot problems

with the directory service

File system access to read log messages.

Write access to create entries under cn=tasks .

Access to read cn=monitor .

DS server privileges: bypass-lockdown , cancel-
request , config-read , config-write (to enable

debug logging, for example), disconnect-client ,
monitor-read , server-lockdown .

 Access control is covered in Access Control.

 Privileges are covered in Administrative Privileges.

Directory data administrators should have limited access, as outlined in the following
table:

Tasks Required Access and Privileges

Manage changes to users, groups, and

other accounts for their organizations

Access to read and write to others'

entries.

Delegate administration within their

organizations

Access to write administration-related

attributes on others' entries.

DS server privileges: modify-acl ,

privilege-change .

Update administrative user data, such as

subentry password policies and access
controls

Access to write administration-related

attributes on others' entries.

DS server privileges: modify-acl ,

subentry-write .

(1) (2)

(1)

(2)

(1) (2)

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

166 / 213

Tasks Required Access and Privileges

Help users who are locked out, or have

forgotten or lost their password

Access to use the manage-account

command.

Access to request a password modify

extended operation.

Access to update passwords on user

entries.

DS server privilege: password-reset .

Assist users and application developers
who access the directory service

Access to read (and potentially write to)
others' entries.

If performing operations on behalf of
other users, access to request proxied

authorization.

DS server privilege: proxied-auth .

 Access control is covered in Access Control.

 Privileges are covered in Administrative Privileges.

The following steps replace the directory superuser account:

1. Create an administrator account that duplicates the default directory

superuser account.

(1) (2)

(1)

(2)

Administrative Accounts

Limit use of the uid=admin superuser account.

To bootstrap the system, the default directory superuser account is not subject to
access control. It has privileges to perform almost every administrative operation,

including increasing its own privileges.

Treat this account as you would the UNIX root account, or the Windows

Administrator account. Use it only when you must.

TIP

Use a Non-Default Superuser Account

Show details

file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

167 / 213

The default administrator account is uid=admin . It is stored in its own

backend, rootUser . The rootUser LDIF backend holds the file
db/rootUser.ldif .

The following example shows the LDIF for an alternative directory superuser:

dn: uid=altadmin

objectClass: top

objectClass: person

objectClass: organizationalPerson

objectClass: inetOrgPerson

cn: Alternative Superuser

givenName: Alternative

sn: Superuser

ds-rlim-size-limit: 0

ds-rlim-time-limit: 0

ds-rlim-idle-time-limit: 0

ds-rlim-lookthrough-limit: 0

ds-rlim-cursor-entry-limit: 100000

ds-pwp-password-policy-dn: cn=Root Password

Policy,cn=Password Policies,cn=config

ds-privilege-name: bypass-lockdown

ds-privilege-name: bypass-acl

ds-privilege-name: modify-acl

ds-privilege-name: config-read

ds-privilege-name: config-write

ds-privilege-name: ldif-import

ds-privilege-name: ldif-export

ds-privilege-name: backend-backup

ds-privilege-name: backend-restore

ds-privilege-name: server-lockdown

ds-privilege-name: server-shutdown

ds-privilege-name: server-restart

ds-privilege-name: disconnect-client

ds-privilege-name: cancel-request

ds-privilege-name: password-reset

ds-privilege-name: update-schema

ds-privilege-name: privilege-change

ds-privilege-name: unindexed-search

ds-privilege-name: subentry-write

ds-privilege-name: changelog-read

ds-privilege-name: monitor-read

uid: altadmin

userPassword: password

168 / 213

Do not use altadmin , since it shows up here in the documentation.

2. Create a private backend to store the new directory superuser account.

The following example creates an LDIF backend to store the entry. Before

creating the backend, create a separate directory to hold the backend files:

3. Import the new directory superuser entry into the new backend:

4. Remove the backend database and the unused LDIF files for the default
superuser account:

Show details

$ mkdir /path/to/opendj/db/altRootUser

$ dsconfig \

create-backend \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--backend-name altRootUser \

--type ldif \

--set enabled:true \

--set base-dn:uid=altadmin \

--set ldif-file:db/altRootUser/altRootUser.ldif \

--set is-private-backend:true \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Show details

$ import-ldif \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--backendID altRootUser \

--ldifFile /tmp/alt-root.ldif \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin

Show details

169 / 213

In this example, uid=altadmin now has the same rights as the original
superuser.

5. Repeat these steps for other DS servers.

The account is not replicated by default.

You can assign access and privileges to any directory account:

1. Adjust the resource limits to as needed.

For details, see Resource Limits.

2. Assign any necessary administrative privileges.

For details, see Administrative Privileges.

3. Add any necessary ACIs.

For details, see Access Control.

Privileges provide access control for server administration independently from ACIs. The
default directory superuser, uid=admin , is granted the privileges marked with an

asterisk (*):

$ dsconfig \

delete-backend \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--backend-name rootUser \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

$ rm -rf /path/to/opendj/db/rootUser

Make Users Administrators

Administrative Privileges

file:///home/pptruser/Downloads/build/site/ds/maintenance-guide/resource-limits.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/access.html

170 / 213

Privilege Description

backend-backup * Request a task to back up data, or to purge backup files.

backend-

restore *

Request a task to restore data from backup.

bypass-acl * Perform operations without regard to ACIs.

bypass-

lockdown *
Perform operations without regard to lockdown mode.

cancel-request * Cancel any client request.

changelog-read * Read the changelog (under cn=changelog).

config-read * Read the server configuration.

config-write * Change the server configuration.

data-sync Perform data synchronization.

disconnect-

client *

Close any client connection.

jmx-notify Subscribe to JMX notifications.

jmx-read Read JMX attribute values.

jmx-write Write JMX attribute values.

ldif-export * Export data to LDIF.

ldif-import * Import data from LDIF.

modify-acl * Change ACIs.

monitor-read * Read metrics under cn=monitor , /metrics/api ,

/metrics/prometheus , and over JMX.

password-reset * Reset other users' passwords.

privilege-

change *
Change the privileges assigned to users, including their own
privileges.

proxied-auth Use the LDAP proxied authorization control.

server-

lockdown *

Put the server into and take the server out of lockdown mode.

171 / 213

Privilege Description

server-restart * Request a task to restart the server.

server-

shutdown *
Request a task to stop the server.

subentry-write * Perform LDAP subentry write operations.

unindexed-

search *

Search using a filter with no corresponding index.

update-schema * Change LDAP schema definitions.

Specify privileges as values of the ds-privilege-name operational attribute:

1. Determine the privileges to add.

Kirsten Vaughan has access to modify user entries. Kirsten lacks privileges to
read the server configuration, and reset user passwords:

Assign Individual Account Privileges

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--baseDN cn=config \

"(objectclass=*)"

The LDAP search request failed: 50 (Insufficient Access

Rights)

Additional Information: You do not have sufficient

privileges to perform search operations in the Directory

Server configuration

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

172 / 213

2. Apply the change as a user with the privilege-change privilege, and give
Kirsten access to read cn=config :

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--authzID "dn:uid=scarter,ou=People,dc=example,dc=com" \

--newPassword chngthspwd

The LDAP password modify operation failed: 50

(Insufficient Access Rights)

Additional Information: You do not have sufficient

privileges to perform

password reset operations

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=People,dc=example,dc=com

changetype: modify

add: ds-privilege-name

ds-privilege-name: config-read

ds-privilege-name: password-reset

EOF

$ dsconfig \

set-access-control-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--add "global-aci:(target=\"ldap:///cn=config\")

(targetattr=\"*||+\")\

(version 3.0; acl \"Config read for Kirsten Vaughan\";

allow (read,search,compare)\

userdn=\"ldap:///uid=kvaughan,ou=People,dc=example,dc=com\

";)" \

173 / 213

Kirsten can perform the operations now:

Use a collective attribute subentry to assign privileges to a group:

1. Create an LDAP subentry that specifies the collective attributes:

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--no-prompt

Show details

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--baseDN cn=config \

"(objectclass=*)"

dn: cn=config

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--authzID "dn:uid=scarter,ou=People,dc=example,dc=com" \

--newPassword chngthspwd

The LDAP password modify operation was successful

Assign Group Privileges

174 / 213

For details, see Collective Attributes, and About Subentry Scope.

2. The change takes effect immediately:

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: cn=Administrator Privileges,dc=example,dc=com

objectClass: collectiveAttributeSubentry

objectClass: extensibleObject

objectClass: subentry

objectClass: top

cn: Administrator Privileges

ds-privilege-name;collective: config-read

ds-privilege-name;collective: config-write

ds-privilege-name;collective: ldif-export

ds-privilege-name;collective: modify-acl

ds-privilege-name;collective: password-reset

ds-privilege-name;collective: proxied-auth

subtreeSpecification: {base "ou=people",

specificationFilter

"(isMemberOf=cn=Directory

Administrators,ou=Groups,dc=example,dc=com)" }

EOF

Show details

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=hmiller,ou=people,dc=example,dc=com" \

--bindPassword hillock \

--authzID "dn:uid=scarter,ou=People,dc=example,dc=com"

file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html
file:///home/pptruser/Downloads/build/site/ds/config-guide/collective-attrs.html#subentry-scope

175 / 213

Privileges assigned by collective attributes are inherited by every target account. To limit

effective privileges, override the privilege in the account by preceding the privilege
attribute value with a - .

This examples shows how to prevent Kirsten Vaughan from using the privilege to reset
passwords:

1. Check the privilege settings for the account:

2. Use the override to deny the privilege:

The LDAP password modify operation was successful

Generated Password: <password>

Limit Inherited Privileges

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password \

--baseDN dc=example,dc=com \

"(uid=kvaughan)" \

ds-privilege-name

dn: uid=kvaughan,ou=People,dc=example,dc=com

ds-privilege-name: config-read

ds-privilege-name: password-reset

$ ldapmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN uid=admin \

--bindPassword password << EOF

dn: uid=kvaughan,ou=people,dc=example,dc=com

176 / 213

3. The change takes effect immediately:

DS software lets you manage user and administrator accounts individually or in groups.

If the deployment calls for provisioning and workflow capabilities, or custom tools, then
consider using identity management software, such as ForgeRock Identity Management.

For details, see the IDM documentation.

Simple or local deployments might require a GUI for generic or system-specific

administrative operations. DS software’s support for standards like LDAP v3 makes it
interoperable with many third-party tools.

The DS evaluation setup profile leaves access more open, especially to sample

Example.com data. This makes it easy to demonstrate and learn features before you
fully understand access control. When deploying DS servers in production, grant only

the necessary access.

changetype: modify

add: ds-privilege-name

ds-privilege-name: -password-reset

EOF

Show details

$ ldappasswordmodify \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file

/path/to/opendj/config/keystore.pin \

--bindDN "uid=kvaughan,ou=people,dc=example,dc=com" \

--bindPassword bribery \

--authzID "dn:uid=scarter,ou=People,dc=example,dc=com"

The LDAP password modify operation failed: 50

(Insufficient Access Rights)

Additional Information: You do not have sufficient

privileges to perform

password reset operations

Identity Management

Access Control

https://backstage.forgerock.com/docs/idm/7.1

177 / 213

DS servers support two access control mechanisms, ACIs for directory servers, and

global access control policies for proxy servers.

Characteristic Access Control

Instructions (ACIs)

Global Access Control

Policies

Default for Directory Servers. Directory Proxy Servers.

Where Operational aci
attributes (replicated).

global-aci properties
(not replicated).

global-access-

control-policy entries

(not replicated).

Default access No access unless explicitly
granted.

No access unless explicitly
granted.

Level of control Very fine-grained control
that can depend on the

directory data.

Overall control that does
not require access to

directory data.

Interaction When configured, global

policies have no effect.

When configured, ACIs

have no effect.

Reference Directory Server ACIs.

DSEE Compatible Access
Control Handler.

Global Access Control

Policy.

 The bypass-acl privilege grants users access regardless of ACIs.

 In the rare event that you choose to change the type of server and the type of its

access control handler, you must stop the server and make the change with the

dsconfig --offline command.

Some operations require administrative privileges and access control. By combining
access control and privileges, you effectively restrict the scope of the privileges.

Privileges are described in Administrative Roles.

ACIs set scoped permissions which depend on what operation is requested, who
requested the operation, and how the client connected to the server.

Access Control Mechanisms

(1)

(2)

(1)

(2)

Directory Server ACIs

file:///home/pptruser/Downloads/build/site/ds/configref/objects-dsee-compat-access-control-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-dsee-compat-access-control-handler.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global-access-control-policy.html
file:///home/pptruser/Downloads/build/site/ds/configref/objects-global-access-control-policy.html
file:///home/pptruser/Downloads/build/site/ds/security-guide/admin.html

178 / 213

To let other users change ACIs, grant them the modify-acl privilege and

permission to edit aci attributes.

For examples, see Learn Access Control.

targets (version 3.0; acl "name"; permissions subjects;)

targets

The ACI applies to the target entries, attributes, controls, and extended operations.

To define multiple targets, put each target in parentheses, () . All targets must

match for the ACI to apply (AND).

name

Human-readable description of what the ACI does.

permissions

Actions to allow, and which to deny.

Paired with subjects.

subjects

Clients the permissions apply to, and the conditions under which they apply.

Paired with permissions.

Separate multiple permissions-subjects pairs with semicolons, ; . At least one must

match for the ACI to apply (OR).

Most target expressions let you use either = (target must match), or != (target must
not match):

(target [!]= "ldap:///DN")

The ACI scope is the entry with distinguished name DN, and subordinates.

Use an asterisk, * , to replace attribute types, attribute values, and entire DN
components. The following example targets

uid=bjensen,ou=People,dc=example,dc=com and cn=My

App,ou=Apps,dc=example,dc=com :

ACI Syntax

ACI Targets

(target = "ldap:///*=*,*,dc=example,dc=com")

file:///home/pptruser/Downloads/build/site/ds/getting-started/acis.html

179 / 213

The DN must be in the subtree of the entry where the ACI is defined.

If you omit target , the ACI applies to its entry.

If you omit targetscope as well, the ACI applies to its entry and all subordinates.

(targetattr [!]= "attr-list")

The ACI targets the specified attributes.

In the attr-list, separate attribute names with || .

This ACI affects its entry, or the entries specified by other targets in the ACI.

For best performance, explicitly list attributes. Use an asterisk, * , to specify all user
attributes. Use a plus sign, \+ , to specify all operational attributes.

A negated attr-list of operational attributes matches only other operational
attributes, never any user attributes, and vice-versa.

If you omit targetattr , by default this ACI does not affect attributes.

(targetfilter [!]= "ldap-filter")

This ACI is scoped to match the ldap-filter dynamically, as in an LDAP search. The
ldap-filter can be any valid LDAP filter.

(targattrfilters = "expression")

Use this target specification when managing changes made to particular attributes.

The expression takes one of the following forms. Separate expressions with commas
(,):

op=attr1:filter1[&& attr2:filter2 ...][,op=attr3:filter3[&&

attr4:filter4 ...] ...]

The op can be either add for operations creating attributes, or del for operations
removing them.

Replace attr with an attribute type. Replace filter with an LDAP filter that corresponds
to the attr attribute type.

(targetscope = "base|onelevel|subtree|subordinate")

base refers to the entry with the ACI.

onelevel refers to immediate children.

subtree refers to the base entry and all children.

subordinate refers to all children only. If you omit targetscope , the default
is subtree .

180 / 213

(targetcontrol [!]= "alias-or-OID")

The ACI targets the LDAP control with the specified alias or object identifier alias-or-
OID. Separate multiple aliases or OIDs with || .

DS servers support the following control aliases for ACIs:

AccountUsable , AccountUsability (1.3.6.1.4.1.42.2.27.9.5.8)

ActiveDirectoryChangeNotification , AdChangeNotification
(1.2.840.113556.1.4.528)

Affinity (1.3.6.1.4.1.36733.2.1.5.2)

Assertion , LdapAssertion (1.3.6.1.1.12)

AuthorizationIdentity , AuthzId (2.16.840.1.113730.3.4.16)

Csn , ChangeNumber , ChangeSequenceNumber

(1.3.6.1.4.1.42.2.27.9.5.9)

Ecl , EclCookie , ExternalChangelogCookie (1.3.6.1.4.1.26027.1.5.4)

EffectiveRights , GetEffectiveRights (1.3.6.1.4.1.42.2.27.9.5.2)

ManageDsaIt (2.16.840.1.113730.3.4.2)

MatchedValues (1.2.826.0.1.3344810.2.3)

NoOp (1.3.6.1.4.1.4203.1.10.2)

PasswordPolicy , PwdPolicy , PwpPolicy (1.3.6.1.4.1.42.2.27.8.5.1)

PasswordQualityAdvice (1.3.6.1.4.1.36733.2.1.5.5)

PermissiveModify (1.2.840.113556.1.4.1413)

PersistentSearch , PSearch (2.16.840.1.113730.3.4.3)

PostRead (1.3.6.1.1.13.2)

PreRead (1.3.6.1.1.13.1)

ProxiedAuthV1 (2.16.840.1.113730.3.4.12)

ProxiedAuthV2 , ProxiedAuth (2.16.840.1.113730.3.4.18)

RealAttrsOnly , RealAttributesOnly (2.16.840.1.113730.3.4.17)

RelaxRules (1.3.6.1.4.1.4203.666.5.12)

ReplicationRepair (1.3.6.1.4.1.26027.1.5.2)

ServerSideSort , Sort (1.2.840.113556.1.4.473)

SimplePagedResults , PagedResults (1.2.840.113556.1.4.319)

SubEntries (1.3.6.1.4.1.4203.1.10.1)

SubtreeDelete , TreeDelete (1.2.840.113556.1.4.805)

TransactionId , TxnId (1.3.6.1.4.1.36733.2.1.5.1)

VirtualAttrsOnly , VirtualAttributesOnly
(2.16.840.1.113730.3.4.19)

181 / 213

Vlv , VirtualListView (2.16.840.1.113730.3.4.9)

To use an LDAP control, the bind DN user must have allow(read) permissions.
This target cannot be restricted to a specific subtree.

(extop [!]= "alias-or-OID")

This ACI targets the LDAP extended operation with the specified alias or object

identifier alias-or-OID. Separate multiple aliases or OIDs with || .

DS servers support the following extended operation aliases for ACIs:

Cancel (1.3.6.1.1.8)

GetConnectionId , ConnectionId (1.3.6.1.4.1.26027.1.6.2)

GetSymmetricKey , SymmetricKey (1.3.6.1.4.1.26027.1.6.3)

PasswordModify (1.3.6.1.4.1.4203.1.11.1)

PasswordPolicyState (1.3.6.1.4.1.26027.1.6.1)

StartTls (1.3.6.1.4.1.1466.20037)

WhoAmI (1.3.6.1.4.1.4203.1.11.3)

To use an LDAP extended operation, the bind DN user must have allow(read)

permissions. This target cannot be restricted to a specific subtree.

ACI permission definitions take one of the following forms:

allow(action[, action ...])

deny(action[, action ...])

The action is one of the following:

add

Entry creation, as for an LDAP add operation.

all

All permissions, except export , import , proxy .

compare

Attribute value comparison, as for an LDAP compare operation.

ACI Permissions

Avoid using deny .

Instead, explicitly allow access only as needed. What looks harmless and simple in
tests and examples can grow complicated quickly with nested ACIs.

TIP

182 / 213

delete

Entry deletion, as for an LDAP delete operation.

export

Entry export during a modify DN operation.

Despite the name, this action is unrelated to LDIF export operations.

import

Entry import during a modify DN operation.

Despite the name, this action is unrelated to LDIF import operations.

proxy

Access the ACI target using the rights of another user.

read

Read entries and attributes, or use an LDAP control or extended operation.

search

Search the ACI targets.

Combine with read to read the search results.

selfwrite

Add or delete own DN from a group.

write

Modify attributes on ACI target entries.

Subjects restrict whether the ACI applies depending on who connected, and when,
where, and how they connected.

Most target expressions allow you to use either = (condition must match), or !=
(condition must not match):

authmethod [!]= "none|simple|ssl|sasl mech"

none : ignore the authentication method.

simple : simple authentication.

ssl : certificate-based authentication over LDAPS.

sasl mech : SASL authentication, where mech is the SASL mechanism, such as

EXTERNAL , or GSSAPI .

dayofweek [!]= "day[, day…​]"

Valid days:

ACI Subjects

183 / 213

sun (Sunday)

mon (Monday)

tue (Tuesday)

wed (Wednesday)

thu (Thursday)

fri (Friday)

sat (Saturday)

dns [!]= "hostname"

Use an asterisk, * , to replace name components, as in dns = "*.example.com" .

groupdn [!]= "ldap:///DN [|| ldap:///DN …​]"

The subjects are the members of the group with the specified DN.

ip [!]= "addresses"

Valid IP addresses:

Individual IPv4 or IPv6 addresses.

Put IPv6 addresses in brackets, as in ldap://[address]/subnet-prefix ,

where /subnet-prefix is optional.

Addresses with asterisk (*) for a subnet or host number.

CIDR notation.

Forms such as 192.168.0.*+255.255.255.0 to specify subnet masks.

ssf = "strength"

The security strength factor (ssf) reflects the cipher key strength for a secure

connection.

The ssf takes an integer in the range 0-1024:

ssf = 0 : send plain text with no connection security.

ssf = 1 : configure TLS without a cipher. The server verifies integrity using

packet checksums, but all content is sent in cleartext.

ssf >= "256" : require a cipher strength of at least 256 bits.

The ssf setting can help to neutralize STRIPTLS attacks. A TLS stripping attack is a
man-in-the-middle attack. It takes advantage of the fact that the initial TLS

handshake starts on an unencrypted connection. An attacker who has control of the
network makes it appear during the handshake that TLS is not available. Client

applications may then fall back to using the connection without TLS encryption. In
this case, ACIs with ssf settings greater than 1 require encryption to grant access.

Use an appropriately high ssf setting in your ACIs, such as ssf >= "256" to
ensure secure encryption.

184 / 213

timeofday = "hhmm"

Express times, hhmm, as on a 24-hour clock.

For example, 1:15 PM is written 1315 .

userattr [!]= "attr#value"

The userattr subject specifies an attribute that must match on the bind entry and

the ACI target entry:

Use userattr [!]= "attr#value" when the bind entry and target entry have

the same attribute. The attr is a user attribute. The value is the attribute value.

The server does an internal search to get the attributes of the bind entry.

Therefore, this ACI subject does not work with operational attributes.

Use userattr [!]= ldap-url#LDAPURL" when the target entry is identified

by the LDAP URL, and the bind entry is in the subtree scope of the DN in the
LDAP URL.

Use userattr [!]= "[parent[child-level].]attr#GROUPDN" when the
bind DN is a member of the group identified by the attr of the target entry.

Use userattr [!]= "[parent[child-level].]attr#USERDN" when the bind
DN is referenced by the attr of the target entry.

The optional inheritance specification, parent[child-level]. , defines how many
levels below the target entry inherit the ACI. The child-level is a number from 0 to 9,

with 0 indicating the target entry only. Separate multiple child-level digits with
commas (,).

userdn [!]= "ldap-url+_[|| _ldap-url+ …​]"

This subject matches either a valid LDAP URL, or a special LDAP URL-like keyword

from the following list:

ldap:///all

Match authenticated users.

ldap:///anyone

Match anonymous and authenticated users.

ldap:///parent

Match when the bind DN is a parent of the ACI target.

ldap:///self

Match when the bind DN entry corresponds to ACI target.

The rules the server follows are simple:

ACI Evaluation

185 / 213

1. To determine whether an operation is allowed or denied, DS servers look in the

directory for the target of the operation. The server collects any ACI values from
that entry, and then walks up the directory tree to the base DN, collecting all ACI

values en route. It then collects global ACI values.

2. The server separates the ACI values into two lists. One list contains all the ACI values

that match the target and deny the required access. The other list contains all the
ACI values that match the target and allow the required access.

3. If the deny list contains any ACI values after this procedure, access is immediately
denied.

4. If the deny list is empty, the server processes the allow list. If the allow list contains
any ACI values, access is allowed.

5. If both lists are empty, access is denied.

Add

The ACI must allow the add permission to entries in the target. This implicitly lets
users set attributes and values.

Use targattrfilters to explicitly deny access to any values if required.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com add an

entry:

Bind

Because a bind establishes the user’s identity and derived authorizations, ACI is
irrelevant for this operation and is not checked.

To prevent authentication, disable the account instead.

Compare

The ACI must allow the compare permission to the attribute in the target entry.

Some operations require multiple permissions and involve multiple targets.

Evaluation therefore takes place multiple times.

For example, a search operation requires the search permission for each attribute

in the search filter. If applicable ACIs allow all search permissions, the server uses

read permissions to decide which attributes and values to return.

NOTE

ACI by Operation

aci: (version 3.0;acl "Add entry"; allow (add)

(userdn = "ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

186 / 213

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com compare

values against the sn attribute:

Delete

The ACI must allow the delete permission to the target entry. This implicitly lets

users delete attributes and values in the target.

Use targattrfilters to explicitly deny access to the values if required.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com delete an
entry:

Modify

The ACI must allow the write permission to attributes in the target entries. This

implicitly lets users modify all values of the target attribute.

Use targattrfilters to explicitly deny access to specific values if required.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com modify
the description attribute in an entry:

ModifyDN

If the entry is being moved to a newSuperior , the export permission must be

allowed on the target, and the import permission must be allowed on the
newSuperior entry.

The ACI must allow write permission to the attributes in the old RDN and the new
RDN. This implicitly lets users write all values of the old RDN and new RDN.

Use targattrfilters to explicitly deny access to values used if required.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com rename

entries named with the uid attribute to new locations:

aci: (targetattr = "sn")(version 3.0;acl "Compare surname";

allow (compare)

(userdn = "ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

aci: (version 3.0;acl "Delete entry"; allow (delete)

(userdn = "ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

aci: (targetattr = "description")(version 3.0; acl "Modify

description";

allow (write) (userdn =

"ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

187 / 213

Search

ACI is required to process the search filter, and to determine which attributes and
values the server returns. The search permission allows particular attributes in the

search filter. The read permission allows particular attributes to be returned.

If read permission is allowed to any attribute, the server automatically allows reads

of the objectClass attribute.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com search for

uid attributes, and read that attribute in matching entries:

Use Control or Extended Operation

The ACI must allow the read permission to the targetcontrol or extop OIDs.

For example, this ACI lets uid=bjensen,ou=People,dc=example,dc=com use the

Persistent Search request control with OID 2.16.840.1.113730.3.4.3 :

Modifying and removing global ACIs can have deleterious effects. Modifications to global
ACIs fall into the following categories:

Modification or removal is permitted.

You must test client applications when deleting the specified ACI.

Modification or removal may affect applications.

You must test client applications when modifying or deleting the specified ACI.

Modification or removal may affect applications, but is not recommended.

aci: (targetattr = "uid")(version 3.0;acl "Rename uid=

entries";

allow (write, import, export)

(userdn = "ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

aci: (targetattr = "uid")(version 3.0;acl "Search and read

uid";

allow (search, read) (userdn =

"ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

aci: (targetcontrol = "PSearch")

(version 3.0;acl "Request Persistent Search"; allow (read)

(userdn = "ldap:///uid=bjensen,ou=People,dc=example,dc=com");)

Default Global ACIs

188 / 213

You must test client applications when modifying or deleting the specified ACI.

Do not modify or delete.

Name Description ACI Definition

Anonymous extended
operation access

Anonymous and
authenticated users can

request the LDAP
extended operations that

are specified by OID or
alias. Modification or

removal may affect
applications.

(extop="Cancel||GetSy

mmetricKey||PasswordMo

dify||StartTls||WhoAmI

") (version 3.0; acl

"Anonymous extended

operation access";

allow(read)

userdn="ldap:///anyone

";)

Anonymous extended

operation access

Anonymous and

authenticated users can
request the LDAP

extended operations that
are specified by OID or

alias. Modification or
removal may affect

applications.

(targetcontrol="Asser

tion||AuthorizationIde

ntity||MatchedValues||

NoOp||PasswordPolicy||

PasswordQualityAdvice|

|PermissiveModify||Pos

tRead||PreRead||RealAt

trsOnly||SimplePagedRe

sults||TransactionId||

VirtualAttrsOnly||Vlv"

) (version 3.0; acl

"Anonymous extended

operation access";

allow(read)

userdn="ldap:///anyone

";)

Authenticated users

extended operation access

Authenticated users can

request the LDAP
extended operations that

are specified by OID or
alias. Modification or

removal may affect
applications.

(targetcontrol="Manag

eDsaIt||RelaxRules||Se

rverSideSort||SubEntri

es||SubtreeDelete")

(version 3.0; acl

"Authenticated users

extended operation

access"; allow(read)

userdn="ldap:///all";

)

189 / 213

Name Description ACI Definition

Authenticated users

extended operation access

Authenticated users can

request the LDAP
extended operations that

are specified by OID or
alias. Modification or

removal may affect
applications.

(extop="PasswordPolic

yState") (version 3.0;

acl "Authenticated

users extended

operation access";

allow(read)

userdn="ldap:///all";

)

User-Visible Monitor

Attributes

Authenticated users can

read monitoring
information if they have

the monitor read privilege.
Modification or removal

may affect applications.

(target="ldap:///cn=m

onitor")

(targetattr="*||+")

(version 3.0; acl

"User-Visible Monitor

Attributes"; allow

(read,search,compare)

userdn="ldap:///all";

)

User-Visible Root DSE
Operational Attributes

Anonymous and
authenticated users can

read attributes that
describe what the server

supports. Modification or
removal may affect

applications.

(target="ldap:///")

(targetscope="base")

(targetattr="objectCla

ss||namingContexts||su

bSchemaSubEntry||suppo

rtedAuthPasswordScheme

s||supportedControl||s

upportedExtension||sup

portedFeatures||suppor

tedLDAPVersion||suppor

tedSASLMechanisms||sup

portedTLSCiphers||supp

ortedTLSProtocols||ven

dorName||vendorVersion

||fullVendorVersion||a

live||healthy")

(version 3.0; acl

"User-Visible Root DSE

Operational

Attributes"; allow

(read,search,compare)

userdn="ldap:///anyone

";)

190 / 213

Name Description ACI Definition

User-Visible Schema

Operational Attributes

Authenticated users can

read LDAP schema
definitions. Modification or

removal may affect
applications.

(target="ldap:///cn=s

chema")

(targetscope="base")

(targetattr="objectCla

ss||attributeTypes||dI

TContentRules||dITStru

ctureRules

||ldapSyntaxes||matchi

ngRules||matchingRuleU

se||nameForms||objectC

lasses||etag||modifier

sName||modifyTimestamp

") (version 3.0; acl

"User-Visible Schema

Operational

Attributes"; allow

(read,search,compare)

userdn="ldap:///all";

)

As the number of ACIs increases, it can be difficult to understand what rights a user
actually has. The Get Effective Rights control (OID 1.3.6.1.4.1.42.2.27.9.5.2) lets

you see the rights as evaluated by the server.

By default, only users who can bypass ACIs can use the Get Effective Rights control, and

the related operational attributes, aclRights and aclRightsInfo . The following
command grant access to My App:

Effective Rights

$ dsconfig \

set-access-control-handler-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--add global-aci:\(targetcontrol=\"EffectiveRights\"\)\ \

(version\ 3.0\;acl\ \"Allow\ My\ App\ to\ get\ effective\

rights\"\;\ allow\(read\)\ userdn=\"ldap:///cn=My\

App,ou=Apps,dc=example,dc=com\"\;\) \

--add global-aci:\(targetattr=\"aclRights\|\|aclRightsInfo\"\)\

(version\ 3.0\;\ acl\ \"Allow\ My\ App\ to\ read\ effective\

191 / 213

In this example, Babs Jensen owns the LDAP group that includes people who are willing
to carpool:

When My App does the same search with the get effective rights control, and requests
the aclRights attribute, it sees the rights it has on the entry:

rights\ attributes\"\;\ allow\ \(read,search,compare\)\

userdn=\"ldap:///cn=My\ App,ou=Apps,dc=example,dc=com\"\;\) \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ ldapsearch \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "uid=bjensen,ou=people,dc=example,dc=com" \

--bindPassword hifalutin \

--baseDN "ou=Self Service,ou=Groups,dc=example,dc=com" \

"(cn=Carpoolers)"

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

objectClass: top

objectClass: groupOfNames

description: People who are willing to carpool

cn: Carpoolers

owner: uid=bjensen,ou=People,dc=example,dc=com

member: uid=bjensen,ou=People,dc=example,dc=com

$ ldapsearch \

--control effectiverights \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "cn=My App,ou=Apps,dc=example,dc=com" \

--bindPassword password \

--baseDN "ou=Self Service,ou=Groups,dc=example,dc=com" \

"(cn=Carpoolers)" \

aclRights

192 / 213

When My App requests the aclRightsInfo attribute, the server shows the ACIs that

apply:

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

aclRights;entryLevel: add:1,delete:1,read:1,write:1,proxy:1

$ ldapsearch \

--control effectiverights \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "cn=My App,ou=Apps,dc=example,dc=com" \

--bindPassword password \

--baseDN "ou=Self Service,ou=Groups,dc=example,dc=com" \

"(cn=Carpoolers)" \

aclRights \

aclRightsInfo

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

aclRights;entryLevel: add:1,delete:1,read:1,write:1,proxy:1

aclRightsInfo;logs;entryLevel;add: acl_summary(main): access

allowed(add) on entry/attr(cn=Carpoolers,ou=Self

Service,ou=Groups,dc=example,dc=com, NULL) to (cn=My

App,ou=Apps,dc=example,dc=com) (not proxied) (reason: evaluated

allow , deciding_aci: Proxied authorization for apps)

aclRightsInfo;logs;entryLevel;delete: acl_summary(main): access

allowed(delete) on entry/attr(cn=Carpoolers,ou=Self

Service,ou=Groups,dc=example,dc=com, NULL) to (cn=My

App,ou=Apps,dc=example,dc=com) (not proxied) (reason: evaluated

allow , deciding_aci: Proxied authorization for apps)

aclRightsInfo;logs;entryLevel;proxy: acl_summary(main): access

allowed(proxy) on entry/attr(cn=Carpoolers,ou=Self

Service,ou=Groups,dc=example,dc=com, NULL) to (cn=My

App,ou=Apps,dc=example,dc=com) (not proxied) (reason: evaluated

allow , deciding_aci: Proxied authorization for apps)

aclRightsInfo;logs;entryLevel;read: acl_summary(main): access

allowed(read) on entry/attr(cn=Carpoolers,ou=Self

Service,ou=Groups,dc=example,dc=com, objectClass) to (cn=My

App,ou=Apps,dc=example,dc=com) (not proxied) (reason: evaluated

allow , deciding_aci: Anonymous read and search access)

aclRightsInfo;logs;entryLevel;write: acl_summary(main): access

allowed(write) on entry/attr(cn=Carpoolers,ou=Self

Service,ou=Groups,dc=example,dc=com, NULL) to (cn=My

193 / 213

To request effective rights for another user, use the --getEffectiveRightsAuthzid

option. This option takes the authorization identity of the user as an argument. The
following example shows My App checking Babs’s rights to the same entry:

The following example checks anonymous user rights to the same entry. Notice that the
authorization identity for an anonymous user is expressed as the empty DN:

App,ou=Apps,dc=example,dc=com) (not proxied) (reason: evaluated

allow , deciding_aci: Proxied authorization for apps)

$ ldapsearch \

--getEffectiveRightsAuthzid

"dn:uid=bjensen,ou=People,dc=example,dc=com" \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "cn=My App,ou=Apps,dc=example,dc=com" \

--bindPassword password \

--baseDN "ou=Self Service,ou=groups,dc=example,dc=com" \

"(cn=Carpoolers)" \

aclRights

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

aclRights;entryLevel: add:0,delete:1,read:1,write:0,proxy:0

$ ldapsearch \

--getEffectiveRightsAuthzid "dn:" \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "cn=My App,ou=Apps,dc=example,dc=com" \

--bindPassword password \

--baseDN "ou=Self Service,ou=groups,dc=example,dc=com" \

"(cn=Carpoolers)" \

aclRights

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

aclRights;entryLevel: add:0,delete:0,read:1,write:0,proxy:0

194 / 213

To check access to a potentially nonexistent attribute, use the --

getEffectiveRightsAttribute option. This option takes a comma-separated
attribute list as an argument. The following example checks Andy Hall’s access to the

member attribute for the Carpooler’s group entry:

By default, a policy matches all entries, all types of connection, and all users. You set the

properties of the policy to restrict its scope of application.

Global access control policies can allow the following:

Requests for specified LDAP controls and extended operations.

Access to specific attributes, with support for wildcards, @objectclass notation, and

exceptions to simplify settings.

Read access (for read, search, and compare operations).

Write access (for add, delete, modify, and modify DN operations).

Requiring authentication before other requests.

Requests targeting a particular scope, with wildcards to simplify settings.

Requests originating or not from specific client addresses or domains.

Requests using a specified protocol.

$ ldapsearch \

--getEffectiveRightsAuthzid

"dn:uid=ahall,ou=People,dc=example,dc=com" \

--getEffectiveRightsAttribute member \

--hostname localhost \

--port 1636 \

--useSsl \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--bindDN "cn=My App,ou=Apps,dc=example,dc=com" \

--bindPassword password \

--baseDN "ou=Self Service,ou=groups,dc=example,dc=com" \

"cn=Carpoolers" \

aclRights

dn: cn=Carpoolers,ou=Self Service,ou=Groups,dc=example,dc=com

aclRights;entryLevel: add:0,delete:0,read:1,write:0,proxy:0

aclRights;attributeLevel;member:

search:1,read:1,compare:1,write:0,selfwrite-add:1,selfwrite-

delete:1,proxy:0

Proxy Global Policies

195 / 213

Requests using a specified port.

Requests using a minimum security strength factor.

Requests from a user whose DN does or does not match a DN pattern.

Access control rules are defined using individual access control policy entries. A user’s
access is defined as the union of all access control rules that apply to that user. In other

words, an individual access control rule can only grant additional access and can not
remove rights granted by another rule. This approach results in an access control policy

which is easier to understand and audit, since all rules can be understood in isolation.

Default Global Policies

196 / 213

Policy Settings

Anonymous extended operation and
control access

authentication-required

false

allowed-extended-operation

Cancel

GetSymmetricKey

PasswordModify

StartTLS

WhoAmI

allowed-control

Assertion

MatchedValues

NoOp

PasswordQualityAdvice

PermissiveModify

PostRead

PreRead

RealAttrsOnly

SimplePagedResults

VirtualAttrsOnly

AuthorizationIdentity

PasswordPolicy

TransactionId

Vlv

197 / 213

Policy Settings

Authenticated extended operation and

control access

authentication-required

true

allowed-extended-operation

PasswordPolicyState

allowed-control

ManageDsaIt

SubEntries

RelaxRules

SubtreeDelete

ServerSideSort

Schema access authentication-required

true

request-target-dn-equal-to

cn=schema

permission

read

allowed-attribute

objectClass

@subschema

etag

ldapSyntaxes

modifiersName

modifyTimestamp

198 / 213

Policy Settings

Root DSE access authentication-required

false

request-target-dn-equal-to

""

permission

read

allowed-attribute

objectClass

namingContexts

subSchemaSubEntry

supportedAuthPasswordScheme

s

supportedControl

supportedExtension

supportedFeatures

supportedLDAPVersion

supportedSASLMechanisms

supportedTLSCiphers

supportedTLSProtocols

vendorName

vendorVersion

fullVendorVersion

alive

healthy

199 / 213

Policy Settings

Monitor access authentication-required

true

request-target-dn-equal-to

cn=monitor

permission

read

allowed-attribute

*

+

The following example uses a single broad policy for authenticated access, and another
narrow policy for anonymous extended operation access:

Reject Unauthenticated Requests

Show commands

$ dsconfig \

create-global-access-control-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Authenticated access all entries" \

--set authentication-required:true \

--set request-target-dn-not-equal-to:"**,cn=changelog" \

--set permission:read \

--set allowed-attribute:"*" \

--set allowed-attribute:createTimestamp \

--set allowed-attribute:creatorsName \

--set allowed-attribute:entryDN \

--set allowed-attribute:entryUUID \

--set allowed-attribute:etag \

--set allowed-attribute:governingStructureRule \

--set allowed-attribute:hasSubordinates \

--set allowed-attribute:isMemberOf \

--set allowed-attribute:modifiersName \

--set allowed-attribute:modifyTimestamp \

--set allowed-attribute:numSubordinates \

--set allowed-attribute:structuralObjectClass \

200 / 213

--set allowed-attribute:subschemaSubentry \

--set allowed-attribute-exception:authPassword \

--set allowed-attribute-exception:userPassword \

--set allowed-attribute-exception:debugSearchIndex \

--set allowed-attribute-exception:@changeLogEntry \

--set allowed-control:Assertion \

--set allowed-control:AuthorizationIdentity \

--set allowed-control:Csn \

--set allowed-control:ManageDsaIt \

--set allowed-control:MatchedValues \

--set allowed-control:Noop \

--set allowed-control:PasswordPolicy \

--set allowed-control:PermissiveModify \

--set allowed-control:PostRead \

--set allowed-control:PreRead \

--set allowed-control:ProxiedAuthV2 \

--set allowed-control:RealAttributesOnly \

--set allowed-control:ServerSideSort \

--set allowed-control:SimplePagedResults \

--set allowed-control:TransactionId \

--set allowed-control:VirtualAttributesOnly \

--set allowed-control:Vlv \

--set allowed-extended-operation:GetSymmetricKey \

--set allowed-extended-operation:PasswordModify \

--set allowed-extended-operation:PasswordPolicyState \

--set allowed-extended-operation:StartTls \

--set allowed-extended-operation:WhoAmI \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

create-global-access-control-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Anonymous extended operation access" \

--set authentication-required:false \

--set allowed-extended-operation:GetSymmetricKey \

--set allowed-extended-operation:StartTls \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

201 / 213

The following example creates a policy with a minimum security strength factor of 128.

This effectively permits only secure connections for requests targeting data in

dc=example,dc=com . The security strength factor defines the key strength for GSSAPI,

SSL, and TLS:

The following example allows anonymous requests from clients in the example.com
domain:

Require Secure Connections

$ dsconfig \

create-global-access-control-policy \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Require secure connections for example.com data" \

--set request-target-dn-equal-to:"**,dc=example,dc=com" \

--set request-target-dn-equal-to:dc=example,dc=com \

--set connection-minimum-ssf:128 \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Anonymous Requests From Specific Network

$ dsconfig \

set-global-access-control-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

--policy-name "Anonymous extended operation access" \

--set connection-client-address-equal-to:.example.com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

$ dsconfig \

set-global-access-control-policy-prop \

--hostname localhost \

--port 4444 \

--bindDN uid=admin \

--bindPassword password \

202 / 213

You can also use the connection-client-address-not-equal-to property to reject
requests from a particular host, domain, address, or address mask.

For additional details, see Global Access Control Policy.

DS directory servers can encrypt directory data in backend files on disk. This keeps the
data confidential until it is accessed by a directory client.

--policy-name "Root DSE access" \

--set connection-client-address-equal-to:.example.com \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin \

--no-prompt

Data Encryption

Encrypting stored directory data does not prevent it from being sent over the

network in the clear.

Use secure connections to protect data sent over the network.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ds/configref/objects-global-access-control-policy.html

203 / 213

Advantages Trade-offs

Confidentiality and integrity

Encrypted directory data is confidential,

remaining private until decrypted with a
proper key.

Encryption ensures data integrity at the
moment it is accessed. The DS directory

service cannot decrypt corrupted data.

Equality indexes limited to equality

matching

When an equality index is configured
without confidentiality, the server

maintains values in sorted order. It can
then use the cleartext equality index can

for searches that require ordering or
match initial substrings.

An example of a search that requires
ordering is a search with a filter "

(cn<=App)" . The filter matches entries
with commonName up to those starting

with App (case-insensitive) in
alphabetical order.

An example of a search that matches an
initial substring is a search with a filter "

(cn=A*)" . The filter matches entries
having a commonName that starts with a

(case-insensitive).

In an equality index with confidentiality

enabled, the server can no longer sort
the values. As a result, you must either

add indexes or accept that ordering and
initial substring searches are unindexed.

Protection on shared infrastructure

When you share the infrastructure, you

relinquish full and sole control of
directory data. For example, if the DS

directory server runs in the cloud, or in a
data center with shared disks, the file

system and disk management are not
under your control.

With encrypted data, other users cannot
read the files unless they also have the

decryption keys.

Performance impact

Encryption and decryption requires more

processing than handling plaintext
values.

Encrypted values also take up more
space than plaintext values.

To check what a system user with read access to backend database files can see, use the

backendstat dump-raw-db command. The backendstat subcommands list-raw-

204 / 213

dbs and dump-raw-db let you list and view the low-level databases within a backend.

Unlike the output of other subcommands, the output of the dump-raw-db
subcommand is neither decrypted nor formatted for readability. Instead, you can see

values as they are stored in the backend file.

In a backend database, the id2entry index holds LDIF for directory entries. For a

database that is not encrypted, the corresponding low-level database shows the
cleartext strings:

Show details

$ stop-ds

$ backendstat list-raw-dbs --backendId dsEvaluation

...

/dc=com,dc=example/id2entry

$ backendstat \

dump-raw-db \

--backendId dsEvaluation \

--dbName /dc=com,dc=example/id2entry

...

Key (len 8):

00 00 00 00 00 00 00 1E

Value (len 437):

02 00 81 B1 03 01 06 27 75 69 64 3D 62 6A 65 6E

.......'uid=bjen

73 65 6E 2C 6F 75 3D 50 65 6F 70 6C 65 2C 64 63

sen,ou=People,dc

3D 65 78 61 6D 70 6C 65 2C 64 63 3D 63 6F 6D 01

=example,dc=com.

06 11 01 08 01 13 62 6A 65 6E 73 65 6E 40 65 78

......bjensen@ex

61 6D 70 6C 65 2E 63 6F 6D 01 09 01 04 30 32 30

ample.com....020

39 01 16 01 0C 65 6E 2C 20 6B 6F 3B 71 3D 30 2E 9....en,

ko;q=0.

38 01 10 01 29 75 69 64 3D 74 72 69 67 64 65 6E

8...)uid=trigden

2C 20 6F 75 3D 50 65 6F 70 6C 65 2C 20 64 63 3D , ou=People,

dc=

65 78 61 6D 70 6C 65 2C 64 63 3D 63 6F 6D 01 04

example,dc=com..

02 13 50 72 6F 64 75 63 74 20 44 65 76 65 6C 6F ..Product

Develo

70 6D 65 6E 74 06 50 65 6F 70 6C 65 01 0B 01 07

205 / 213

Enable confidentiality to encrypt database backends. When confidentiality is enabled,

the server encrypts entries before storing them in the backend. The following command
enables backend confidentiality with the default encryption settings:

pment.People....

42 61 72 62 61 72 61 01 0C 01 0F 2B 31 20 34 30 Barbara....+1

40

38 20 35 35 35 20 31 38 36 32 01 0D 01 06 4A 65 8 555

1862....Je

6E 73 65 6E 01 07 02 0E 42 61 72 62 61 72 61 20

nsen....Barbara

4A 65 6E 73 65 6E 0B 42 61 62 73 20 4A 65 6E 73 Jensen.Babs

Jens

65 6E 01 0E 01 0D 2F 68 6F 6D 65 2F 62 6A 65 6E

en..../home/bjen

73 65 6E 01 0F 01 0F 2B 31 20 34 30 38 20 35 35 sen....+1 408

55

35 20 31 39 39 32 01 11 01 04 31 30 30 30 01 12 5

1992....1000..

01 2E 7B 53 53 48 41 7D 33 45 66 54 62 33 70 37 ..

{SSHA}3EfTb3p7

71 75 6F 75 73 4B 35 34 2B 41 4F 34 71 44 57 6C

quousK54+AO4qDWl

56 33 4F 39 54 58 48 57 49 4A 49 32 4E 41 3D 3D

V3O9TXHWIJI2NA==

01 13 01 04 31 30 37 36 01 05 01 14 4F 72 69 67

....1076....Orig

69 6E 61 6C 20 64 65 73 63 72 69 70 74 69 6F 6E inal

description

01 14 01 07 62 6A 65 6E 73 65 6E 01 15 01 0D 53

....bjensen....S

61 6E 20 46 72 61 6E 63 69 73 63 6F 01 01 02 01 an

Francisco....

24 38 38 37 37 33 32 65 38 2D 33 64 62 32 2D 33 $887732e8-

3db2-3

31 62 62 2D 62 33 32 39 2D 32 30 63 64 36 66 63 1bb-b329-

20cd6fc

65 63 63 30 35 ecc05

$ dsconfig \

set-backend-prop \

--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--bindPassword password \

206 / 213

After confidentiality is enabled, the server encrypts entries only when it next writes them.
The server does not automatically rewrite all entries in encrypted form. Instead, it

encrypts each entry the next time it is updated, or when you re-import data from LDIF.

To see the impact of backend encryption, import the data and view the results, as in the

following example:

--backend-name dsEvaluation \

--set confidentiality-enabled:true \

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

Show details

$ stop-ds

$ export-ldif \

--offline \

--backendId dsEvaluation \

--includeBranch dc=example,dc=com \

--ldifFile backup.ldif

$ import-ldif \

--offline \

--backendId dsEvaluation \

--includeBranch dc=example,dc=com \

--ldifFile backup.ldif

$ backendstat \

dump-raw-db \

--backendId dsEvaluation \

--dbName /dc=com,dc=example/id2entry

...

Key (len 8):

00 00 00 00 00 00 00 C2

Value (len 437):

02 02 81 82 01 C4 95 87 5B A5 2E 47 97 80 23 F4

[..G..#.

CE 5D 93 25 97 D4 13 F9 0A A3 A8 31 9A D9 7A 70

.].%.......1..zp

FE 3E AC 9D 64 41 EB 7B D5 7F 7E B8 B7 74 52 B8 .>..dA.{.^?

~..tR.

C7 7F C8 79 19 46 7D C5 5D 5B 83 9C 5B 9F 85 28 .^?.y.F}.][..

[..(

83 A2 5F A0 C1 B1 09 FC 2F E3 D8 82 4A AA 8B D9

207 / 213

.._...../...J...

78 43 34 50 AE A1 52 88 5B 70 97 D2 E1 EA 87 CA xC4P..R.

[p......

3B 4D 07 DC F9 F8 30 BB D2 76 51 C8 75 FF FA 80

;M....0..vQ.u...

77 E1 6A 8B 5B 8F DA A4 F4 0B B5 20 56 B3 19 19 w.j.[......

V...

22 D8 9D 38 04 E3 4D 94 A7 99 4B 81 16 AD 88 46

"..8..M...K....F

FC 3F 7E 78 66 B8 D1 E9 86 A0 F3 AC B6 68 0D A9 .?

~xf........h..

9A A7 3C 30 40 37 97 4E 90 DD 63 16 8E 11 0F 5E ..

<0@7.N..c....^

9D 5B 86 90 AF 4E E2 1F 9E 70 73 14 0A 11 5C DB .

[...N...ps...\.

B7 BC B8 A9 31 3F 74 8D 0A 9F F4 6C E1 B0 36 78 1?

t....l..6x

F0 5A 5E CD 7C B3 A2 36 66 8E 88 86 A0 8B 9A 77

.Z^.|..6f......w

D5 CD 7E 9C 4E 62 20 0E D0 DB AD E7 7E 99 46 4F ..~.Nb

.....~.FO

67 C7 A6 7E 2C 24 82 50 51 9F A7 B2 02 44 5B 30

g..~,$.PQ....D[0

74 41 99 D9 83 69 EF AE 2E C0 FF C4 E6 4F F2 2F

tA...i.......O./

95 FB 93 65 30 2A 2D 8D 20 88 83 B5 DE 35 B6 20 ...e0*-.

....5.

47 17 30 25 60 FD E3 43 B9 D6 A4 F7 47 B6 6C 9F

G.0%`..C....G.l.

47 FD 63 8E 7F A5 00 CE 6C 3E BC 95 23 69 ED D0

G.c.^?...l>..#i..

69 4F BE 61 BD 30 C2 40 66 F6 F9 C3 3E C1 D7 8C

iO.a.0.@f...>...

B0 C8 4A 2E 27 BE 13 6C 40 88 B0 13 A3 12 F4 50

..J.'..l@......P

CA 92 D8 EB 4A E5 3F E2 64 A3 76 C7 5C 2B D8 89

....J.?.d.v.\+..

A3 6E C1 F7 0A C2 37 7A BD AF 14 4B 52 04 6B F2

.n....7z...KR.k.

8F 4F C3 F8 00 90 BA 0F EC 6D B1 2D A8 18 0C A6

.O.......m.-....

29 96 82 3B 5C BC D0 F4 2B BE 9C C5 8B 18 7A DE

)..;\...+.....z.

C7 B5 10 2D 45 50 4F 77 ED F7 23 34 95 AF C3 2E ...-

208 / 213

The settings for data confidentiality depend on the encryption capabilities of the JVM.

See the explanations in javax.crypto.Cipher . You can accept the default settings, or
choose to specify the following:

The cipher algorithm defining how the plaintext is encrypted and decrypted.

The cipher mode of operation defining how a block cipher algorithm transforms

data larger than a single block.

The cipher padding defining how to pad the plaintext to reach appropriate size for

the algorithm.

The cipher key length, where longer key lengths strengthen encryption at the cost of

lower performance.

The default settings for confidentiality are cipher-transformation:

AES/GCM/NoPadding , and cipher-key-length: 128 . This means the algorithm is the
Advanced Encryption Standard (AES), and the cipher mode is Galois/Counter Mode

(GCM). The syntax for the cipher-transformation is algorithm/mode/padding . You
must specify the algorithm, mode, and padding. When the algorithm does not require a

mode, use NONE . When the algorithm does not require padding, use NoPadding .

DS servers encrypt data using symmetric keys. Servers store symmetric keys, encrypted

with the shared master key, with the data they encrypt. As long as servers have the
same shared master key, any server can recover symmetric keys needed to decrypt

data.

Symmetric keys for (deprecated) reversible password storage schemes are the exception

to this rule. When you configure a reversible password storage scheme, enable the
adminRoot backend, and configure a replication domain for cn=admin data .

You can enable confidentiality by backend index, as long as confidentiality is enabled for
the backend itself. Confidentiality hashes keys for equality type indexes using SHA-1. It

encrypts the list of entries matching a substring key for substring indexes. The following
example shows how to enable confidentiality for the mail index:

EPOw..#4....

B0 9B FA E9 DF



$ dsconfig \

set-backend-index-prop \

--hostname localhost \

--port 4444 \

--bindDn uid=admin \

--bindPassword password \

--backend-name dsEvaluation \

--index-name mail \

--set confidentiality-enabled:true \

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/javax/crypto/Cipher.html

209 / 213

After changing the index configuration, rebuild the index to enforce confidentiality
immediately.

Confidentiality cannot be enabled for VLV indexes. Avoid using sensitive attributes in VLV
indexes.

When reading files for an encrypted backend database, be aware that although user
data is kept confidential, the following are not encrypted on disk:

Existing backend database files.

The server encrypts backend database content only when it is next written. If you

must make sure that all relevant data are encrypted, export the data to LDIF and
then import the data again.

The dn2id index and its keys.

Substring index keys.

Substring index values are encrypted.

Encrypting and decrypting data require cryptographic processing that reduces

throughput, and extra space for larger encrypted values. Tests with default settings
show that the cost of enabling confidentiality can be quite modest. Your results can vary

based on the host system hardware, the JVM, and the settings for cipher-
transformation and cipher-key-length . Make sure you test your deployment to

qualify the impact of confidentiality before changing settings in production.

Encourage best practices for directory clients that you control and influence.

When taking input directly from a user or another program, handle the input securely by

using appropriate methods to sanitize the data. Failure to sanitize the input data can
leave your client vulnerable to injection attacks.

For example, the DS Java APIs have Filter.format() and DN.format() methods.
Like the Java String.format() methods, these escape input objects when formatting

output.

When writing command-line or HTTP clients, make sure you sanitize the input.

--no-prompt \

--usePkcs12TrustStore /path/to/opendj/config/keystore \

--trustStorePassword:file /path/to/opendj/config/keystore.pin

Client Best Practices

Handle Input Securely

210 / 213

Use secure connections except when reading public information anonymously. Always

use secure connections when sending credentials for authentication, and when reading
or writing any data that is not public.

For LDAP clients, either connect to the directory server’s LDAPS port, or begin each
session with the StartTLS extended operation on the insecure LDAP port.

For HTTP clients, use HTTPS.

Unless your client only reads public information, authenticate to the directory server.

Use an account that is specific to your client when authenticating. This helps avoid risks

involved in sharing credentials between accounts. Furthermore, it makes debugging
easier because your client’s actions are associated with its account.

Avoid username/password credentials for clients, by certificate-based authentication.
For details, see Certificate-Based Authentication.

DS servers support OAuth 2.0 for HTTP authorization. This lets the HTTP client access

directory data without having a directory account. The directory acts as an OAuth 2.0
resource server, as described in Configure HTTP Authorization.

An OAuth 2.0 client gets authorization from the resource owner, such as the user,
device, or thing whose account it needs to access, and presents the OAuth 2.0 bearer

access token to get access to the account. Access tokens give the bearer access,
regardless of the bearer’s identity.

Send access tokens only over secure HTTPS connections to prevent eavesdroppers from
stealing the token.

DS servers support LDAP proxied authorization control. With proxied authorization, an
LDAP client binds to the directory using its own account, and sends requests with the

user authorization ID in the control. For details, see Proxied Authorization.

When the user is already safely authenticated by other means, proxied authorization

makes it easy to reuse a connection that is dedicated and bound to the client.

Use Secure Connections

Authenticate Appropriately

Consider OAuth 2.0

Consider Proxied Authorization

file:///home/pptruser/Downloads/build/site/ds/security-guide/auth.html#client-cert-auth
file:///home/pptruser/Downloads/build/site/ds/config-guide/http-access.html#setup-http-authorization
file:///home/pptruser/Downloads/build/site/ds/ldap-guide/proxied-authz.html

211 / 213

LDAP clients can set time limits and size limits on search requests. Setting limits is

appropriate when searches are partially or fully determined by user input.

You can use the DS Java APIs methods SearchRequest.setSizeLimit() and

SearchRequest.setTimeLimit() for this purpose.

The Directory Services ldapsearch command has --sizeLimit and --timeLimit
options.

In this context, validation means checking that you are building the right thing, whereas
verification means checking that you are building it in the right way.

Before you begin to write specific tests, step back to review the big picture. Do the

security requirements make sense for the directory service, and for the users of the
service?

For the directory service, aim to prevent problems caused by security threats. The
directory service must expose sensitive information only in secure ways. It must require

strong authentication credentials, and limit access.

For the users, the service must permit access from any device or application using

standard protocols and tools. The directory should protect your sensitive information
while making it easy to connect.

In refining the security requirements for the directory service, make sure there is an
appropriate balance between security and user needs. An ultimately secure directory

service is one that denies all user access. An ultimately flexible directory service is one
that relinquishes all control. The appropriate balance is somewhere in the middle.

Be aware that directory service security is only part of an overall strategy, one that aims
to help users and application developers make appropriately secure choices. In

validating the requirements, understand how the directory service fits into the overall
identity and access management strategy.

Long before you roll out the directory service, when you start to prepare server

configurations in a lab environment, begin by testing the directory’s functional

Apply Resource Limits

Tests

Requirement Validation

Functional Tests

212 / 213

capabilities. As you understand your users' requirements, reproduce what their client

applications will do in your tests. In most cases, it is not feasible to exhaustively
reproduce everything that every directory client will do. Instead, choose a representative

sample of actions. Test your expectations, both for normal and for insecure client
application and user behavior.

The goals for your functional testing are to verify compliance, to uncover problems, and
to begin automating tests early in the project. Test automation should drive you to use

version control software, and continuous integration software as well. Be ready to roll
back any change you make if a test fails, and make sure that every change is reviewed

and tested before it is pushed further along in the process.

Aim to keep the automated tests both representative and short. As you build out the

deployment and complexity grows, automated tests let you build the service with
confidence, by repeatedly iterating with small changes to fix problems, and to better

match users' expectations.

Before you apply a change to a production environment, verify the impact under

conditions as close as possible to those of the production environment.

In the test environment, the directory service should mirror production for

configuration, client application configuration and load, and directory data, including
access policies. This is the environment where end-to-end testing first takes place.

Although you might not test at a scale that is identical to production, the test
environment must remain representative. For example, when using replicas in

production, also use replicas in the pre-production test environment. When using secure
connections everywhere in production, also use them in the test environment. If you

expect many client applications accessing the production directory, and particular client
usage patterns, also simulate those in the test environment.

Automate your testing in the pre-production environment as well. Each change for the
production environment should first pass the pre-production tests. You will need to

iterate through the tests for each change.

In deployments where updates to new servers would not harm production data,

consider using canary servers. You deploy a small group of canary servers in production
that have the change. You then test and monitor these servers to compare with

unchanged servers. If the change looks good after enough testing and monitoring, you
roll out more servers with the change. If something goes wrong, you have only exposed

a small proportion of production clients to the change. Only use this when you are sure
that replication from a canary server would not corrupt any production data.

Integration Tests

Continuous Verification

213 / 213

Directory services integrate with many monitoring solutions. Access monitoring

information over HTTP, LDAP, SNMP, and JMX, and by sending Common Audit events to
local log files and remote systems for further processing.

Adapt some of your tests to verify operation of the service in production. For example, a
few end-to-end tests in production can alert you to problems early before they impact

many users.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

