
ForgeRock provides a number of resources to help you get started in the cloud. These

resources demonstrate how to deploy the Ping Identity Platform on Kubernetes.

The Ping Identity Platform serves as the basis for our simple and comprehensive identity

and access management solution. We help our customers deepen their relationships

with their customers, improve the productivity and connectivity of their employees and

partners. Learn more about ForgeOps and the Ping Identity Platform in

https://www.pingidentity.com/en/platform.html .

Ping Identity provides several resources to help you get started in the cloud. These

resources demonstrate how to deploy the Ping Identity Platform on Kubernetes. Before

you proceed, review the following precautions:

Deploying Ping Identity Platform software in a containerized environment requires

advanced proficiency in many technologies. Learn more about the required skills in

Assess Your Skill Level.

If you don’t have experience with complex Kubernetes deployments, then either

engage a certified Ping Identity Platform consulting partner or deploy the platform

on traditional architecture.

Don’t deploy Ping Identity Platform software in Kubernetes in production until you

have successfully deployed and tested the software in a non-production Kubernetes

environment.

Learn more about getting support for Ping Identity Platform software in Support for

ForgeOps.

ForgeOps documentation



Start here

IMPORTANT

1 / 248

https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html

The forgeops repository and ForgeOps documentation address a range of typical

business needs of our customers. The repository contains artifacts that let you get a

sample Ping Identity Platform deployment up and running quickly. After you get the out-

of-the-box deployment running, you can tailor it to explore how you might configure

your Kubernetes cluster before you deploy the platform in production.

ForgeOps deployments have the following characteristics:

Fully integrated AM, IDM, and DS installations

Randomly generated secrets

Multi-zone high availability

Replicated directory services

Ingress configuration

Certificate management

Prometheus monitoring, Grafana reporting, and alert management

The ForgeOps documentation helps you work with ForgeOps deployments:

Tells you how you can quickly create a Kubernetes cluster on Google Cloud, Amazon

Web Services (AWS), or Microsoft Azure, deploy the Ping Identity Platform, and and

access components in the deployment.

Contains how-tos for preparing for production deployments by customizing

monitoring, setting alerts, backing up and restoring directory data, modifying the

default security configuration, and running lightweight benchmarks to test DS, AM,

and IDM performance.

Tells you how to modify the AM and IDM configurations in ForgeOps deployments

and create customized Docker images for the Ping Identity Platform.

Keeps you up-to-date with the latest changes to the forgeops repository.

Ping Identity only offers its software or services to legal entities that have entered

into a binding license agreement with Ping Identity. When you install Docker images

provided by ForgeOps, you agree either that: 1) you are an authorized user of a

Ping Identity Platform customer that has entered into a license agreement with Ping

Identity governing your use of the Ping Identity software; or 2) your use of the Ping

Identity Platform software is subject to the Ping Identity Subscription Agreements

.

IMPORTANT



Introducing ForgeOps deployments



[1]

[1]

[2]

[1]

Try an out-of-the-box ForgeOps deployment

2 / 248

https://github.com/ForgeRock/forgeops.git
https://github.com/ForgeRock/forgeops.git
https://github.com/ForgeRock/forgeops.git
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/rn/rn.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html

Before you start planning a production deployment, perform a ForgeOps deployment

without any customizations. If you’re new to Kubernetes, or new to the Ping Identity

Platform, it’s a great way to learn, and you’ll have a sandbox suitable for exploring the

Ping Identity Platform in a cloud environment.

Perform a ForgeOps deployment on Google Cloud, AWS, or Microsoft Azure to quickly

spin up the platform for demonstration purposes. You’ll get a feel for what it’s like to

deploy the platform on a Kubernetes cluster in the cloud. When you’re done, you’ll have

a robust starter deployment that you can use to test deployment customizations that

you’ll need for your production environment. Examples of deployment customizations

include, but are not limited to:

Running lightweight benchmark tests

Making backups of data and restoring the data

Securing TLS with a certificate that’s dynamically obtained from Let’s Encrypt

Using an ingress controller other than the Ingress-NGINX controller

Resizing the cluster to meet your business requirements

Configuring Alert Manager to issue alerts when usage thresholds have been

reached

Prerequisite technologies and skills:

Git

Google Cloud, AWS, or Azure

Kubernetes, running on Google Cloud, AWS, or Azure

More information:

Setup overview

Build your own service

3 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-git
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-cdm-cloud-provider
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-cdk-kubernetes
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html

Perform the following activities to customize, deploy, and maintain a production Ping

Identity Platform implementation in the cloud:

After you’ve spent some time exploring a ForgeOps deployment, you’re ready to define

requirements for your production deployment. Remember, an out-of-the-box ForgeOps

deployment is not a production deployment. Use out-of-the-box ForgeOps deployments to

explore deployment customizations. Then, incorporate the lessons you’ve learned as

you build your own production service.

Analyze your business requirements and define how the Ping Identity Platform needs to

be configured to meet your needs. Identify systems to be integrated with the platform,

such as identity databases and applications, and plan to perform those integrations.

Assess and specify your deployment infrastructure requirements, such as backup,

system monitoring, Git repository management, CI/CD, quality assurance, security, and

load testing.

Be sure to do the following when you transition to a production environment:

Obtain and use certificates from an established certificate authority.

Create and test your backup plan.

Use a working production-ready FQDN.

Implement monitoring and alerting utilities.

Prerequisite technologies and skills:

Project planning and management

Git

Docker

Create a project plan

4 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-proj-plan
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-git
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-docker

Google Cloud, AWS, or Azure

Kubernetes, running on Google Cloud, AWS, or Azure

Ping Identity Platform

Applications and databases that you plan to integrate with Ping Identity Platform

CI/CD for a production deployment in the cloud

Integration testing

Deployment hardening and security

Benchmarking and load testing

Site reliability

More information:

All the ForgeOps documentation

With your project plan defined, you’re ready to configure the Ping Identity Platform to

meet the plan’s requirements. Install single-instance ForgeOps deployments on your

developers' computers. Configure AM and IDM. If needed, include integrations with

external applications in the configuration. Iteratively unit test your configuration as you

modify it. Build customized Docker images that contain the configuration.

Prerequisite technologies and skills:

Ping Identity Platform

Git

Kubernetes, running on Google Cloud, AWS, or Azure

Docker

More information:

Customization overview

Configure the platform

Configure your cluster

5 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-cloud-provider
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-kubernetes
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-platform
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-integration
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-cicd
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-integration-test
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-security
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-benchmarking
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-sr
file:///home/pptruser/Downloads/build/site/forgeops/index.html
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-platform
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-git
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-kubernetes
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-docker
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html

With your project plan defined, you’re ready to configure a Kubernetes cluster that

meets the requirements defined in the plan. Install the platform using the customized

Docker images developed in Configure the platform. Provision the identity repository

with users, groups, and other identity data. Load test your deployment, and then size

your cluster to meet service level agreements. Perform integration tests. Harden your

deployment. Set up CI/CD for your deployment. Create monitoring alerts so that your

site reliability engineers are notified when the system reaches thresholds that affect

your SLAs. Implement database backup and test database restore. Simulate failures

while under load to make sure your deployment can handle them.

Prerequisite technologies and skills:

Google Cloud, AWS, or Azure

Git

Kubernetes, running on Google Cloud, AWS, or Azure

Ping Identity Platform

CI/CD for a production deployment in the cloud

Integration testing

Deployment hardening and security

Kubernetes backup and restore

Benchmarking and load testing

Site reliability

More information:

Prepare to deploy in production

Setup overview

Stay up and running

6 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-cloud-provider
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-git
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-kubernetes
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-platform
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-cicd
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-integration-test
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-security
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-kubernetes-backup
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-benchmarking
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-sr
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html

By now, you’ve configured the platform, configured a Kubernetes cluster, and deployed

the platform with your customized configuration. Run your Ping Identity Platform

deployment in your cluster, continually monitoring it for performance and reliability.

Take backups as needed.

Prerequisite technologies and skills:

Git

Google Cloud, AWS, or Azure

Kubernetes, running on Google Cloud, AWS, or Azure

Ping Identity Platform

CI/CD for a production deployment in the cloud

Kubernetes backup and restore

Site reliability

More information:

Prepare to deploy in production

I can:

Write performance tests, using tools such as Gatling and Apache JMeter, to ensure

that the system meets required performance thresholds and service level

agreements (SLAs).

Resize a Kubernetes cluster, taking into account performance test results,

thresholds, and SLAs.

Run Linux performance monitoring utilities, such as top.

I have experience:

Designing and implementing a CI/CD process for a cloud-based deployment running

in production.

Assess your skill level

Benchmarking and load testing

CI/CD for cloud deployments

7 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-git
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-cloud-provider
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-prod-kubernetes
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-platform
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-cicd
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-kubernetes-backup
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here-skills.html#skills-sr
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html

Using a cloud CI/CD tool, such as Tekton, Google Cloud Build, Codefresh, AWS

CloudFormation, or Jenkins, to implement a CI/CD process for a cloud-based

deployment running in production.

Integrating GitOps into a CI/CD process.

I know how to:

Write Dockerfiles.

Create Docker images, and push them to a private Docker registry.

Pull and run images from a private Docker registry.

I understand:

The concepts of Docker layers, and building images based on other Docker images

using the FROM instruction.

The difference between the COPY and ADD instructions in a Dockerfile.

I know how to:

Use a Git repository collaboration framework, such as GitHub, GitLab, or Bitbucket

Server.

Perform common Git operations, such as cloning and forking repositories,

branching, committing changes, submitting pull requests, merging, viewing logs,

and so forth.

I have expertise in:

AM policy agents.

Configuring AM policies.

Synchronizing and reconciling identity data using IDM.

Managing cloud databases.

Connecting Ping Identity Platform components to cloud databases.

I have:

Docker

Git

External application and database integration

Ping Identity Platform

8 / 248

Attended Ping Identity University training courses.

Deployed the Ping Identity Platform in production, and kept the deployment highly

available.

Configured DS replication.

Passed the Certified Access and Identity Management exams from Ping Identity

(highly recommended).

I can:

Use the graphical user interface for Google Cloud, AWS, or Azure to navigate,

browse, create, and remove Kubernetes clusters.

Use the cloud provider’s tools to monitor a Kubernetes cluster.

Use the command user interface for Google Cloud, AWS, or Azure.

Administer cloud storage.

In addition to the basic skills for Google Cloud, AWS, or Azure, I can

Review Terraform artifacts in the forgeops-extras repository to see how clusters

that support ForgeOps deployments are configured.

Create and manage a Kubernetes cluster using an infrastructure-as-code tool such

as Terraform, AWS CloudFormation, or Pulumi.

Configure multi-zone and multi-region Kubernetes clusters.

Configure cloud-provider identity and access management (IAM).

Configure virtual private clouds (VPCs) and VPC networking.

Manage keys in the cloud using a service such as Google Key Management Service

(KMS), Amazon KMS, or Azure Key Vault.

Configure and manage DNS domains on Google Cloud, AWS, or Azure.

Troubleshoot a deployment running in the cloud using the cloud provider’s tools,

such as Google Stackdriver, Amazon CloudWatch, or Azure Monitor.

Integrate a deployment with certificate management tools, such as cert-manager

and Let’s Encrypt.

Integrate a deployment with monitoring and alerting tools, such as Prometheus and

Alertmanager.

I have obtained one of the following certifications (highly recommended):

Google Certified Associate Cloud Engineer Certification.

Google Cloud, AWS, or Azure (basic)

Google Cloud, AWS, or Azure (expert)

9 / 248

AWS professional-level or associate-level certifications (multiple).

Azure Administrator.

I can:

Automate QA testing using a test automation framework.

Design a chaos engineering test for a cloud-based deployment running in

production.

Use chaos engineering testing tools, such as Chaos Monkey.

I’ve gone through the tutorials at kubernetes.io, and am able to:

Use the kubectl command to determine the status of all the pods in a namespace,

and to determine whether pods are operational.

Use the kubectl describe pod command to perform basic troubleshooting on

pods that are not operational.

Use the kubectl command to obtain information about namespaces, secrets,

deployments, and stateful sets.

Use the kubectl command to manage persistent volumes and persistent volume

claims.

In addition to the basic skills for Kubernetes, I have:

Configured role-based access to cloud resources.

Configured Kubernetes objects, such as deployments and stateful sets.

Configured Kubernetes ingresses.

Configured Kubernetes resources using Kustomize.

Passed the Cloud Native Certified Kubernetes Administrator exam (highly

recommended).

I know how to:

Schedule backups of Kubernetes persistent volumes on volume snapshots.

Restore Kubernetes persistent volumes from volume snapshots.

Integration testing

Kubernetes (basic)

Kubernetes (expert)

Kubernetes backup and restore

10 / 248

I have experience with one or more of the following:

Volume snapshots on Google Kubernetes Engine (GKE), Amazon Elastic Kubernetes

Service (EKS), or Azure Kubernetes Service (AKS)

A third-party Kubernetes backup and restore product, such as Velero, Kasten K10,

TrilioVault, Commvault, or Portworx PX-Backup.

I have planned and managed:

A production deployment in the cloud.

A production deployment of Ping Identity Platform.

I can:

Harden a Ping Identity Platform deployment.

Configure TLS, including mutual TLS, for a multi-tiered cloud deployment.

Configure cloud identity and access management and role-based access control for

a production deployment.

Configure encryption for a cloud deployment.

Configure Kubernetes network security policies.

Configure private Kubernetes networks, deploying bastion servers as needed.

Undertake threat modeling exercises.

Scan Docker images to ensure container security.

Configure and use private Docker container registries.

I can:

Manage multi-zone and multi-region deployments.

Implement DS backup and restore in order to recover from a database failure.

Manage cloud disk availability issues.

Analyze monitoring output and alerts, and respond should a failure occur.

Obtain logs from all the software components in my deployment.

Follow the cloud provider’s recommendations for patching and upgrading software

in my deployment.

Project planning and management for cloud deployments

Security and hardening for cloud deployments

Site reliability engineering for cloud deployments

11 / 248

Implement an upgrade scheme, such as blue/green or rolling upgrades, in my

deployment.

Create a Site Reliability Runbook for the deployment, documenting all the

procedures to be followed and other relevant information.

Follow all the procedures in the project’s Site Reliability Runbook, and revise the

runbook if it becomes out-of-date.

This appendix contains information about support options for ForgeOps deployments

and the Ping Identity Platform.

The Ping Identity ForgeOps team has developed artifacts in the forgeops and

forgeops-extras Git repositories for deploying the Ping Identity Platform in the cloud.

The companion ForgeOps documentation provides examples to help you get started.

These artifacts and documentation are provided on an as-is basis. Ping Identity doesn’t

guarantee the individual success developers may have in implementing the code on

their development platforms or in production configurations.

ForgeOps product support lifecycle policy is described here .

Ping Identity only offers its software or services to legal entities that have entered into a

binding license agreement with Ping Identity. When you install Docker images provided

by ForgeOps, you agree either that: 1) you are an authorized user of a Ping Identity

Platform customer that has entered into a license agreement with Ping Identity

governing your use of the Ping Identity software; or 2) your use of the Ping Identity

Platform software is subject to the Ping Identity Subscription Agreements .

Ping Identity provides support for the following resources:

Docker images provided by the ForgeOps team.

Artifacts in the forgeops Git repository:

Files used to build Docker images for the Ping Identity Platform:

Dockerfiles

Scripts and configuration files incorporated into the Docker images

provided by ForgeOps

Support for ForgeOps

ForgeOps support







Licensing



Support



12 / 248

https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
file:///home/pptruser/Downloads/build/site/forgeops/index.html
https://support.pingidentity.com/s/article/Ping-Identity-Product-Support-Lifecycle-Policy-ForgeOps#3sEZRU
https://support.pingidentity.com/s/article/Ping-Identity-Product-Support-Lifecycle-Policy-ForgeOps#3sEZRU
https://support.pingidentity.com/s/article/Ping-Identity-Product-Support-Lifecycle-Policy-ForgeOps#3sEZRU
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1

Canonical configuration profiles for the platform

Helm charts

Kustomize bases and overlays

ForgeOps Documentation

For more information about support for specific directories and files in the forgeops

repository, refer to the forgeops repository reference.

Ping Identity provides support for the Ping Identity Platform. For supported

components, containers, and Java versions, refer to the following:

PingAM Release Notes

PingIDM Release Notes

PingDS Release Notes

PingGateway Release Notes

Ping Identity provides no support for the following:

Artifacts in the forgeops-extras repository. For more information about support

for specific directories and files in the forgeops-extras repository, refer to the

forgeops-extras repository reference.

Artifacts other than Dockerfiles, Helm charts, Kustomize bases, and Kustomize

overlays in the forgeops Git repository. Examples include scripts, example

configurations, and so forth.

Infrastructure outside Ping Identity. Examples include Docker, Kubernetes, Google

Cloud Platform, Amazon Web Services, Microsoft Azure, and so forth.

Software outside Ping Identity. Examples include Java, Apache Tomcat, NGINX,

Apache HTTP Server, Certificate Manager, Prometheus, and so forth.

Deployments that deviate from the published ForgeOps architecture. Deployments

that do not include the following architectural features are not supported:

PingAM and PingIDM are integrated and deployed together in a Kubernetes

cluster.

PingIDM login is integrated with PingAM.

PingAM uses PingDS as its data repository.

PingIDM uses PingDS as its repository.

Ping Identity publishes Docker images for testing and development. For production

deployments, it is recommended that customers build and run containers using a

supported operating system , required software dependencies, and their

customized platform component configurations.

Support limitations







13 / 248

file:///home/pptruser/Downloads/build/site/forgeops/index.html
file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-reference
https://backstage.forgerock.com/docs/am/latest/release-notes/preface.html
https://backstage.forgerock.com/docs/idm/7.5/release-notes/preface.html
https://backstage.forgerock.com/docs/ds/latest/release-notes/preface.html
https://backstage.forgerock.com/docs/ig/latest/release-notes/preface.html
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-extras-reference
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
https://backstage.forgerock.com/knowledge/kb/article/a33635135
https://backstage.forgerock.com/knowledge/kb/article/a33635135
https://backstage.forgerock.com/knowledge/kb/article/a33635135

The ForgeOps reference tools are provided for use with Google Kubernetes Engine,

Amazon Elastic Kubernetes Service, and Microsoft Azure Kubernetes Service.

Ping Identity supports running the platform on other Kubernetes platforms such as IBM

RedHat OpenShift. However, ForgeOps reference tools are not provided on these

platforms, and customers must build, maintain, and support their own tools and

configurations.

Ping Identity doesn’t support Kubernetes itself. Customers must have a support contract

in place with their Kubernetes vendor to resolve infrastructure issues. To avoid any

misunderstandings, it must be clear that Ping Identity cannot troubleshoot underlying

Kubernetes issues.

Modifications to ForgeOps deployment assets may be required to adapt the platform to

the customer’s Kubernetes implementation. For example, ingress routes, storage

classes, NAT gateways, etc., might need to be modified. Making the modifications

requires competency in Kubernetes and familiarity with their chosen distribution.

Ping Identity publishes comprehensive documentation online:

The Knowledge Base offers a large and increasing number of up-to-date, practical

articles that help you deploy and manage Ping Identity Platform software.

While many articles are visible to community members, Ping Identity customers

have access to much more, including advanced information for customers using

Ping Identity Platform software in a mission-critical capacity.

The developer documentation, such as this site, aims to be technically accurate with

respect to the sample that is documented. It is visible to everyone.

If you are a named customer Support Contact, contact Ping Identity using the Customer

Support Portal to request information or report a problem with Dockerfiles, Helm

charts, Kustomize bases, or Kustomize overlays in the forgeops repository.

When requesting help with a problem, include the following information:

Description of the problem, including when the problem occurs and its impact on

your operation.

Steps to reproduce the problem.

Third-party Kubernetes services

Documentation access



Problem reports and information requests



14 / 248

https://backstage.forgerock.com/knowledge/kb
https://backstage.forgerock.com/knowledge/kb
https://backstage.forgerock.com/knowledge/kb
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/

If the problem occurs on a Kubernetes system other than Minikube, GKE, EKS, or

AKS, we might ask you to reproduce the problem on one of those.

HTML output from the debug-logs command. For more information, refer to

Kubernetes logs and other diagnostics.

ForgeOps greatly appreciates suggestions for fixes and enhancements to ForgeOps-

provided artifacts in the forgeops and forgeops-extras repositories.

If you would like to report a problem with or make an enhancement request for an

artifact in either repository, create a GitHub issue in the repository.

Ping Identity provides support services, professional services, training through Ping

Identity training, and partner services to assist you in setting up and maintaining your

deployments. For a general overview of these services, refer to

https://www.pingidentity.com/en/platform.html .

Ping Identity has staff members around the globe who support our international

customers and partners. Learn more about Ping Identity’s support offering, including

support plans and service-level agreements (SLAs) in the Ping Identity Platform support

page .

The ForgeOps project provides two public GitHub repositories; the forgeops and

forgeops-extras repositories.

This page provides a high-level overview of the two repositories.

The forgeops repository contains files needed for customizing and deploying the

Ping Identity Platform on a Kubernetes cluster:

Files used to build Docker images for the Ping Identity Platform:

Dockerfiles

Scripts and configuration files incorporated into ForgeOps-provided Docker

images

Canonical configuration profiles for the platform

Helm charts

Suggestions for fixes and enhancements to artifacts

 

Contact information





Repositories

forgeops repository



15 / 248

file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/pods.html
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops/tree/2025.1.1
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/
https://support.pingidentity.com/s/
https://github.com/ForgeRock/forgeops.git
https://github.com/ForgeRock/forgeops.git
https://github.com/ForgeRock/forgeops.git

Kustomize bases and overlays

In addition, the repository contains utility scripts and sample files. The scripts and

samples are useful for:

Performing ForgeOps deployments quickly and easily

Exploring monitoring, alerts, and security customization

Learn more about the files in the repository, recommendations about how to work with

them, and the support status for the files in the forgeops repository reference.

New forgeops repository features become available in the 2025.1.1 tag of the main

branch from time to time.

When you start working with the forgeops repository, clone the repository. Depending

on your organization’s setup, you’ll clone the repository either from the public repository

on GitHub, or from a fork. You can find more information in Git clone or Git fork?.

Then, check out the 2025.1.1 tag of the main branch and create a working branch.

For example:

The ForgeOps team recommends that you regularly incorporate updates to the

2025.1.1 tag into your working branch:

1. Get emails or subscribe to the ForgeOps RSS feed to be notified when there have

been updates to ForgeOps 2025.1.1.

2. Pull new commits in the 2025.1.1 tag of the main branch into your clone’s

2025.1.1 branch.

3. Rebase the commits from the new branch into your working branch in your

forgeops repository clone.

It’s important to understand the impact of rebasing changes from the forgeops

repository into your branches. forgeops repository reference provides advice about

which files in the forgeops repository to change, which files not to change, and what to

look out for when you rebase. Follow the advice in forgeops repository reference to

reduce merge conflicts, and to better understand how to resolve them when you rebase

Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



forgeops repository updates

$ git checkout 2025.1.1

$ git checkout -b my-working-branch

16 / 248

file:///home/pptruser/Downloads/build/site/forgeops/rn/rn.html
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

your working branch with updates that the ForgeOps team has made to the 2025.1.1

tag of the main branch.

For more information about support for the forgeops repository, see Support for

ForgeOps.

bin

Example scripts you can use or model for a variety of deployment tasks.

Recommendation: Don’t modify the files in this directory. If you want to add your own

scripts to the forgeops repository, create a subdirectory under bin, and store your

scripts there.

Support Status: Sample files. Not supported by Ping Identity.

charts

Helm charts.

Recommendation: Don’t modify the files in this directory. If you want to update a

values.yaml file, create your deployment environment using the forgeops env

command, and edit values.yaml files in the new environment you created. Learn more

in forgeops:reference:forgeops-cmd-ref.adoc#_commandforgeops_env.

Support Status: Supported is available from Ping Identity.

cluster

Artifacts to configure third-party software, such as cert-manager, HAProxy, NGINX,

Prometheus, and so on. It also contains storage class definition files.

Recommendation: Don’t modify the files in this directory.

Support Status: Sample file. Not supported by Ping Identity.

docker

Contains three types of files needed to build Docker images for the Ping Identity

Platform: Dockerfiles, support files that go into Docker images, and configuration

profiles.

Dockerfile

Common deployment customizations require modifications to the Dockerfile in the

docker directory.

Recommendation: Expect to encounter merge conflicts when you rebase changes from

ForgeOps into your branches. Be sure to track changes you’ve made to Dockerfiles, so

that you’re prepared to resolve merge conflicts after a rebase.

forgeops repository reference

Directories

17 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#_commandforgeops_env
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support

Support Status: Dockerfiles. Support is available from Ping Identity.

Support Files Referenced by Dockerfiles

When customizing the default ForgeOps deployments, you might need to add files to the

docker directory. For example, to customize the AM WAR file, you might need to add

plugin JAR files, user interface customization files, or image files.

Recommendation: If you only add new files to the docker directory, you should not

encounter merge conflicts when you rebase changes from ForgeOps into your branches.

However, if you need to modify any files from ForgeOps, you might encounter merge

conflicts. Be sure to track changes you’ve made to any files in the docker directory, so

that you’re prepared to resolve merge conflicts after a rebase.

Support Status:

Scripts and other files from ForgeOps that are incorporated into Docker images for the

Ping Identity Platform: Support is available from Ping Identity.

User customizations that are incorporated into custom Docker images for the Ping

Identity Platform: Support is not available from Ping Identity.

Configuration Profiles

The starter configuration profiles provided with ForgeOps. To create your own

configuration profiles, use the forgeops config command in your ForgeOps

deployment environment. Add your own configuration profiles to the docker directory

using the export command. Don’t modify the internal-use only idm-only and ig-

only configuration profiles provided by ForgeOps.

Recommendation: You should not encounter merge conflicts when you rebase changes

from ForgeOps into your branches.

Support Status: Configuration profiles. Support is available from Ping Identity.

etc

Files used to support ForgeOps deployments.

Recommendation: Don’t modify the files in this directory (or its subdirectories).

Support Status: Sample files. Not supported by Ping Identity.

helm

Helm values files for each client environment (env) for use with Helm charts. The Helm

values files are created and managed by the forgeops env command.

Files in each ForgeOps deployment environment

File Description

18 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support

File Description

env.log Log of forgeops env runs.

values.yaml Configuration of components in ForgeOps deployment using

Helm.

values-images.yaml Docker image used in ForgeOps deployment.

values-ingress.yaml Ingress configuration, such as FQDN.

values-size.yaml Component size information such as number of replicas, cpu,

and memory

Support Status: Environment specific files. Support is available from ForgeRock.

how-tos

Description and usage of various utilities provided with ForgeOps.

Recommendation: Don’t change these files.

Support Status: Description files. Support is available from ForgeRock.

intezer

For ForgeRock internal use only. Don’t modify or use.

jenkins-scripts

For ForgeRock internal use only. Don’t modify or use.

kustomize

Artifacts for orchestrating the Ping Identity Platform using Kustomize.

Recommendation: Common deployment customizations, such as changing the

deployment namespace and providing a customized FQDN, require modifications to files

in the kustomize/overlay directory. Be sure to track changes you’ve made to the files

in the kustomize directory, so that you’re prepared to resolve merge conflicts after a

rebase.

Support Status: Kustomize bases and overlays. Support is available from Ping Identity.

legacy-docs

Documentation for performing ForgeOps deployments using older versions. Includes

documentation for supported and deprecated versions of the forgeops repository.

Recommendation: Don’t modify the files in this directory.

Support Status:

19 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support

Documentation for supported versions of the forgeops repository: Support is available

from Ping Identity.

Documentation for deprecated versions of the forgeops repository: Not supported by

Ping Identity.

lib

Python and shell library files used internally. Don’t modify.

releases

For ForgeRock internal use only. Don’t modify or use.

.gcloudignore, .gitchangelog.rc, .gitignore, forgeops.conf.example

For ForgeOps internal use only. Don’t modify.

LICENSE

Software license for artifacts in the forgeops repository. Don’t modify.

Makefile

For ForgeOps internal use only. Don’t modify.

notifications.json

For ForgeOps internal use only. Don’t modify.

README.md

The top-level forgeops repository README file. Don’t modify.

Use the forgeops-extras repository to create sample Kubernetes clusters in which you

can deploy the Ping Identity Platform.

For more information about support for the forgeops-extras repository, see Support

for ForgeOps.

terraform

Example Terraform artifacts that automate cluster creation and deletion.

Recommendation: Don’t modify the files in this directory. If you want to add your own

cluster creation support files to the forgeops repository, copy the terraform.tfvars

file to a new file and make changes there.

Support Status: Sample files. Not supported by Ping Identity.

Files in the top-level directory

forgeops-extras repository



forgeops-extras repository reference

Directories

20 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
https://github.com/ForgeRock/forgeops-extras
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html#commercial-support

For the simplest use cases—a single user in an organization performing a ForgeOps

deployment for a proof of concept, or exploration of the platform—cloning the

ForgeOps public repositories from GitHub provides a quick and adequate way to access

the repositories.

If, however, your use case is more complex, you might want to fork the repositories, and

use the forks as your common upstream repositories. For example:

Multiple users in your organization need to access a common version of the

repository and share changes made by other users.

Your organization plans to incorporate forgeops and forgeops-extras

repository changes from ForgeOps.

Your organization wants to use pull requests when making repository updates.

If you’ve forked the forgeops and forgeops-extras repositories:

You’ll need to synchronize your forks with ForgeOps repositories on GitHub when

ForgeOps releases new branches.

Your users will need to clone your forks before they start working instead of cloning

the public repositories from GitHub. Because procedures in the documentation tell

users to clone the public repositories, you’ll need to make sure your users follow

different procedures to clone the forks instead.

The steps to initially get and update your repository clones will differ from the steps

provided in the documentation. You’ll need to let users know how to work with the

forks as the upstream repositories instead of following the steps in the

documentation.

Before performing a ForgeOps deployment, you must perform some setup tasks in your

local computer, create a Kubernetes cluster (or have access to an existing cluster), and

configure your local machine to access the cluster.

The specific tasks you’ll need to do vary depending on the platform on which you run

Kubernetes:

Git clone or Git fork?

Setup overview


Google Cloud


AWS

21 / 248

file:///home/pptruser/Downloads/build/site/forgeops/google-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/aws.html

Before you can perform a ForgeOps deployment on a Kubernetes cluster running on

Google Cloud, you must complete these prerequisite tasks:

Clone the forgeops and forgeops-extras repositories

Install third-party software on your local computer

Start a virtual machine that runs Docker engine on your local computer

Set up a Google Cloud project that meets the requirements for ForgeOps

deployments

Create a Kubernetes cluster in the project

Set up your local computer to access the cluster’s ingress controller

Get the forgeops and forgeops-extras repositories:

1. Clone the repositories. For example:

Set up your local

computer to deploy

ForgeOps on Google

Cloud.

Set up your local

computer to deploy

ForgeOps on AWS.



Set up your local

computer to deploy

ForgeOps on Azure.

Azure



Set up your local

computer to deploy

ForgeOps on Minikube.

Minikube

Google Cloud

forgeops and forgeops-extras repositories

Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



$ git clone https://github.com/ForgeRock/forgeops.git

$ git clone https://github.com/ForgeRock/forgeops-extras.git

22 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/google-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/google-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/aws.html
file:///home/pptruser/Downloads/build/site/forgeops/aws.html
file:///home/pptruser/Downloads/build/site/forgeops/azure.html
file:///home/pptruser/Downloads/build/site/forgeops/minikube.html
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

Both repositories are public; you do not need credentials to clone them.

2. Check out the forgeops repository’s 2025.1.1 tag:

Depending on your organization’s repository strategy, you might need to clone the

repository from a fork. You might also need to create a working branch from the

2025.1.1 tag of your fork. Learn more about Repository Updates here.

3. Check out the forgeops-extras repository’s main branch:

Before performing a ForgeOps deployment, obtain third-party software and install it on

your local computer.

ForgeOps team recommends that you install third-party software using Homebrew on

macOS and Linux .

The versions listed in the following table have been validated for ForgeOps deployments

on Google Cloud. Earlier and later versions will probably work. If you want to try using

versions that are not in the table, it is your responsibility to validate them.

Install the following third-party software:

Software Version Homebrew package

Python 3 3.11.11 python@3.11

Bash 5.2.37 bash

Docker client 27.3.1 docker

Kubernetes client

(kubectl)

1.31.3 kubernetes-cli

Kubernetes context

switcher (kubectx)

0.9.5 kubectx

Kustomize 5.5.0 kustomize

Helm 3.16.3 helm

$ cd /path/to/forgeops

$ git checkout 2025.1.1

$ cd /path/to/forgeops-extras

$ git checkout main

Third-party software



[3]

23 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-updates
https://brew.sh/
https://brew.sh/
https://brew.sh/

Software Version Homebrew package

JSON processor jq 1.7.1 jq

Terraform 1.5.7 terraform

Six (Python compatibility

library)

1.17.0 six

Setup tools (Python) 75.6.0 python-setuptools

Google Cloud SDK 451.0.1 google-cloud-sdk (cask)

The new forgeops utility is built on Python3. Some of the Python3 packages used by

forgeops have to be installed using pip . To separate such Python3 specific packages,

Python recommends the use of the venv Python virtual environment. Learn more

about Python venv in venv - Virtual environments .

1. Create a venv for using the forgeops utility.

2. Set up Python3 dependencies for forgeops utility.

In addition to the software listed in the preceding table, you’ll need to start a virtual

machine that runs Docker engine.

On macOS systems, use Docker Desktop or an alternative, such as Colima .

On Linux systems, use Docker Desktop for Linux , install Docker machine from

your Linux distribution, or use an alternative, such as Colima .

For more information about using Colima when performing ForgeOps deployments,

refer to this article .

The default configuration for a Docker virtual machine provides adequate resources for

a ForgeOps deployment.

[3]

Python venv



$ python3 -m venv .venv

$ source .venv/bin/activate

$ /path/to/forgeops/bin/forgeops configure

Docker engine

 







24 / 248

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2

ForgeOps deployments are supported on macOS and Linux. If you have a Windows

computer, you’ll need to create a Linux VM. We tested the following configurations:

Hypervisor: Hyper-V, VMWare Player, or VMWare Workstation

Guest OS: Current Ubuntu LTS release with 12 GB memory and 60 GB disk space

Nested virtualization enabled in the Linux VM.

Perform all the procedures in this documentation within the Linux VM. In this

documentation, the local computer refers to the Linux VM for Windows users.

Perform these steps to set up a Google Cloud project that meets the requirements for

ForgeOps deployments:

1. Log in to the Google Cloud Console and create a new project.

2. Authenticate to the Google Cloud SDK to obtain the permissions you’ll need to

create a cluster:

a. Configure the gcloud CLI to use your Google account. Run the following

command:

b. A browser window appears, prompting you to select a Google account. Select

the account you want to use for cluster creation.

A second screen requests several permissions. Select Allow.

A third screen should appear with the heading, You are now authenticated

with the gcloud CLI!

3. Assign the following roles to users who will be creating Kubernetes clusters and

performing ForgeOps deployments:

Editor

Kubernetes Engine Admin

Kubernetes Engine Cluster Admin

For users running Microsoft Windows

The Minikube implementation on Windows Subsystem for Linux (WSL2) has

networking issues. As a result, consistent access to the ingress controller or the

apps deployed on Minikube is not possible. This issue is tracked here . Do not

attempt to perform ForgeOps deployments on WSL2 until this issue is resolved.

IMPORTANT



Google Cloud project setup

$ gcloud auth application-default login

25 / 248

https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879

Project IAM Admin

Remember, a ForgeOps deployment is a reference implementation, and is not for

production use. The roles you assign in this step are suitable for ForgeOps

deployments. When you create a project plan, you’ll need to determine which

Google Cloud roles are required.

ForgeOps provides Terraform artifacts for GKE cluster creation. Use them to create a

cluster that supports ForgeOps deployments. After performing a ForgeOps deployment,

you can use your cluster as a sandbox to explore Ping Identity Platform customization.

When you create a project plan, you’ll need to identify your organization’s preferred

infrastructure-as-code solution, and, if necessary, create your own cluster creation

automation scripts.

Here are the steps the ForgeOps team follows to create a Kubernetes cluster on GKE:

1. Copy the file that contains default Terraform variables to a new file:

a. Change to the /path/to/forgeops-extras/terraform directory.

b. Copy the terraform.tfvars file to override.auto.tfvars .

Copying the terraform.tfvars file to a new file preserves the original content in

the file.

2. Determine the deployment size: small, medium, or large.

3. Define your cluster’s configuration:

a. Open the override.auto.tfvars file.

b. Determine the location of your cluster’s configuration in the

override.auto.tfvars file:

Cluster size Section containing the cluster configuration

Small cluster.tf_cluster_gke_small

Medium cluster.tf_cluster_gke_medium

Large cluster.tf_cluster_gke_large

c. Modify your cluster’s configuration by setting values in the section listed in the

table:

i. Set the value of the enabled variable to true .

ii. Set the value of the auth.project_id variable to your new Google Cloud

project. Specify the project ID, not the project name.

Kubernetes cluster creation

[4]

26 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes

iii. Set the value of the meta.cluster_name variable to the name of the GKE

cluster you’ll create.

iv. Set the values of the location.region and location.zones variables

to the region and zones where perform your ForgeOps deployment.

Before continuing, go to Google’s Regions and Zones page and verify

that the zones you have specified are available in your region you

specified.

d. Save and close the override.auto.tfvars file.

4. Ensure your region has an adequate CPU quota for a ForgeOps deployment.

Locate these two variables in your cluster’s configuration in the

override.auto.tfvars file:

node_pool.type : the machine type to be used in your cluster

node_pool.max_count : the maximum number of machines to be used in your

cluster

Your quotas must be large enough to let you allocate the maximum number of

machines in your region. If your quotas are too low, request and wait for a quota

increase from Google Cloud before attempting to create your cluster.

5. Create a cluster using Terraform artifacts in the forgeops-extras repository:

a. Change to the directory that contains Terraform artifacts:

b. Run the tf-apply script to create your cluster:

Respond yes to the Do you want to perform these actions? prompt.

When the tf-apply script finishes, it issues a message that provides the path

to a kubeconfig file for the cluster.

The script creates:

The GKE cluster

The fast storage class

The ds-snapshot-class volume snapshot class

The script deploys:

An ingress controller

Certificate manager



$ cd /path/to/forgeops-extras/terraform

$./tf-apply

27 / 248

https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones
https://cloud.google.com/compute/docs/regions-zones

6. Set your Kubernetes context to reference the new cluster by setting the

KUBECONFIG environment variable as shown in the message from the tf-apply

command’s output.

7. To verify that the tf-apply script created the cluster, log in to the Google Cloud

console. Select the Kubernetes Engine option. The new cluster should appear in the

list of Kubernetes clusters.

Set up hostname resolution for the Ping Identity Platform servers you’ll deploy in your

namespace:

1. Get the ingress controller’s external IP address:

The ingress controller’s IP address should appear in the EXTERNAL-IP column.

There can be a short delay while the ingress starts before the IP address appears in

the kubectl get services command’s output; you might need to run the

command several times.

2. Configure hostname resolution for the ingress controller:

a. Choose an FQDN (referred to as the deployment FQDN) that you’ll use when you

deploy the Ping Identity Platform, and when you access its GUIs and REST APIs.

Some examples in this documentation use forgeops.example.com as the

deployment FQDN. You are not required to use forgeops.example.com ; you

can specify any FQDN you like.

b. If DNS doesn’t resolve your deployment FQDN, add an entry to the

/etc/hosts file that maps the ingress controller’s external IP address to the

deployment FQDN. For example:

Before you can perform a ForgeOps deployment on a Kubernetes cluster running on

AWS, you must complete these prerequisite tasks:

Hostname resolution

$ kubectl get services --namespace ingress-nginx

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

ingress-nginx-controller LoadBalancer 10.4.6.154

35.203.145.112 80:30300/TCP,443:30638/TCP 58s

ingress-nginx-controller-admission ClusterIP 10.4.4.9

<none> 443/TCP 58s

35.203.145.112 forgeops.example.com

AWS

28 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html

Clone the forgeops and forgeops-extras repositories

Install third-party software on your local computer

Start a virtual machine that runs Docker engine on your local computer

Set up your AWS environment to meet the requirements for ForgeOps deployments

Create a Kubernetes cluster in AWS

Set up your local computer to access the cluster’s ingress controller

Get the forgeops and forgeops-extras repositories:

1. Clone the repositories. For example:

Both repositories are public; you do not need credentials to clone them.

2. Check out the forgeops repository’s 2025.1.1 tag:

Depending on your organization’s repository strategy, you might need to clone the

repository from a fork. You might also need to create a working branch from the

2025.1.1 tag of your fork. Learn more about Repository Updates here.

3. Check out the forgeops-extras repository’s main branch:

Before performing a ForgeOps deployment, obtain third-party software and install it on

your local computer.

ForgeOps team recommends that you install third-party software using Homebrew on

macOS and Linux .

forgeops and forgeops-extras repositories

Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



$ git clone https://github.com/ForgeRock/forgeops.git

$ git clone https://github.com/ForgeRock/forgeops-extras.git

$ cd /path/to/forgeops

$ git checkout 2025.1.1

$ cd /path/to/forgeops-extras

$ git checkout main

Third-party software



[3]

29 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-updates
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

The versions listed in the following table have been validated for ForgeOps deployments

on Amazon Web Services. Earlier and later versions will probably work. If you want to try

using versions that are not in the table, it is your responsibility to validate them.

Install the following third-party software:

Software Version Homebrew package

Python 3 3.11.11 python@3.11

Bash 5.2.37 bash

Docker client 27.3.1 docker

Kubernetes client

(kubectl)

1.31.3 kubernetes-cli

Kubernetes context

switcher (kubectx)

0.9.5 kubectx

Kustomize 5.5.0 kustomize

Helm 3.16.3 helm

JSON processor jq 1.7.1 jq

Terraform 1.5.7 terraform

Six (Python compatibility

library)

1.17.0 six

Setup tools (Python) 75.6.0 python-setuptools

Amazon AWS Command

Line Interface

2.22.12 awscli

AWS IAM Authenticator for

Kubernetes

0.6.28 aws-iam-authenticator

The new forgeops utility is built on Python3. Some of the Python3 packages used by

forgeops have to be installed using pip . To separate such Python3 specific packages,

Python recommends the use of the venv Python virtual environment. Learn more

about Python venv in venv - Virtual environments .

1. Create a venv for using the forgeops utility.

Python venv



30 / 248

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

2. Set up Python3 dependencies for forgeops utility.

In addition to the software listed in the preceding table, you’ll need to start a virtual

machine that runs Docker engine.

On macOS systems, use Docker Desktop or an alternative, such as Colima .

On Linux systems, use Docker Desktop for Linux , install Docker machine from

your Linux distribution, or use an alternative, such as Colima .

For more information about using Colima when performing ForgeOps deployments,

refer to this article .

The default configuration for a Docker virtual machine provides adequate resources for

a ForgeOps deployment.

ForgeOps deployments are supported on macOS and Linux. If you have a Windows

computer, you’ll need to create a Linux VM. We tested the following configurations:

Hypervisor: Hyper-V, VMWare Player, or VMWare Workstation

Guest OS: Current Ubuntu LTS release with 12 GB memory and 60 GB disk space

Nested virtualization enabled in the Linux VM.

Perform all the procedures in this documentation within the Linux VM. In this

documentation, the local computer refers to the Linux VM for Windows users.

Perform these steps to set up an AWS environment that meets the requirements for

ForgeOps deployments:

$ python3 -m venv .venv

$ source .venv/bin/activate

$ /path/to/forgeops/bin/forgeops configure

Docker engine

 







For users running Microsoft Windows

The Minikube implementation on Windows Subsystem for Linux (WSL2) has

networking issues. As a result, consistent access to the ingress controller or the

apps deployed on Minikube is not possible. This issue is tracked here . Do not

attempt to perform ForgeOps deployments on WSL2 until this issue is resolved.

IMPORTANT



Setup for AWS

31 / 248

https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879

1. Create and configure an IAM group:

a. Create a group with the name forgeops-users .

b. Attach the following AWS preconfigured policies to the forgeops-users

group:

IAMUserChangePassword

IAMReadOnlyAccess

AmazonEC2FullAccess

AmazonEC2ContainerRegistryFullAccess

AWSCloudFormationFullAccess

c. Create two policies in the IAM service of your AWS account:

i. Create the EksAllAccess policy using the eks-all-access.json file in

the /path/to/forgeops/etc/aws-example-iam-policies directory.

ii. Create the IamLimitedAccess policy using the iam-limited-

access.json file in the /path/to/forgeops/etc/aws-example-iam-

policies directory.

d. Attach the policies you created to the forgeops-users group.

Remember, a ForgeOps deployment is a reference implementation, and is not

for production use. The policies you create in this procedure are suitable for

ForgeOps deployments. When you create a project plan, you’ll need to

determine how to configure AWS permissions.

e. Assign one or more AWS users who will perform ForgeOps deployments to the

forgeops-users group.

2. If you haven’t already done so, set up your aws command-line interface

environment using the aws configure command.

3. Verify that your AWS user is a member of the forgeops-users group:

$ aws iam list-groups-for-user --user-name my-user-name --

output json

{

"Groups": [

{

"Path": "/",

"GroupName": "forgeops-users",

"GroupId": "ABCDEFGHIJKLMNOPQRST",

"Arn": "arn:aws:iam::048497731163:group/forgeops-

users",

"CreateDate": "2020-03-11T21:03:17+00:00"

}

32 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning

4. Verify that you are using the correct user profile:

ForgeOps provides Terraform artifacts for Amazon EKS cluster creation. Use them to

create a cluster that supports ForgeOps deployments. After performing a ForgeOps

deployment, you can use your cluster as a sandbox to explore Ping Identity Platform

customization.

When you create a project plan, you’ll need to identify your organization’s preferred

infrastructure-as-code solution, and, if necessary, create your own cluster creation

automation scripts.

Here are the steps the ForgeOps team follows to create a Kubernetes cluster on Amazon

EKS:

1. Copy the file that contains default Terraform variables to a new file:

a. Change to the /path/to/forgeops-extras/terraform directory.

b. Copy the terraform.tfvars file to override.auto.tfvars .

Copying the terraform.tfvars file to a new file preserves the original content in

the file.

2. Determine the cluster size: small, medium, or large.

3. Define your cluster’s configuration:

a. Open the override.auto.tfvars file.

b. Determine the location of your cluster’s configuration in the

override.auto.tfvars file:

]

}

$ aws iam get-user

{

"User": {

"Path": "/",

"UserName": "my-user-name",

"UserId": "...",

"Arn": "arn:aws:iam::01...3:user/my-user-name",

"CreateDate": "2020-09-17T16:01:46+00:00",

"PasswordLastUsed": "2021-05-10T17:07:53+00:00"

}

}

Kubernetes cluster creation

[5]

33 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes

Cluster size Section containing the cluster configuration

Small cluster.tf_cluster_eks_small

Medium cluster.tf_cluster_eks_medium

Large cluster.tf_cluster_eks_large

c. Modify your cluster’s configuration by setting values in the section listed in the

table:

i. Modify your cluster’s configuration by setting values in the section listed in

the table:

ii. Set the value of the enabled variable to true .

iii. Set the value of the meta.cluster_name variable to the name of the

Amazon EKS cluster you’ll create.

iv. Set the values of the location.region and location.zones variables

to the region and zones where you’ll perform the ForgeOps deployment.

Before continuing:

Go to the Amazon Elastic Kubernetes Service endpoints and quotas

page and verify the region you’re specifying supports Amazon EKS.

Run the aws ec2 describe-availability-zones --region

region-name command to identify three availability zones in your

AWS region.

d. Save and close the override.auto.tfvars file.

4. Ensure your region has an adequate CPU quota for a ForgeOps deployment.

Locate these two variables in your cluster’s configuration in the

override.auto.tfvars file:

node_pool.type : the machine type to be used in your cluster

node_pool.max_count : the maximum number of machines to be used in your

cluster

Your quotas must be large enough to let you allocate the maximum number of

machines in your region. If your quotas are too low, request and wait for a quota

increase from Amazon Web Services before attempting to create your cluster.

5. Create a cluster using Terraform artifacts in the forgeops-extras repository:

a. Change to the directory that contains Terraform artifacts:

b. Run the tf-apply script to create your cluster:



$ cd /path/to/forgeops-extras/terraform

34 / 248

https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html
https://docs.aws.amazon.com/general/latest/gr/eks.html

Respond yes to the Do you want to perform these actions? prompt.

When the tf-apply script finishes, it issues a message that provides the path

to a kubeconfig file for the cluster.

The script creates:

The EKS cluster

The fast storage class

The ds-snapshot-class volume snapshot class

The script deploys:

An ingress controller

Certificate manager

6. Set your Kubernetes context to reference the new cluster by setting the

KUBECONFIG environment variable as shown in the message from the tf-apply

command’s output.

7. To verify the tf-apply script created the cluster, log in to the AWS console. Access

the console panel for the Amazon Elastic Kubernetes Service, and then list the EKS

clusters. The new cluster should appear in the list of Kubernetes clusters.

Set up hostname resolution for the Ping Identity Platform servers you’ll deploy in your

namespace:

1. Get the ingress controller’s FQDN from the EXTERNAL-IP column of the kubectl

get services command output:

2. Run the host command to get the ingress controller’s external IP addresses. For

example:

$./tf-apply

Hostname resolution

$ kubectl get services --namespace ingress-nginx

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S)

AGE

ingress-nginx-controller LoadBalancer

10.100.43.88 k8s-ingress ...elb.us-east-1.amazonaws.com

80:30005/TCP,443:30770/TCP 62s

ingress-nginx-controller-admission ClusterIP

10.100.2.215 <none>

443/TCP 62s

35 / 248

Depending on the state of the cluster, between one and three IP addresses appear

in the host command’s output.

3. Configure hostname resolution for the ingress controller:

a. Choose an FQDN (referred to as the deployment FQDN) that you’ll use when you

deploy the Ping Identity Platform, and when you access its GUIs and REST APIs.

Some examples in this documentation use forgeops.example.com as the

deployment FQDN. You are not required to use forgeops.example.com ; you

can specify any FQDN you like.

b. If DNS doesn’t resolve your deployment FQDN, add an entry to the

/etc/hosts file that maps the ingress controller’s external IP address to the

deployment FQDN. For example:

Before you can perform a ForgeOps deployment on a Kubernetes cluster running on

Azure], you must complete these prerequisite tasks:

Clone the forgeops and forgeops-extras repositories

Install third-party software on your local computer

Start a virtual machine that runs Docker engine on your local computer

Set up an Azure subscription that meets the requirements for ForgeOps

deployments

Create a Kubernetes cluster in the subscription

Set up your local computer to access the cluster’s ingress controller

$ host k8s-ingress ...elb.us-east-1.amazonaws.com

k8s-ingress ...elb.us-east-1.amazonaws.com has address

3.210.123.210

k8s-ingress ...elb.us-east-1.amazonaws.com has address

3.208.207.77

k8s-ingress ...elb.us-east-1.amazonaws.com has address

44.197.104.140

3.210.123.210 forgeops.example.com

Azure

forgeops and forgeops-extras repositories

NOTE

36 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html

Get the forgeops and forgeops-extras repositories:

1. Clone the repositories. For example:

Both repositories are public; you do not need credentials to clone them.

2. Check out the forgeops repository’s 2025.1.1 tag:

Depending on your organization’s repository strategy, you might need to clone the

repository from a fork. You might also need to create a working branch from the

2025.1.1 tag of your fork. Learn more about Repository Updates here.

3. Check out the forgeops-extras repository’s main branch:

Before performing a ForgeOps deployment, obtain third-party software and install it on

your local computer.

ForgeOps team recommends that you install third-party software using Homebrew on

macOS and Linux .

The versions listed in the following table have been validated for ForgeOps deployments

on Microsoft Azure. Earlier and later versions will probably work. If you want to try using

versions that are not in the table, it is your responsibility to validate them.

Install the following third-party software:

Software Version Homebrew package

Python 3 3.11.11 python@3.11

Bash 5.2.37 bash

Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



$ git clone https://github.com/ForgeRock/forgeops.git

$ git clone https://github.com/ForgeRock/forgeops-extras.git

$ cd /path/to/forgeops

$ git checkout 2025.1.1

$ cd /path/to/forgeops-extras

$ git checkout main

Third-party software



[3]

37 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-updates
https://brew.sh/
https://brew.sh/
https://brew.sh/
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

Software Version Homebrew package

Docker client 27.3.1 docker

Kubernetes client

(kubectl)

1.31.3 kubernetes-cli

Kubernetes context

switcher (kubectx)

0.9.5 kubectx

Kustomize 5.5.0 kustomize

Helm 3.16.3 helm

JSON processor jq 1.7.1 jq

Terraform 1.5.7 terraform

Six (Python compatibility

library)

1.17.0 six

Setup tools (Python) 75.6.0 python-setuptools

Azure Command Line

Interface

2.67.0 azure-cli

The new forgeops utility is built on Python3. Some of the Python3 packages used by

forgeops have to be installed using pip . To separate such Python3 specific packages,

Python recommends the use of the venv Python virtual environment. Learn more

about Python venv in venv - Virtual environments .

1. Create a venv for using the forgeops utility.

2. Set up Python3 dependencies for forgeops utility.

In addition to the software listed in the preceding table, you’ll need to start a virtual

machine that runs Docker engine.

Python venv



$ python3 -m venv .venv

$ source .venv/bin/activate

$ /path/to/forgeops/bin/forgeops configure

Docker engine

38 / 248

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html

On macOS systems, use Docker Desktop or an alternative, such as Colima .

On Linux systems, use Docker Desktop for Linux , install Docker machine from

your Linux distribution, or use an alternative, such as Colima .

For more information about using Colima when performing ForgeOps deployments,

refer to this article .

The default configuration for a Docker virtual machine provides adequate resources for

a ForgeOps deployment.

ForgeOps deployments are supported on macOS and Linux. If you have a Windows

computer, you’ll need to create a Linux VM. We tested the following configurations:

Hypervisor: Hyper-V, VMWare Player, or VMWare Workstation

Guest OS: Current Ubuntu LTS release with 12 GB memory and 60 GB disk space

Nested virtualization enabled in the Linux VM.

Perform all the procedures in this documentation within the Linux VM. In this

documentation, the local computer refers to the Linux VM for Windows users.

Perform these steps to set up an Azure subscription that meets the requirements for

ForgeOps deployments:

1. Assign the following roles to users who will perform ForgeOps deployments:

Azure Kubernetes Service Cluster Admin Role

Azure Kubernetes Service Cluster User Role

Contributor

User Access Administrator

Remember, a ForgeOps deployment is a reference implementation, and is not for

production use. The roles you assign in this step are suitable for ForgeOps

deployments. When you create a project plan, you’ll need to determine which Azure

roles are required.

 







For users running Microsoft Windows

The Minikube implementation on Windows Subsystem for Linux (WSL2) has

networking issues. As a result, consistent access to the ingress controller or the

apps deployed on Minikube is not possible. This issue is tracked here . Do not

attempt to perform ForgeOps deployments on WSL2 until this issue is resolved.

IMPORTANT



Azure subscription setup

39 / 248

https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879

2. Log in to Azure services as a user with the roles you assigned in the previous step:

3. View your current subscription ID:

4. If necessary, set the current subscription ID to the one you will use to perform the

ForgeOps deployment:

ForgeOps team provides Terraform artifacts for AKS cluster creation. Use them to create

a cluster that supports ForgeOps deployments. After performing a ForgeOps

deployment, you can use your cluster as a sandbox to explore Ping Identity Platform

customization.

When you create a project plan, you’ll need to identify your organization’s preferred

infrastructure-as-code solution, and, if necessary, create your own cluster creation

automation scripts.

Here are the steps the ForgeOps team follows to create a Kubernetes cluster on AKS:

1. Copy the file that contains default Terraform variables to a new file:

a. Change to the /path/to/forgeops-extras/terraform directory.

b. Copy the terraform.tfvars file to override.auto.tfvars .

Copying the terraform.tfvars file to a new file preserves the original content in

the file.

2. Determine the cluster size: small, medium, or large.

3. Define your cluster’s configuration:

a. Open the override.auto.tfvars file.

b. Determine the location of your cluster’s configuration in the

override.auto.tfvars file:

Cluster size Section containing the cluster configuration

Small cluster.tf_cluster_aks_small

Medium cluster.tf_cluster_aks_medium

$ az login --username my-user-name

$ az account show

$ az account set --subscription my-subscription-id

Kubernetes cluster creation

[6]

40 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes

Cluster size Section containing the cluster configuration

Large cluster.tf_cluster_aks_large

c. Modify your cluster’s configuration by setting values in the section listed in the

table:

i. Set the value of the enabled variable to true .

ii. Set the value of the meta.cluster_name variable to the name of the AKS

cluster you’ll create.

iii. Set the values of the location.region and location.zones variables

to the region and zones where you’ll perform the ForgeOps deployment.

Before continuing, go to Microsoft’s Products available by region page

and verify that Azure Kubernetes Service is available in the region you

specified.

d. Save and close the override.auto.tfvars file.

4. Ensure your region has an adequate CPU quota for a ForgeOps deployment.

Locate these two variables in your cluster’s configuration in the

override.auto.tfvars file:

node_pool.type : the machine type to be used in your cluster

node_pool.max_count : the maximum number of machines to be used in your

cluster

Your quotas must be large enough to let you allocate the maximum number of

machines in your region. If your quotas are too low, request and wait for a quota

increase from Microsoft Azure before attempting to create your cluster.

5. Create a cluster using Terraform artifacts in the forgeops-extras repository:

a. Change to the directory that contains Terraform artifacts:

b. Run the tf-apply script to create your cluster:

Respond yes to the Do you want to perform these actions? prompt.

When the tf-apply script finishes, it issues a message that provides the path

to a kubeconfig file for the cluster.

The script creates:



$ cd /path/to/forgeops-extras/terraform

$./tf-apply

41 / 248

https://azure.microsoft.com/en-us/explore/global-infrastructure/products-by-region/?products=kubernetes-service®ions=all
https://azure.microsoft.com/en-us/explore/global-infrastructure/products-by-region/?products=kubernetes-service®ions=all
https://azure.microsoft.com/en-us/explore/global-infrastructure/products-by-region/?products=kubernetes-service®ions=all

The AKS cluster

The fast storage class

The ds-snapshot-class volume snapshot class

The script deploys:

An ingress controller

Certificate manager

6. Set your Kubernetes context to reference the new cluster by setting the

KUBECONFIG environment variable as shown in the message from the tf-apply

command’s output.

7. To verify that the tf-apply script created the cluster, log in to the Azure portal.

Search for Kubernetes services and access the Kubernetes services page. The new

cluster should appear in the list of Kubernetes clusters.

Set up hostname resolution for the Ping Identity Platform servers you’ll deploy in your

namespace:

1. Get the ingress controller’s external IP address:

The ingress controller’s IP address should appear in the EXTERNAL-IP column.

There can be a short delay while the ingress starts before the IP address appears in

the kubectl get services command’s output; you might need to run the

command several times.

2. Configure hostname resolution for the ingress controller:

a. Choose an FQDN (referred to as the deployment FQDN) that you’ll use when you

deploy the Ping Identity Platform, and when you access its GUIs and REST APIs.

Some examples in this documentation use forgeops.example.com as the

deployment FQDN. You are not required to use forgeops.example.com ; you

can specify any FQDN you like.

Hostname resolution

$ kubectl get services --namespace ingress-nginx

NAME TYPE CLUSTER-IP

EXTERNAL-IP PORT(S) AGE

ingress-nginx-controller LoadBalancer

10.0.166.247 20.168.193.68 80:31377/TCP,443:31099/TCP

74m

ingress-nginx-controller-admission ClusterIP 10.0.40.40

<none> 443/TCP 74m

42 / 248

b. If DNS doesn’t resolve your deployment FQDN, add an entry to the

/etc/hosts file that maps the ingress controller’s external IP address to the

deployment FQDN. For example:

Before you can perform a ForgeOps deployment on a Kubernetes cluster running on

Minikube, you must complete these prerequisite tasks:

Clone the forgeops repository

Install third-party software on your local computer

Start a virtual machine that runs Docker engine on your local computer

Create a Kubernetes cluster on Minikube

Set up your local computer to access the cluster’s ingress controller

Before you can perform a ForgeOps deployment, you must first get the forgeops

repository and check out the 2025.1.1 tag you want to use:

1. Clone the forgeops repository. For example:

The forgeops repository is a public Git repository. You do not need credentials to

clone it.

2. Check out the 2025.1.1 tag:

Depending on your organization’s repository strategy, you might need to clone the

repository from a fork. You might also need to create a working branch from the

2025.1.1 tag. Learn more in Repository Updates.

20.168.193.68 forgeops.example.com

Minikube

forgeops repository

Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



$ git clone https://github.com/ForgeRock/forgeops.git

$ cd forgeops

$ git checkout 2025.1.1

43 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/start/repositories.html#forgeops-updates
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

Before performing a ForgeOps deployment, obtain third-party software and install it on

your local computer.

ForgeOps team recommends that you install third-party software using Homebrew on

macOS and Linux .

The versions listed in this section have been validated for ForgeOps deployments on

Minikube. Earlier and later versions will probably work. If you want to try using versions

that are not in the table, it is your responsibility to validate them.

Software Version Homebrew package

Python 3 3.11.11 python@3.11

Bash 5.2.37 bash

Docker client 27.3.1 docker

Kubernetes client

(kubectl)

1.31.3 kubernetes-cli

Kubernetes context

switcher (kubectx)

0.9.5 kubectx

Kustomize 5.5.0 kustomize

Helm 3.16.3 helm

JSON processor jq 1.7.1 jq

Six (Python compatibility

library)

1.17.0 six

Setup tools (Python) 75.6.0 python-setuptools

Minikube 1.34.0 minikube

PyYaml 6.0.1 pyyaml

Hyperkit

(Intel x86-based macOS

systems only)

0.20210107 hyperkit

Third-party software



[3]

Python venv

44 / 248

https://brew.sh/
https://brew.sh/
https://brew.sh/

The new forgeops utility is built on Python3. Some of the Python3 packages used by

forgeops have to be installed using pip . To separate such Python3 specific packages,

Python recommends the use of the venv Python virtual environment. Learn more

about Python venv in venv - Virtual environments .

1. Create a venv for using the forgeops utility.

2. Set up Python3 dependencies for forgeops utility.

In addition to the software listed in the preceding table, you’ll need to start a virtual

machine that runs Docker engine.

On macOS systems, use Docker Desktop or an alternative, such as Colima .

On Linux systems, use Docker Desktop for Linux , install Docker machine from

your Linux distribution, or use an alternative, such as Colima .

For more information about using Colima when performing ForgeOps deployments,

refer to this article .

Minimum requirements for the virtual machine:

4 CPUs

10 GB RAM

60 GB disk space

ForgeOps deployments are supported on macOS and Linux. If you have a Windows

computer, you’ll need to create a Linux VM. We tested the following configurations:

Hypervisor: Hyper-V, VMWare Player, or VMWare Workstation

Guest OS: Current Ubuntu LTS release with 12 GB memory and 60 GB disk space

Nested virtualization enabled in the Linux VM.

Perform all the procedures in this documentation within the Linux VM. In this

documentation, the local computer refers to the Linux VM for Windows users.



$ python3 -m venv .venv

$ source .venv/bin/activate

$ /path/to/forgeops/bin/forgeops configure

Docker engine

 







For users running Microsoft Windows

IMPORTANT

45 / 248

https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.python.org/3/library/venv.html
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://docs.docker.com/desktop/install/mac-install
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://docs.docker.com/desktop/install/linux-install/
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://github.com/abiosoft/colima
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305/2

Minikube software runs a single-node Kubernetes cluster in a virtual machine.

The minikube start command example shown in the doc creates a Minikube cluster

with a configuration that’s adequate for a ForgeOps deployment.

The default driver option is fine for most users. For more information about Minikube

virtual machine drivers, refer to Drivers in the Minikube documentation.

If you want to use a driver other than the default driver, specify the --driver option

when you run the minikube start command in the next step.

1. Set up Minikube:

The Minikube implementation on Windows Subsystem for Linux (WSL2) has

networking issues. As a result, consistent access to the ingress controller or the

apps deployed on Minikube is not possible. This issue is tracked here . Do not

attempt to perform ForgeOps deployments on WSL2 until this issue is resolved.

IMPORTANT



Minikube cluster



$ minikube start --cpus=3 --memory=9g --disk-size=40g --

cni=true

--kubernetes-version=stable --

addons=ingress,volumesnapshots,metrics-server --driver=docker

😄 minikube v1.34.0 on Darwin 15.3.1

✨ Using the docker driver based on user configuration

📌 Using Docker Desktop driver with root privileges

👍 Starting "minikube" primary control-plane node in

"minikube" cluster

🚜 Pulling base image v0.0.45 …​

🔥 Creating docker container (CPUs=3, Memory=9216MB) …​

🐳 Preparing Kubernetes v1.31.0 on Docker 27.2.0 …​

▪ Generating certificates and keys …​

▪ Booting up control plane …​

▪ Configuring RBAC rules …​

🔗 Configuring CNI (Container Networking Interface) …​

🔎 Verifying Kubernetes components…​

▪ Using image registry.k8s.io/metrics-server/metrics-

server:v0.7.2

▪ Using image registry.k8s.io/sig-storage/snapshot-

controller:v6.1.0

▪ Using image gcr.io/k8s-minikube/storage-provisioner:v5

💡 After the addon is enabled, please run "minikube tunnel"

and your ingress resources would be available at "127.0.0.1"

▪ Using image registry.k8s.io/ingress-nginx/kube-webhook-

46 / 248

https://minikube.sigs.k8s.io/docs/drivers
https://minikube.sigs.k8s.io/docs/drivers
https://minikube.sigs.k8s.io/docs/drivers
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879
https://github.com/kubernetes/minikube/issues/7879

2. Run the docker-env command to set up your local computer to use the Minikube’s

Docker engine:

Set up hostname resolution for the Ping Identity Platform servers you’ll deploy in your

namespace:

1. Determine the Minikube ingress controller’s IP address.

If Minikube is using the Docker driver on macOS system , use 127.0.0.1 as

the ingress IP address.

If Minikube is running the Hyperkit driver on Intel-based macOS system or on a

Linux system, get the IP address by running the minikube ip command:

2. Choose an FQDN (referred to as the deployment FQDN) that you’ll use when you

deploy the Ping Identity Platform, and when you access its GUIs and REST APIs.

Ensure that the FQDN is unique in the cluster you will be deploying the Ping Identity

Platform.

Some examples in this documentation use forgeops.example.com as the

deployment FQDN. You are not required to use forgeops.example.com ; you can

specify any FQDN you like.

certgen:v1.4.3

▪ Using image registry.k8s.io/ingress-nginx/kube-webhook-

certgen:v1.4.3

▪ Using image registry.k8s.io/ingress-

nginx/controller:v1.11.2

🔎 Verifying ingress addon…​

🌟 Enabled addons: storage-provisioner, default-storageclass,

metrics-server, volumesnapshots, ingress

🏄 Done! kubectl is now configured to use "minikube" cluster

and "default" namespace by default

If you are running Minikube on an ARM-based macOS system and the

minikube output indicates that you are using the qemu driver, you probably

did not start the virtual machine that runs your Docker engine.

TIP

$ eval $(minikube docker-env)

Hostname resolution

[7]

$ minikube ip

...

47 / 248

3. Add an entry to the /etc/hosts file to resolve the deployment FQDN:

For ingress-ip-address , specify the IP address from step 1. For example:

A ForgeOps deployment is a deployment of the Ping Identity Platform on Kubernetes

based on Docker images, Helm charts, Kustomize bases and overlays, utility programs,

and other artifacts you can find in the forgeops repository on GitHub.

You can get a ForgeOps deployment up and running on Kubernetes quickly. After

performing a ForgeOps deployment, you can use it to explore how you might configure

a Kubernetes cluster before you deploy the platform in production.

A ForgeOps deployment is a robust sample deployment for demonstration and

exploration purposes only. It is not a production deployment.

This section describes how to perform a ForgeOps deployment in a Kubernetes cluster

and then access the platform’s GUIs and REST APIs. When you’re done, you can use

ForgeOps deployment to explore deployment customizations.

Performing a ForgeOps deployment is a good learning and exploration exercise that

helps prepare you to put together a project plan for deploying the platform in

production. To better understand how this activity fits in to the overall deployment

process, refer to Performing a ForgeOps deployment.

Using the ForgeOps artifacts and this documentation, you can quickly get the Ping

Identity Platform running in a Kubernetes environment. You begin to familiarize yourself

with some of the steps you’ll need to perform when deploying the platform in the cloud

for production use:

ingress-ip-address forgeops.example.com

127.0.0.1 forgeops.example.com

Deployment overview

48 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox

Standardizes the process—The ForgeOps team’s mission is to standardize a process for

deploying the Ping Identity Platform on Kubernetes. The team is made up of technical

consultants and cloud software developers. We’ve had numerous interactions with our

customers and discussed common deployment issues. Based on our interactions, we

developed the ForgeOps artifacts to make deployment of the platform easier in the

cloud.

Simplifies baseline deployment—We then developed artifacts: Dockerfiles, Kustomize

bases and overlays, Helm charts, and utility programs to simplify the deployment

process. We deployed small-sized, medium-sized, and large-sized production-quality

Kubernetes clusters, and kept them up and running 24x7. We conducted continuous

integration and continuous deployment as we added new capabilities and fixed

problems in the system. We maintained, benchmarked, and tuned the system for

optimized performance. Most importantly, we documented the process so you could

replicate it.

Eliminates guesswork—If you use our ForgeOps artifacts and follow the instructions in

this documentation without deviation, you can successfully deploy the Ping Identity

Platform in the cloud. ForgeOps deployments take the guesswork out of setting up a

cloud environment. They bypass the deploy-test-integrate-test-repeat cycle many

customers struggle through when spinning up the Ping Identity Platform in the cloud for

the first time.

Prepares you to deploy in production—After you’ve performed a ForgeOps deployment

you’ll be ready to start working with experts on deploying in production. We strongly

recommend that you engage a Ping Identity technical consultant or partner to assist you

with deploying the platform in production.

✓ Become familiar with ForgeOps deployments

❏ Understand ForgeOps architecture

❏ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

After you perform a ForgeOps deployment, the Ping Identity Platform is fully operational

in a Kubernetes cluster. forgeops artifacts provide preconfigured JVM settings,

memory, CPU limits, and other configurations.

Here are some of the characteristics of ForgeOps deployments:

Cluster and deployment sizes

Next step

ForgeOps architecture

49 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html

When you use the Terraform artifacts in the forgeops-extras repository to create

a Kubernetes cluster on Google Cloud, AWS, or Azure, you specify one of three sizes:

A small cluster with capacity to handle 1,000,000 test users

A medium cluster with capacity to handle 10,000,000 test users

A large cluster with capacity to handle 100,000,000 test users

When you use the minikube start command to create a Kubernetes cluster on

Minikube, you don’t specify a cluster size.

When you perform a ForgeOps deployment, you specify a deployment size. This

deployment size should be the same as your cluster size, except when you perform

single-instance ForgeOps deployments.

Single-instance deployments are special deployments that you use to configure AM

and IDM and build custom Docker images for the Ping Identity Platform. They are

called single-instance deployments because unlike small, medium, and large

deployments, they have only single pods that run AM and IDM. They are only suitable

for developing the AM and IDM configurations and must not be used for testing

performance, monitoring, security, and backup requirements in production

environments.

You can perform one or more single-instance deployments on small, medium, and

large GKE, EKS, and AKS clusters. Each single-instance deployment resides in its own

namespace.

You can perform one (and only one) single-instance deployment on a Minikube

cluster.

Multi-zone Kubernetes cluster

In small, medium, and large ForgeOps deployments, Ping Identity Platform pods are

distributed across three zones for high availability.

(In single-instance deployments, Ping Identity Platform pods reside in a single zone.)

Go here for a diagram that shows the organization of pods in zones and node pools

in small, medium, and large ForgeOps deployments.

Third-party deployment and monitoring tools

Ingress-NGINX Controller for Kubernetes ingress support.

HAProxy Ingress Controller for Kubernetes ingress support.

Prometheus for monitoring and notifications.

Prometheus Alertmanager for setting and managing alerts.

Grafana for metrics visualization.

Certificate Manager for obtaining and installing security certificates.



 [2]

 [2]

 [2]

 [2]



50 / 248

file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-cluster-size
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-cluster-size
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-cluster-size
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-cluster
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://haproxy-ingress.github.io/
https://haproxy-ingress.github.io/
https://haproxy-ingress.github.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://prometheus.io/docs/alerting/alertmanager/
https://grafana.com/
https://grafana.com/
https://grafana.com/
https://docs.cert-manager.io/
https://docs.cert-manager.io/
https://docs.cert-manager.io/

Helm for deploying Helm charts.

Terraform for creating example clusters.

Ready-to-use Ping Identity Platform components

Multiple DS instances are deployed for higher availability. Separate instances are

deployed for Core Token Service (CTS) tokens and identities. The instances for

identities also contain AM and IDM run-time data.

The AM configuration is file-based, stored at the path

/home/forgerock/openam/config inside the AM Docker container (and in the

AM pods).

Multiple AM instances are deployed for higher availability.

AM instances are configured to access DS data stores.

Multiple IDM instances are deployed for higher availability.

IDM instances are configured to access DS data stores.

Highly available, distributed deployment

Deployment across three zones ensures that the ingress controller and all Ping

Identity Platform components are highly available.

Pods that run DS are configured to use soft anti-affinity . Because of this,

Kubernetes schedules DS pods to run on nodes that don’t have any other DS pods

whenever possible.

The exact placement of all other ForgeOps pods is delegated to Kubernetes.

Pods are organized across three zones in a single node pool with six nodes. Pod

placement among the nodes might vary, but the DS pods should run on nodes

without any other DS pods.

Kubernetes Cluster

Zone 1 Zone 2

ns= my-namespacens= my-namespace

ns=monitoring

ns=cert-manager

Zone 3

ns= my-namespace

ns=monitoring

ds-idrepo-0 ds-idrepo-1

ds-cts-0 ds-cts-1

ds-cts-2

Grafanaidm-0

Certificate
Manager

Prometheusidm-1

Alert
Manager

am-0 am-1
am-2

(Medium and
Large only)

ns=nginx

Ingress
Controller

ns=secret-
agent-system

Secret
Agent

idm-2

ds-idrepo-2

UI Pods

Ingress controller



 [2]

[1]

[1]

[2] [1]



51 / 248

https://helm.sh/
https://helm.sh/
https://helm.sh/
https://www.terraform.io/
https://www.terraform.io/
https://www.terraform.io/
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#affinity-and-anti-affinity

The Ingress-NGINX Controller provides load balancing services for ForgeOps

deployments. Ingress controller pods run in the nginx namespace. Implementation

varies by cloud provider.

Optionally, you can deploy HAProxy Ingress as the ingress controller instead of

Ingress-NGINX Controller.

Secret generation and management

The open source Secret Agent operator generates Kubernetes secrets for Ping

Identity Platform deployments. It also integrates with Google Cloud Secret Manager,

AWS Secrets Manager, and Azure Key Vault, providing cloud backup and retrieval for

secrets.

Secured communication

The ingress controller is TLS-enabled. TLS is terminated at the ingress controller.

Incoming requests and outgoing responses are encrypted.

Inbound communication to DS instances occurs over secure LDAP (LDAPS).

For more information, refer to Secure HTTP.

Stateful sets

ForgeOps deployments use Kubernetes stateful sets to manage the DS pods. Stateful

sets protect against data loss if Kubernetes client containers fail.

On small-, medium- and large- deployments, CTS data stores are configured for

affinity load balancing for optimal performance.

CTS
Stateful Sets

Ingress
Controller

ds-cts-2

am-0 am-2

ds-cts-1

Replication

ds-cts-0

am-1

Token Affinity

[2]



52 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/ingress.html#haproxy
https://github.com/ForgeRock/secret-agent
https://github.com/ForgeRock/secret-agent
https://github.com/ForgeRock/secret-agent
file:///home/pptruser/Downloads/build/site/forgeops/prepare/security/https.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/glossary.html#glossary-affinity

AM policies, application data, and identities reside in the idrepo directory service.

Small-, medium- and large- deployments use a single idrepo master configured to

fail over to one of two secondary directory services.

ID Repo
Stateful Sets

Ingress
Controller

ds-idrepo-2ds-idrepo-0

am-0 am-2

ds-idrepo-1

Replication

am-1

Primary Connections Secondary Connections

Authentication

IDM is configured to use AM for authentication.

DS replication

All DS instances are configured for full replication of identities and session tokens.

Backup and restore

Backup and restore can be performed using several techniques. You can:

Use the volume snapshot capability in GKE, EKS, or AKS. The cluster where the

ForgeOps deployment resides must be configured with a volume snapshot class

before you can take volume snapshots, and persistent volume claims must use a

CSI driver that supports volume snapshots.

Use the ds-backup utility.

Use a "last mile" backup archival solutions, such as Amazon S3, Google Cloud

Storage, and Azure Cloud Storage that is specific to the cloud provider.

Use a Kubernetes backup and restore product, such as Velero, Kasten K10,

TrilioVault, Commvault, or Portworx PX-Backup.

For more information, refer to Backup and restore overview.

Initial data loading

[1]

[2]

53 / 248

file:///home/pptruser/Downloads/build/site/forgeops/backup/overview.html

After the first AM instance in a ForgeOps deployment has started, an amster job

runs. This job loads application data, such as OAuth 2.0 client definitions, to the

idrepo DS instance.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

❏ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

After you set up your deployment environment and your Kubernetes cluster, you’re

ready to perform a ForgeOps deployment.

First, you’ll need to choose a deployment technology.

You can perform ForgeOps deployments using either Kustomize or Helm .

The preferred deployment technology for ForgeOps deployments is Helm. If you are not

familiar with either of these two technologies, choose Helm.

Choose Kustomize as your deployment technology when:

You performed ForgeOps deployments before Helm charts were available in the

forgeops repository, and you want to continue to use Kustomize-based

deployments.

You want to generate Kustomize manifests for the platform, including custom

manifests, using the forgeops generate command.

Kustomize is your organization’s preferred deployment technology for Kubernetes.

Kustomize offers needed features that are not available in Helm.

Follow the steps in one of these scenarios to perform a ForgeOps deployment:

Deploy using Helm on GKE, EKS, or AKS

Deploy using Helm on Minikube

Deploy using Kustomize on GKE, EKS, or AKS

Next step

ForgeOps deployment

Deployment technologies

 

Deployment scenarios

54 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html
https://kustomize.io/
https://kustomize.io/
https://kustomize.io/
https://helm.sh/
https://helm.sh/
https://helm.sh/
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-helm-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-helm-local.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-kustomize-cloud.html

Deploy using Kustomize on Minikube

1. Verify that you have set up your environment and created a Kubernetes cluster as

documented in the setup section.

2. Enable the Python3 virtual environment:

3. Set up a ForgeOps deployment environment:

If you want to use the issuer provided with the platform for demo, then you

can use default-issuer.

For a clusters on a cloud environment specify the --deployment-size as --

small , --medium , or --large .

For a single-instance deployment, specify --deployment-size as --single-

instance .

In the command above, replace my-fqdn, my-cluster-issuer, and --

deployment-size with appropriate values from your environment.

In a Minikube environment, use the single instance deployment. For example:

Learn more about deployment sizes in Cluster and deployment sizes and about

single instances here.

Deploy using Helm on GKE, EKS, or AKS

In a development or demo environment, you can use the helm chart available

locally in /path/to/forgeops/charts directory for performing ForgeOps

deployment. In a production environment, it is highly recommended to use the

Helm charts published on the registry.

IMPORTANT

$ source .venv/bin/activate

On cloud platforms

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn --

cluster-issuer my-cluster-issuer --deployment-size

On Minikube

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn \

--cluster-issuer my-cluster-issuer --single-instance

55 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-kustomize-local.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#single-inst

4. (Optional) By default, the latest platform images are used for ForgeOps deployment.

If you need a specific image version to be deployed, then ensure that the

image.repository and image.tag settings for the platform components are

correct in the /path/to/forgeops/helm/my-env/values.yaml Helm values file.

5. Set up your Kubernetes context:

a. Set the KUBECONFIG environment variable so that your Kubernetes context

references the cluster in which you’ll perform the ForgeOps deployment.

b. Create a Kubernetes namespace in the cluster for the Ping Identity Platform

pods:

c. Set the active namespace in your Kubernetes context to the Kubernetes

namespace you just created:

6. Set up the certificate management, secret agent, and NGINX:

7. (Optional) If you’ve set up your Kubernetes cluster using ForgeOps-provided

Terraform manifest, then you would’ve already created the required fast storage

and volume snapshot classes. If you set up your Kubernetes cluster using your own

scripts, then create these classes using the corresponding YAML scripts provided in

the /path/to/forgeops/cluster/resources folder.

For example, on GKE:

8. Run the helm upgrade command to perform a ForgeOps deployment:

$ kubectl create namespace my-namespace

$ kubens my-namespace

The forgeops repository contains the certmanager-deploy.sh to install

cert-manager in your cluster. If you need to use a different certificate

management utility, you refer to the corresponding documentation for

installing that utility.

NOTE

$ cd /path/to/forgeops/charts/scripts

$./install-prereqs

$ kubectl apply -f /path/to/forgeops/cluster/resources/gke-

fast-storage-class.yaml

$ kubectl apply -f /path/to/forgeops/cluster/resources/gke-

volume-snapshot-class.yaml

56 / 248

When deploying the platform with Docker images other than the ForgeOps-

provided images, you’ll also need to set additional Helm values such as

am.image.repository , am.image.tag , idm.image.repository , and

idm.image.tag . For an example, refer to Redeploy AM: Helm deployments.

9. Check the status of the pods in the namespace in which you deployed the platform

until all the pods are ready:

a. Run the kubectl get pods command.

b. Review the output. Deployment is complete when:

All entries in the STATUS column indicate Running or Completed .

The READY column indicates all running containers are available. The

entry in the READY column represents [total number of

containers/number of available containers].

c. If necessary, continue to query your deployment’s status until all the pods are

ready.

10. Back up and save the Kubernetes secrets that contain the master and TLS keys:

a. To avoid accidentally putting the backups under version control, change to a

directory that is outside your forgeops repository clone.

b. The ds-master-keypair secret contains the DS master key. This key is

required to decrypt data from a directory backup. Failure to save this key could

result in data loss.

Back up the Kubernetes secret that contains the DS master key:

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--repo https://ForgeRock.github.io/forgeops/ \

--version 2025.1.1 --namespace my-namespace \

--values /path/to/forgeops/helm/my-env/values.yaml

Ping Identity only offers its software or services to legal entities that have

entered into a binding license agreement with Ping Identity. When you install

Docker images provided by ForgeOps, you agree either that: 1) you are an

authorized user of a Ping Identity Platform customer that has entered into a

license agreement with Ping Identity governing your use of the Ping Identity

software; or 2) your use of the Ping Identity Platform software is subject to the

Ping Identity Subscription Agreements .

IMPORTANT



$ kubectl get secret ds-master-keypair -o yaml > master-

key-pair.yaml

57 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html#redeploy-am-helm
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html

c. The ds-ssl-keypair secret contains the DS TLS key. This key is needed for

cross-environment replication topologies.

Back up the Kubernetes secret that contains the DS TLS key pair:

d. Save the two backup files.

11. (Optional) Deploy Prometheus, Grafana, and Alertmanager for monitoring and

alerting :

a. Deploy Prometheus, Grafana, and Alertmanager pods in your ForgeOps

deployment:

$ kubectl get secret ds-ssl-keypair -o yaml > tls-key-

pair.yaml

[8]

$ /path/to/forgeops/bin/prometheus-deploy.sh

**This script requires Helm version 3.04 or later due to

changes in the behaviour of 'helm repo add' command.**

namespace/monitoring created

"stable" has been added to your repositories

"prometheus-community" has been added to your repositories

Hang tight while we grab the latest from your chart

repositories...

...Successfully got an update from the "ingress-nginx"

chart repository

...Successfully got an update from the "codecentric" chart

repository

...Successfully got an update from the "prometheus-

community" chart repository

...Successfully got an update from the "stable" chart

repository

Update Complete. ⎈Happy Helming!⎈

Release "prometheus-operator" does not exist. Installing

it now.

NAME: prometheus-operator

LAST DEPLOYED: ...

NAMESPACE: monitoring

STATUS: deployed

REVISION: 1

NOTES:

kube-prometheus-stack has been installed. Check its status

by running:

kubectl --namespace monitoring get pods -l

58 / 248

b. Check the status of the pods in the monitoring namespace until all the pods

are ready:

"release=prometheus-operator"

Visit https://github.com/prometheus-operator/kube-

prometheus for instructions on how to create & configure

Alertmanager and Prometheus instances using the Operator.

...

Release "forgerock-metrics" does not exist. Installing it

now.

NAME: forgerock-metrics

LAST DEPLOYED: ...

NAMESPACE: monitoring

STATUS: deployed

REVISION: 1

TEST SUITE: None

$ kubectl get pods --namespace monitoring

NAME

READY STATUS RESTARTS AGE

alertmanager-prometheus-operator-kube-p-alertmanager-0

2/2 Running 0 119s

prometheus-operator-grafana-95b8f5b7d-nn65h

3/3 Running 0 2m4s

prometheus-operator-kube-p-operator-7d54989595-pdj44

1/1 Running 0 2m4s

prometheus-operator-kube-state-metrics-d95996bc4-wcf7s

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-67xq4

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-b4grn

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-cwhcn

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-h9brd

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-q8zrk

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-vqpt5

1/1 Running 0 2m4s

prometheus-prometheus-operator-kube-p-prometheus-0

2/2 Running 0 119s

59 / 248

12. (Optional) Install a TLS certificate instead of using the default self-signed certificate

in your ForgeOps deployment. Refer to TLS certificate for details.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

✓ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

1. Verify that you have set up your environment and created a Kubernetes cluster as

documented in the setup section.

2. Enable the Python3 virtual environment:

3. Set up a ForgeOps deployment environment:

If you want to use the issuer provided with the platform for demo, then you

can use default-issuer.

For a clusters on a cloud environment specify the --deployment-size as --

small , --medium , or --large .

For a single-instance deployment, specify --deployment-size as --single-

instance .

In the command above, replace my-fqdn, my-cluster-issuer, and --

deployment-size with appropriate values from your environment.

Next step

Deploy using Helm on Minikube

In a development or demo environment, you can use the helm chart available

locally in /path/to/forgeops/charts directory for performing ForgeOps

deployment. In a production environment, it is highly recommended to use the

Helm charts published on the registry.

IMPORTANT

$ source .venv/bin/activate

On cloud platforms

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn --

cluster-issuer my-cluster-issuer --deployment-size

On Minikube

60 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/security/https.html#tls-certificate
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html

In a Minikube environment, use the single instance deployment. For example:

Learn more about deployment sizes in Cluster and deployment sizes and about

single instances here.

4. (Optional) By default, the latest platform images are used for ForgeOps deployment.

If you need a specific image version to be deployed, then ensure that the

image.repository and image.tag settings for the platform components are

correct in the /path/to/forgeops/helm/my-env/values.yaml Helm values file.

5. Set up your Kubernetes context:

a. Create a Kubernetes namespace in the cluster for the Ping Identity Platform

pods:

b. Set the active namespace in your Kubernetes context to the Kubernetes

namespace you just created:

6. Set up the certificate management, secret agent, and NGINX.

7. Set up the fast storage class using the minikube-fast-storage-class.yaml

file in the /path/to/forgeops/cluster/resources directory:

8. Run the helm upgrade command to perform a ForgeOps deployment:

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn \

--cluster-issuer my-cluster-issuer --single-instance

$ kubectl create namespace my-namespace

$ kubens my-namespace

The forgeops repository contains the certmanager-deploy.sh script to

install cert-manager in your cluster. If you need to use a different certificate

management utility, you refer to the corresponding documentation for

installing that utility.

NOTE

$ cd /path/to/forgeops/charts/scripts

$./install-prereqs

$ kubectl apply -f

/path/to/forgeops/cluster/resources/minikube-fast-storage-

class.yaml

61 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#single-inst

The preceding command creates a single-instance ForgeOps deployment. Only

single-instance deployments are supported on Minikube.

Learn more about single-instance deployments in Cluster and deployment sizes.

9. Check the status of the pods in the namespace in which you deployed the platform

until all the pods are ready:

a. Run the kubectl get pods command.

b. Review the output. Deployment is complete when:

All entries in the STATUS column indicate Running or Completed .

The READY column indicates all running containers are available. The

entry in the READY column represents [total number of

containers/number of available containers].

c. If necessary, continue to query your deployment’s status until all the pods are

ready.

10. In a separate terminal tab or window, run the minikube tunnel command, and

enter your system’s superuser password when prompted:

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--version 2025.1.1 --namespace my-namespace \

--values /path/to/forgeops/helm/my-env/values.yaml

Ping Identity only offers its software or services to legal entities that have

entered into a binding license agreement with Ping Identity. When you install

Docker images provided by ForgeOps, you agree either that: 1) you are an

authorized user of a Ping Identity Platform customer that has entered into a

license agreement with Ping Identity governing your use of the Ping Identity

software; or 2) your use of the Ping Identity Platform software is subject to the

Ping Identity Subscription Agreements .

IMPORTANT



$ minikube tunnel

✅ Tunnel successfully started

📌 NOTE: Please do not close this terminal as this process

must stay alive for the tunnel to be accessible …​

❗ The service/ingress forgerock requires privileged ports to

be exposed: [80 443]

🔑 sudo permission will be asked for it.

❗ The service/ingress ig requires privileged ports to be

exposed: [80 443]

62 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html

The tunnel creates networking that lets you access the Minikube cluster’s ingress on

the localhost IP address (127.0.0.1). Leave the tab or window that started the tunnel

open for as long as you run the ForgeOps deployment.

Refer to this post for an explanation about why a Minikube tunnel is required to

access ingress resources when running Minikube on an ARM-based macOS system.

11. (Optional) Install a TLS certificate instead of using the default self-signed certificate

in your ForgeOps deployment. Refer to TLS certificate for details.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

✓ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

1. Verify that you have set up your environment and created a Kubernetes cluster as

documented in the setup section.

2. Enable the Python3 virtual environment:

3. Set up a ForgeOps deployment environment:

If you want to use the issuer provided with the platform for demo, then you

can use default-issuer.

For a clusters on a cloud environment specify the --deployment-size as --

small , --medium , or --large .

For a single-instance deployment, specify --deployment-size as --single-

instance .

🏃 Starting tunnel for service forgerock.

🔑 sudo permission will be asked for it.

🏃 Starting tunnel for service ig.

Password:



Next step

Deploy using Kustomize on GKE, EKS, or AKS

$ source .venv/bin/activate

On cloud platforms

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn --

63 / 248

https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
file:///home/pptruser/Downloads/build/site/forgeops/prepare/security/https.html#tls-certificate
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html

In the command above, replace my-fqdn, my-cluster-issuer, and --

deployment-size with appropriate values from your environment.

In a Minikube environment, use the single instance deployment. For example:

Learn more about deployment sizes in Cluster and deployment sizes and about

single instances here.

4. Identify Docker images to deploy:

If you want to use custom Docker images for the platform, update the image

defaulter file with image names and tags generated by the forgeops build

command. The image defaulter file is located in your environment (my-env)

folder /path/to/forgeops/kustomize/overlay/my-env directory.

You can get the image names and tags from the image defaulter file on the

system on which the customized Docker images were developed.

If you want to use ForgeOps-provided Docker images for the platform, do not

modify the image defaulter file.

Use the forgeops image command to set up the correct component images

to be deployed. The following command sets up the latest ForgeOps-provided

Docker image for deployment:

5. Set up your Kubernetes context:

cluster-issuer my-cluster-issuer --deployment-size

On Minikube

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn \

--cluster-issuer my-cluster-issuer --single-instance

$ cd /path/to/forgeops/bin

$./forgeops image --env-name my-env --release 7.5.1

platform

If you want to set up your deployment environment with your own image,

then use the following example command:

NOTE

$ cd /path/to/forgeops/bin

$./forgeops image --release my-image --release-name my-

release --env-name my-env platform

64 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#single-inst
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html

a. Set the KUBECONFIG environment variable so that your Kubernetes context

references the cluster in which you’ll perform the ForgeOps deployment.

b. Create a Kubernetes namespace in the cluster for the Ping Identity Platform

pods:

c. Set the active namespace in your Kubernetes context to the Kubernetes

namespace you just created:

6. (Optional) If you’ve set up your Kubernetes cluster using ForgeOps-provided

Terraform manifest, then you would’ve already created the required fast storage

and volume snapshot classes. If you set up your Kubernetes cluster using your own

scripts, then create these classes using the corresponding YAML scripts provided in

the /path/to/forgeops/cluster/resources folder.

For example, on GKE:

7. Run the forgeops apply command to perform a ForgeOps deployment. Learn

more in forgeops apply command reference.

For example:

If you prefer not to deploy using a single forgeops apply command, you can find

more information in Alternative deployment techniques when using Kustomize.

$ kubectl create namespace my-namespace

$ kubens my-namespace

$ kubectl apply -f /path/to/forgeops/cluster/resources/gke-

fast-storage-class.yaml

$ kubectl apply -f /path/to/forgeops/cluster/resources/gke-

volume-snapshot-class.yaml

$ cd /path/to/forgeops/bin

$./forgeops apply --env-name my-env

Ping Identity only offers its software or services to legal entities that have

entered into a binding license agreement with Ping Identity. When you install

Docker images provided by ForgeOps, you agree either that: 1) you are an

authorized user of a Ping Identity Platform customer that has entered into a

license agreement with Ping Identity governing your use of the Ping Identity

software; or 2) your use of the Ping Identity Platform software is subject to the

Ping Identity Subscription Agreements .

IMPORTANT



65 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#forgeops-apply
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html

8. Check the status of the pods in the namespace in which you deployed the platform

until all the pods are ready:

a. Run the kubectl get pods command.

b. Review the output. Deployment is complete when:

All entries in the STATUS column indicate Running or Completed .

The READY column indicates all running containers are available. The

entry in the READY column represents [total number of

containers/number of available containers].

c. If necessary, continue to query your deployment’s status until all the pods are

ready.

9. Back up and save the Kubernetes secrets that contain the master and TLS keys:

a. To avoid accidentally putting the backups under version control, change to a

directory that is outside your forgeops repository clone.

b. The ds-master-keypair secret contains the DS master key. This key is

required to decrypt data from a directory backup. Failure to save this key could

result in data loss.

Back up the Kubernetes secret that contains the DS master key:

c. The ds-ssl-keypair secret contains the DS TLS key. This key is needed for

cross-environment replication topologies.

Back up the Kubernetes secret that contains the DS TLS key pair:

d. Save the two backup files.

10. (Optional) Deploy Prometheus, Grafana, and Alertmanager for monitoring and

alerting :

a. Deploy Prometheus, Grafana, and Alertmanager pods in your ForgeOps

deployment:

$ kubectl get secret ds-master-keypair -o yaml > master-

key-pair.yaml

$ kubectl get secret ds-ssl-keypair -o yaml > tls-key-

pair.yaml

[9]

$ /path/to/forgeops/bin/prometheus-deploy.sh

**This script requires Helm version 3.04 or later due to

changes in the behaviour of 'helm repo add' command.**

namespace/monitoring created

66 / 248

b. Check the status of the pods in the monitoring namespace until all the pods

are ready:

"stable" has been added to your repositories

"prometheus-community" has been added to your repositories

Hang tight while we grab the latest from your chart

repositories...

...Successfully got an update from the "ingress-nginx"

chart repository

...Successfully got an update from the "codecentric" chart

repository

...Successfully got an update from the "prometheus-

community" chart repository

...Successfully got an update from the "stable" chart

repository

Update Complete. ⎈Happy Helming!⎈

Release "prometheus-operator" does not exist. Installing

it now.

NAME: prometheus-operator

LAST DEPLOYED: ...

NAMESPACE: monitoring

STATUS: deployed

REVISION: 1

NOTES:

kube-prometheus-stack has been installed. Check its status

by running:

kubectl --namespace monitoring get pods -l

"release=prometheus-operator"

Visit https://github.com/prometheus-operator/kube-

prometheus for instructions on how to create & configure

Alertmanager and Prometheus instances using the Operator.

...

Release "forgerock-metrics" does not exist. Installing it

now.

NAME: forgerock-metrics

LAST DEPLOYED: ...

NAMESPACE: monitoring

STATUS: deployed

REVISION: 1

TEST SUITE: None

$ kubectl get pods --namespace monitoring

NAME

READY STATUS RESTARTS AGE

67 / 248

11. (Optional) Install a TLS certificate instead of using the default self-signed certificate

in your ForgeOps deployment. Refer to TLS certificate for details.

If you prefer not to perform a ForgeOps Kustomize deployment using a single forgeops

apply command, you can deploy the platform in stages, component by component,

instead of deploying with a single command. Staging deployments can be useful if you

need to troubleshoot a deployment issue.

You can generate Kustomize manifests using the forgeops env command, and then

deploy the platform using the kubectl apply -k command.

The forgeops env command generates Kustomize manifests for your ForgeOps

deployment environment. The manifests are written to the

/path/to/forgeops/kustomize/overlay/my-env directory of your forgeops

repository clone. Advanced users who prefer to work directly with Kustomize manifests

that describe their ForgeOps deployment can use the generated content in the

kustomize/overlay/my-env directory as an alternative to using the forgeops

command:

alertmanager-prometheus-operator-kube-p-alertmanager-0

2/2 Running 0 119s

prometheus-operator-grafana-95b8f5b7d-nn65h

3/3 Running 0 2m4s

prometheus-operator-kube-p-operator-7d54989595-pdj44

1/1 Running 0 2m4s

prometheus-operator-kube-state-metrics-d95996bc4-wcf7s

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-67xq4

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-b4grn

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-cwhcn

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-h9brd

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-q8zrk

1/1 Running 0 2m4s

prometheus-operator-prometheus-node-exporter-vqpt5

1/1 Running 0 2m4s

prometheus-prometheus-operator-kube-p-prometheus-0

2/2 Running 0 119s

Alternative deployment techniques when using Kustomize

Staged deployments

Generating Kustomize manifests and using kubectl apply commands

68 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/security/https.html#tls-certificate
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/staged-deployment.html

1. Generate an initial set of Kustomize manifests by running the forgeops env

command.

2. Run kubectl apply -k commands to deploy and remove platform components.

Specify a manifest in the kustomize/overlay/my-env directory as an argument

when you run kubectl apply -k commands.

a. Use GitOps to manage configuration changes to the kustomize/overlay/my-

env directory.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

✓ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

1. Verify that you have set up your environment and created a Kubernetes cluster as

documented in the setup section.

2. Enable the Python3 virtual environment:

3. Set up a ForgeOps deployment environment:

If you want to use the issuer provided with the platform for demo, then you

can use default-issuer.

For a clusters on a cloud environment specify the --deployment-size as --

small , --medium , or --large .

For a single-instance deployment, specify --deployment-size as --single-

instance .

In the command above, replace my-fqdn, my-cluster-issuer, and --

deployment-size with appropriate values from your environment.

Next step

Deploy using Kustomize on Minikube

$ source .venv/bin/activate

On cloud platforms

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn --

cluster-issuer my-cluster-issuer --deployment-size

On Minikube

69 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html

In a Minikube environment, use the single instance deployment. For example:

Learn more about deployment sizes in Cluster and deployment sizes and about

single instances here.

4. Identify Docker images to deploy:

If you want to use custom Docker images for the platform, update the image

defaulter file with image names and tags generated by the forgeops build

command. The image defaulter file is located in your environment (my-env)

folder /path/to/forgeops/kustomize/overlay/my-env directory.

You can get the image names and tags from the image defaulter file on the

system on which the customized Docker images were developed.

If you want to use ForgeOps-provided Docker images for the platform, do not

modify the image defaulter file.

Use the forgeops image command to set up the correct component images

to be deployed. The following command sets up the latest ForgeOps-provided

Docker image for deployment:

5. Set up your Kubernetes context:

a. Create a Kubernetes namespace in the cluster for the Ping Identity Platform

pods:

b. Set the active namespace in your Kubernetes context to the Kubernetes

namespace you just created:

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn \

--cluster-issuer my-cluster-issuer --single-instance

$ cd /path/to/forgeops/bin

$./forgeops image --env-name my-env --release 7.5.1

platform

If you want to set up your deployment environment with your own image,

then use the following example command:

NOTE

$ cd /path/to/forgeops/bin

$./forgeops image --release my-image --release-name my-

release --env-name my-env platform

$ kubectl create namespace my-namespace

70 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#single-inst
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html

6. Set up the certificate management, secret agent, and NGINX.

7. Set up the fast storage class using the minikube-fast-storage-class.yaml

file in the /path/to/forgeops/cluster/resources directory:

8. Run the forgeops apply command. Learn more in forgeops apply command

reference.

For example:

The preceding command creates a single-instance ForgeOps deployment. Only

single-instance deployments are supported on Minikube.

If you prefer not to deploy using a single forgeops apply command, you can find

more information in Alternative deployment techniques when using Kustomize.

$ kubens my-namespace

The forgeops repository contains the certmanager-deploy.sh script to

install cert-manager in your cluster. If you need to use a different certificate

management utility, you refer to the corresponding documentation for

installing that utility.

NOTE

$ cd /path/to/forgeops/charts/scripts

$./install-prereqs

$ kubectl apply -f

/path/to/forgeops/cluster/resources/minikube-fast-storage-

class.yaml

$ cd /path/to/forgeops/bin

$./forgeops apply --env-name my-env

Ping Identity only offers its software or services to legal entities that have

entered into a binding license agreement with Ping Identity. When you install

Docker images provided by ForgeOps, you agree either that: 1) you are an

authorized user of a Ping Identity Platform customer that has entered into a

license agreement with Ping Identity governing your use of the Ping Identity

software; or 2) your use of the Ping Identity Platform software is subject to the

Ping Identity Subscription Agreements .

IMPORTANT



71 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#forgeops-apply
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#forgeops-apply
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html
https://www.pingidentity.com/en/legal/subscription-agreement.html

9. Check the status of the pods in the namespace in which you deployed the platform

until all the pods are ready:

a. Run the kubectl get pods command.

b. Review the output. Deployment is complete when:

All entries in the STATUS column indicate Running or Completed .

The READY column indicates all running containers are available. The

entry in the READY column represents [total number of

containers/number of available containers].

c. If necessary, continue to query your deployment’s status until all the pods are

ready.

10. In a separate terminal tab or window, run the minikube tunnel command, and

enter your system’s superuser password when prompted:

The tunnel creates networking that lets you access the Minikube cluster’s ingress on

the localhost IP address (127.0.0.1). Leave the tab or window that started the tunnel

open for as long as you run the ForgeOps deployment.

Refer to this post for an explanation about why a Minikube tunnel is required to

access ingress resources when running Minikube on an ARM-based macOS system.

11. (Optional) Install a TLS certificate instead of using the default self-signed certificate

in your ForgeOps deployment. Refer to TLS certificate for details.

$ minikube tunnel

✅ Tunnel successfully started

📌 NOTE: Please do not close this terminal as this process

must stay alive for the tunnel to be accessible …​

❗ The service/ingress forgerock requires privileged ports to

be exposed: [80 443]

🔑 sudo permission will be asked for it.

❗ The service/ingress ig requires privileged ports to be

exposed: [80 443]

🏃 Starting tunnel for service forgerock.

🔑 sudo permission will be asked for it.

🏃 Starting tunnel for service ig.

Password:



Alternative deployment techniques when using Kustomize

Staged deployments

72 / 248

https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
https://stackoverflow.com/questions/70961901/ingress-with-minikube-working-differently-on-mac-vs-ubuntu-when-to-set-etc-host
file:///home/pptruser/Downloads/build/site/forgeops/prepare/security/https.html#tls-certificate

If you prefer not to perform a ForgeOps Kustomize deployment using a single forgeops

apply command, you can deploy the platform in stages, component by component,

instead of deploying with a single command. Staging deployments can be useful if you

need to troubleshoot a deployment issue.

You can generate Kustomize manifests using the forgeops env command, and then

deploy the platform using the kubectl apply -k command.

The forgeops env command generates Kustomize manifests for your ForgeOps

deployment environment. The manifests are written to the

/path/to/forgeops/kustomize/overlay/my-env directory of your forgeops

repository clone. Advanced users who prefer to work directly with Kustomize manifests

that describe their ForgeOps deployment can use the generated content in the

kustomize/overlay/my-env directory as an alternative to using the forgeops

command:

1. Generate an initial set of Kustomize manifests by running the forgeops env

command.

2. Run kubectl apply -k commands to deploy and remove platform components.

Specify a manifest in the kustomize/overlay/my-env directory as an argument

when you run kubectl apply -k commands.

a. Use GitOps to manage configuration changes to the kustomize/overlay/my-

env directory.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

✓ Deploy the platform

❏ Access platform UIs and APIs

❏ Plan for production deployment

This page shows you how to access and monitor the Ping Identity Platform components

in a ForgeOps deployment.

AM and IDM are configured for access through the Kubernetes cluster’s ingress

controller. You can access these components using their admin UIs and REST APIs.

DS cannot be accessed through the ingress controller, but you can use Kubernetes

methods to access the DS pods.

Generating Kustomize manifests and using kubectl apply commands

Next step

UI and API access

73 / 248

file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/staged-deployment.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html

To access the AM admin UI:

1. Set the active namespace in your local Kubernetes context to the namespace in

which you performed the ForgeOps deployment.

2. Obtain the amadmin user’s password:

3. Open a new window or tab in a web browser.

4. Go to https://my-fqdn/platform.

The Kubernetes ingress controller handles the request, routing it to the login-ui

pod.

The login UI prompts you to log in.

5. Log in as the amadmin user.

The Ping Identity Platform UI appears in the browser.

6. Select Native Consoles > Access Management.

The AM admin UI appears in the browser.

To access the AM REST APIs:

1. Start a terminal window session.

2. Run a curl command to verify that you can access the REST APIs through the

ingress controller. For example:

AM services

$ cd /path/to/forgeops/bin

$./forgeops info | grep amadmin

vr58qt11ihoa31zfbjsdxxrqryfw0s31 (amadmin user)

$ curl \

--insecure \

--request POST \

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password:

vr58qt11ihoa31zfbjsdxxrqryfw0s31 " \

--header "Accept-API-Version: resource=2.0" \

--data "{}" \

"https://my-fqdn/am/json/realms/root/authenticate"

{

"tokenId":"AQIC5wM2...",

74 / 248

To access the IDM admin UI:

1. Set the active namespace in your local Kubernetes context to the namespace in

which you performed the ForgeOps deployment.

2. Obtain the amadmin user’s password:

3. Open a new window or tab in a web browser.

4. Go to https://my-fqdn/platform.

The Kubernetes ingress controller handles the request, routing it to the login-ui

pod.

The login UI prompts you to log in.

5. Log in as the amadmin user.

The Ping Identity Platform UI appears in the browser.

6. Select Native Consoles > Identity Management.

The IDM admin UI appears in the browser.

To access the IDM REST APIs:

1. Start a terminal window session.

2. If you haven’t already done so, get the amadmin user’s password using the

forgeops info command.

3. AM authorizes IDM REST API access using the OAuth 2.0 authorization code flow.

ForgeOps deployments come with the idm-admin-ui client, which is configured to

let you get a bearer token using this OAuth 2.0 flow. You’ll use the bearer token in

the next step to access the IDM REST API:

a. Get a session token for the amadmin user:

"successUrl":"/am/console",

"realm":"/"

}

IDM services

$ cd /path/to/forgeops/bin

$./forgeops info | grep amadmin

vr58qt11ihoa31zfbjsdxxrqryfw0s31 (amadmin user)

$ curl \

--request POST \

--insecure \

75 / 248

https://backstage.forgerock.com/docs/am/7.5/oauth2-guide/oauth2-authz-grant.html

b. Get an authorization code. Specify the ID of the session token that you

obtained in the previous step in the --Cookie parameter:

--header "Content-Type: application/json" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password:

vr58qt11ihoa31zfbjsdxxrqryfw0s31 " \

--header "Accept-API-Version: resource=2.0, protocol=1.0"

\

'https://my-fqdn/am/json/realms/root/authenticate'

{

"tokenId":" AQIC5wM...TU3OQ* ",

"successUrl":"/am/console",

"realm":"/"}

$ curl \

--dump-header - \

--insecure \

--request GET \

--Cookie "iPlanetDirectoryPro= AQIC5wM...TU3OQ* " \

"https://my-fqdn/am/oauth2/realms/root/authorize?

redirect_uri=https://my-

fqdn/platform/appAuthHelperRedirect.html&client_id=idm-

admin-

ui&scope=openid%20fr:idm:*&response_type=code&state=abc123

"

HTTP/2 302

server: nginx/1.17.10

date: Mon, 10 May 2021 16:54:20 GMT

content-length: 0

location: \https://my-

fqdn/platform/appAuthHelperRedirect.html

?code= 3cItL9G52DIiBdfXRngv2_dAaYM &iss=http://my-

fqdn:80/am/oauth2&state=abc123

&client_id=idm-admin-ui

set-cookie: route=1595350461.029.542.7328; Path=/am;

Secure; HttpOnly

x-frame-options: SAMEORIGIN

x-content-type-options: nosniff

cache-control: no-store

pragma: no-cache

set-cookie: OAUTH_REQUEST_ATTRIBUTES=DELETED; Expires=Thu,

01 Jan 1970 00:00:00 GMT; Path=/; HttpOnly; SameSite=none

strict-transport-security: max-age=15724800;

includeSubDomains

76 / 248

c. Exchange the authorization code for an access token. Specify the access code

that you obtained in the previous step in the code URL parameter:

4. Run a curl command to verify that you can access the openidm/config REST

endpoint through the ingress controller. Use the access token returned in the

previous step as the bearer token in the authorization header.

The following example command provides information about the IDM

configuration:

x-forgerock-transactionid:

ee1f79612f96b84703095ce93f5a5e7b

$ curl --request POST \

--insecure \

--data "grant_type=authorization_code" \

--data "code= 3cItL9G52DIiBdfXRngv2_dAaYM " \

--data "client_id=idm-admin-ui" \

--data "redirect_uri=https://my-

fqdn/platform/appAuthHelperRedirect.html" \

"https://my-fqdn/am/oauth2/realms/root/access_token"

{

"access_token":" oPzGzGFY1SeP2RkI-ZqaRQC1cDg ",

"scope":"openid fr:idm:*",

"id_token":"eyJ0eXAiOiJKV

...

sO4HYqlQ",

"token_type":"Bearer",

"expires_in":239

}

$ curl \

--insecure \

--request GET \

--header "Authorization: Bearer oPzGzGFY1SeP2RkI-ZqaRQC1cDg "

\

--data "{}" \

\https://my-fqdn/openidm/config

{

"_id":"",

"configurations":

[

{

"_id":"ui.context/admin",

"pid":"ui.context.4f0cb656-0b92-44e9-a48b-76baddda03ea",

77 / 248

The DS pods in ForgeOps deployment are not exposed outside of the cluster. If you need

to access one of the DS pods, use a standard Kubernetes method:

Execute shell commands in DS pods using the kubectl exec command.

Forward a DS pod’s LDAPS port (1636) to your local computer. Then, you can run

LDAP CLI commands, for example ldapsearch. You can also use an LDAP editor

such as Apache Directory Studio to access the directory.

For all ForgeOps deployment directory pods, the directory superuser DN is uid=admin .

Obtain this user’s password by running the forgeops info command.

This section describes how to access Grafana dashboards and Prometheus UI .

To access Grafana dashboards:

1. Set up port forwarding on your local computer for port 3000:

2. In a web browser, navigate to http://localhost:3000 to access the Grafana

dashboards.

3. Log in as the admin user with password as the password.

When you’re done using the Grafana UI, stop Grafana port forwarding by entering Ctrl+c

in the terminal window where you initiated port forwarding.

For information about Grafana, refer to the Grafana documentation .

To access the Prometheus UI:

"factoryPid":"ui.context"

},

...

]

}

DS command-line access

ForgeOps deployment monitoring

[2]

Grafana

$ /path/to/forgeops/bin/prometheus-connect.sh -G

Forwarding from 127.0.0.1:3000 → 3000

Forwarding from [::1]:3000 → 3000



Prometheus

78 / 248

http://docs.grafana.org/
http://docs.grafana.org/
http://docs.grafana.org/

1. Set up port forwarding on your local computer for port 9090:

2. In a web browser, navigate to http://localhost:9090 to access the Prometheus UI.

When you’re done using the Prometheus UI, stop Prometheus port forwarding by

entering Ctrl+c in the terminal window where you initiated port forwarding.

For information about Prometheus, refer to the Prometheus documentation .

For a description of ForgeOps monitoring architecture and information about how to

customize ForgeOps monitoring, refer to ForgeOps deployment monitoring.

✓ Become familiar with ForgeOps deployments

✓ Understand ForgeOps architecture

✓ Deploy the platform

✓ Access platform UIs and APIs

❏ Plan for production deployment

If you’ve followed the instructions for performing a ForgeOps deployment without

modifying configurations, then the following indicates that you’ve been successful:

The Kubernetes cluster and pods are up and running.

DS, AM, and IDM are installed and running. You can access each ForgeOps

component.

DS replication and failover work as expected.

When you’re satisfied that all of these conditions are met, then you’ve successfully taken

the first steps towards deploying the Ping Identity Platform on Kubernetes.

Congratulations!

You can use the ForgeOps deployment to test deployment customizations—options that

you might want to use in production but are not part of the base deployment.

Examples include, but are not limited to:

Running lightweight benchmark tests

Backing up and restoring your data

Securing TLS with a certificate that’s dynamically obtained from Let’s Encrypt

$ /path/to/forgeops/bin/prometheus-connect.sh -P

Forwarding from 127.0.0.1:9090 → 9090

Forwarding from [::1]:9090 → 9090



Next step

Next steps

[1]

[2]

79 / 248

https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/overview
https://prometheus.io/docs/introduction/overview
file:///home/pptruser/Downloads/build/site/forgeops/prepare/monitoring/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/next-steps.html

Using an ingress controller other than the Ingress-NGINX controller

Resizing the cluster to meet your business requirements

Configuring Alert Manager to issue alerts when usage thresholds have been

reached

Now that you’re familiar with ForgeOps deployments, you’re ready to work with a project

team to plan and configure your production deployment. You’ll need a team with

expertise in the Ping Identity Platform, in your cloud provider, and in Kubernetes on

your cloud provider. We strongly recommend that you engage a Ping Identity technical

consultant or partner to assist you with deploying the platform in production.

You’ll perform these major activities:

Platform configuration—Ping Identity Platform experts configure AM and IDM using

single-instance ForgeOps deployments and build custom Docker images for the Ping

Identity Platform. The Customization overview provides information about platform

configuration tasks.

Cluster configuration—Cloud technology experts configure the Kubernetes cluster that

will host the Ping Identity Platform for optimal performance and reliability. Tasks include

configuring your Kubernetes cluster to suit your business needs, setting up monitoring

and alerts to track site health and performance, backing up configuration and user data

for disaster preparedness, and securing your deployment. The Prepare to deploy in

production and READMEs in the forgeops repository provide information about cluster

configuration.

Site reliability engineering—Site reliability engineers monitor the Ping Identity Platform

deployment and keep the deployment up and running based on your business

requirements. These could include use cases, service-level agreements, thresholds, and

load test profiles. The Prepare to deploy in production, and READMEs in the forgeops

repository, provide information about site reliability.

This page provides instructions for removing ForgeOps deployments for the following

scenarios:

Remove a Helm deployment on GKE, EKS, or AKS

Remove a Helm deployment on Minikube

Remove a Kustomize deployment on GKE, EKS, or AKS

Remove a Kustomize deployment on Minikube

1. Set up your Kubernetes context:

Remove a ForgeOps deployment

Remove a Helm deployment from GKE, EKS, or AKS

80 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/overview.html

a. Set the KUBECONFIG environment variable so that your Kubernetes context

references the cluster in which you deployed the platform.

b. Set the active namespace in your Kubernetes context to the Kubernetes

namespace in which you deployed the platform:

2. Remove the ForgeOps deployment:

Running helm uninstall identity-platform doesn’t delete PVCs and the

amster job from your namespace.

3. (Optional) To delete PVCs, use the kubectl command. For example, to delete

data-ds-idrepo-0 and data-ds-cts-0 :

4. (Optional) To delete the amster job, use the kubectl command:

5. (Optional) Delete your cluster:

a. Change to the directory in your forgeops-extras repository clone that

contains Terraform artifacts:

b. Run the tf-destroy script to create your cluster:

Respond yes to the Do you really want to destroy all resources?

prompt.

1. Set the active namespace in your Kubernetes context to the Kubernetes namespace

in which you deployed the platform:

$ kubens my-namespace

$ cd /path/to/forgeops/charts/identity-platform

$ helm uninstall identity-platform

$ kubectl delete pvc data-ds-idrepo-0 data-ds-cts-0

$ kubectl delete job amster

$ cd /path/to/forgeops-extras/terraform

$./tf-destroy

Remove a Helm deployment from Minikube

$ kubens my-namespace

81 / 248

2. Remove the ForgeOps deployment:

Running helm uninstall identity-platform doesn’t delete PVCs and the

amster job from your namespace.

3. (Optional) To delete PVCs, use the kubectl command. For example, to delete

data-ds-idrepo-0 and data-ds-cts-0 :

4. (Optional) To delete the amster job, use the kubectl command:

5. (Optional) Delete your cluster:

1. Set up your Kubernetes context:

a. Set the KUBECONFIG environment variable so that your Kubernetes context

references the cluster in which you deployed the platform.

b. Set the active namespace in your Kubernetes context to the Kubernetes

namespace in which you deployed the platform:

2. Remove the ForgeOps deployment:

Respond Y to all the OK to delete? prompts.

3. (Optional) Delete your cluster:

a. Change to the directory in your forgeops-extras repository clone that

contains Terraform artifacts:

$ cd /path/to/forgeops/charts/identity-platform

$ helm uninstall identity-platform

$ kubectl delete pvc data-ds-idrepo-0 data-ds-cts-0

$ kubectl delete job amster

$ minikube stop

$ minikube delete

Remove a Kustomize deployment from GKE, EKS, or AKS

$ kubens my-namespace

$ cd /path/to/forgeops/bin

$./forgeops delete --env-name my-env

82 / 248

b. Run the tf-destroy script to create your cluster:

Respond yes to the Do you really want to destroy all resources?

prompt.

1. Set the active namespace in your Kubernetes context to the Kubernetes namespace

in which you deployed the platform:

2. Remove the ForgeOps deployment:

Respond Y to all the OK to delete? prompts.

3. (Optional) Delete your cluster:

This section covers how developers build custom Docker images for the Ping Identity

Platform. It also contains important conceptual material that you need to understand

before you start creating Docker images.

Setup:

❏ Perform additional setup

❏ Understand custom images

DS customization:

$ cd /path/to/forgeops-extras/terraform

$./tf-destroy

Remove a Kustomize deployment from Minikube

$ kubens my-namespace

$ cd /path/to/forgeops/bin

$./forgeops delete --env-name my-env

$ minikube stop

$ minikube delete

Customization overview

Developer checklist

83 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html

❏ Customize the DS image

AM and IDM customization:

❏ Understand AM and IDM configuration

❏ Understand property value substitution

❏ Customize the AM image

❏ Customize the IDM image

This page covers setup tasks that you’ll need to perform before you can develop custom

Docker images for the Ping Identity Platform. Complete all of the tasks on this page

before proceeding.

You must use a single-instance ForgeOps deployment to develop custom Docker images

for the Ping Identity Platform.

Use the following links for information about how to create single-instance ForgeOps

deployments:

Deploy using Helm on GKE, EKS, or AKS

Deploy using Helm on Minikube

Deploy using Kustomize on GKE, EKS, or AKS

Deploy using Kustomize on Minikube

ForgeOps deployments support any container registry that supports Docker containers.

You’ll need to set up your local environment to support your container registry. Here are

setup steps for four commonly-used container registries:

Set up your local environment to execute docker commands on Minikube’s Docker

engine.

The ForgeOps team recommends using the built-in Docker engine when developing

custom Docker images using Minikube. When you use Minikube’s Docker engine, you

don’t have to build Docker images on a local engine and then push the images to a

local or cloud-based Docker registry. Instead, you build images using the same Docker

engine that Minikube uses. This streamlines development.

Additional setup

Use a single-instance ForgeOps deployment

Set up your environment to push to your Docker registry

Docker registry on Minikube

84 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-helm-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-helm-local.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-kustomize-cloud.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-kustomize-local.html

To set up your local computer to use Minikube’s Docker engine, run the docker-env

command in your shell:

For more information about using Minikube’s built-in Docker engine, refer to Use local

images by re-using the Docker daemon in the Minikube documentation.

To set up your local computer to build and push Docker images:

1. If it’s not already running, start a virtual machine that runs Docker engine. Refer

to Docker engine for more information.

2. Set up a Docker credential helper:

To set up your local computer to push Docker images:

1. If it’s not already running, start a virtual machine that runs Docker engine. Refer

to Docker engine for more information.

2. Log in to Amazon ECR:

ECR login sessions expire after 12 hours. Because of this, you’ll need to perform

these steps again whenever your login session expires.

To set up your local computer to push Docker images:

1. If it’s not already running, start a virtual machine that runs Docker engine. Refer

to Docker engine for more information.

2. Install the ACR Docker Credential Helper .

When you execute the forgeops build command, you must specify the repository to

push your Docker image to with the --push-to argument.

$ eval $(minikube docker-env)



Google Cloud Artifact Registry or Container Registry

$ gcloud auth configure-docker

AWS Elastic Container Registry

$ aws ecr get-login-password | \

docker login --username AWS --password-stdin my-docker-

registry

Login Succeeded

[10]

Azure Container Registry



Identify the Docker repository to push to

85 / 248

https://kubernetes.io/docs/setup/learning-environment/minikube/#use-local-images-by-re-using-the-docker-daemon
https://kubernetes.io/docs/setup/learning-environment/minikube/#use-local-images-by-re-using-the-docker-daemon
https://kubernetes.io/docs/setup/learning-environment/minikube/#use-local-images-by-re-using-the-docker-daemon
https://kubernetes.io/docs/setup/learning-environment/minikube/#use-local-images-by-re-using-the-docker-daemon
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#docker-gcp
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#docker-aws
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#docker-azure
https://github.com/Azure/acr-docker-credential-helper
https://github.com/Azure/acr-docker-credential-helper
https://github.com/Azure/acr-docker-credential-helper

The forgeops build command appends a component name to the destination

repository. For example, the command forgeops build am --push-to us-

docker.pkg.dev/my-project pushes a Docker image to the us-

docker.pkg.dev/my-project/am repository.

To determine how to specify the --push-to argument for four commonly-used

container registries:

Specify --push-to none with the forgeops build command to push the Docker

image to the Docker registry embedded in the Minikube cluster.

Obtain the --push-to location from your cluster administrator. After it builds the

Docker image, the forgeops build command pushes the Docker image to this

repository.

Obtain the --push-to location from your cluster administrator. After it builds the

Docker image, the forgeops build command pushes the Docker image to this

repository.

Obtain the --push-to location from your cluster administrator. After it builds the

Docker image, the forgeops build command pushes the Docker image to this

repository.

Deployment environments let you manage deployment manifests and image defaulters

for multiple environments in a single forgeops repository clone.

By default, the forgeops build command updates the image defaulter in the

kustomize/deploy directory.

When you specify a deployment environment, the forgeops build command updates

the image defaulter in the kustomize/deploy-environment directory. For example, if

you ran forgeops build --deploy-env production, the image defaulter in the

kustomize/deploy-production/image-defaulter directory would be updated.

Before you can use a new deployment environment, you must initialize a directory

based on the /path/to/forgeops/kustomize/deploy directory to support the

deployment environment. Perform these steps to initialize a new deployment

environment:

Docker registry on Minikube

Google Cloud Artifact Registry or Container Registry

AWS Elastic Container Registry

Azure Container Registry

Initialize deployment environments

86 / 248

✓ Perform additional setup

❏ Understand custom images

❏ Customize the DS image

❏ Understand AM and IDM configuration

❏ Understand property value substitution

❏ Customize the AM image

❏ Customize the IDM image

To develop customized Docker images, start with ForgeOps-provided images. Then,

build your configuration profile iteratively as you customize the platform to meet your

needs. Building Docker images from time to time integrates your custom configuration

profile into new Docker images.

To develop a customized DS Docker image, refer to ds image.

To develop a customized AM Docker image, refer to am image.

To develop a customized IDM Docker image, refer to idm image.

$ cd /path/to/forgeops/bin

$./forgeops clean

$ cd ../kustomize

$ cp -rp deploy deploy-my-environment

If you need multiple deployment environments, you’ll need to initialize each

environment before you can start using it.

NOTE

Next step

About custom images

In development

87 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

Customized Docker Image for Developers

ForgeOps-provided

Docker Image

+ config

Customized
Configuration

Profile

Before you deploy the platform in production, you can build your own base images and

integrate your configuration profiles into them.

Learn more about how to create Docker images for production deployment of the

platform in Base Docker images.

Customized Docker Image in Production

FROM my-registry/am-base...

Your Base

Docker Image

+ config

Customized
Configuration

Profile

✓ Perform additional setup

✓ Understand custom images

❏ Customize the DS image

❏ Understand AM and IDM configuration

❏ Understand property value substitution

In production

Next step

88 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html

❏ Customize the AM image

❏ Customize the IDM image

The ds Docker image contains the DS configuration. You can customize the DS image

before deploying it in your production environment.

This section covers:

Customize LDAP configuration by including LDIF format LDAP configuration files in

ldif-ext directory.

Customize LDAP schema by including customized schema LDIF files in the config

directory.

Customize DS setup behavior by updating the setup and post-init runtime scripts in

the runtime-scripts directory.

Build an updated DS Docker image that contains the above-mentioned

customizations.

Redeploy DS.

Verify the changes you’ve made to the DS configuration are in the new Docker

image.

1. Verify that:

You have access to a single-instance ForgeOps deployment.

The namespace where the platform is deployed is set in your Kubernetes

context.

All required third-party software is installed in your local environment

(Minikube|GKE|EKS|AKS).

You have set up your environment to push to your Docker registry.

2. Perform version control activities on your forgeops repository clone:

a. Run the git status command.

b. (Optional) Run the git commit command to commit the changes.

3. Add your DS customizations:

a. Learn more at custom LDAP configuration to add LDAP configuration.

ds image

The customization described here is for use in new Ping Identity Platform

deployments.

NOTE

Detailed steps



89 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#docker-push
https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-configuration-3
https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-configuration-3
https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-configuration-3

b. Learn more in custom LDAP schema to add LDAP schema.

c. Customize DS’s setup behavior in the /path/to/forgeops/docker/ds/ds-

new directory:

i. To set up profiles and indexes, edit the runtime-scripts/setup script.

Learn more in setup script details .

ii. To add custom configurations after indexes have been rebuilt, edit the

runtime-scripts/post-init script. Learn more in post-init script

details .

iii. To prepare the DS docker image for setup, edit the ds-setup.sh script.

Learn more in ds-setup.sh script details .

4. Identify the repository where you’ll push the Docker image. You’ll use this location

to specify the --push-to argument value in the build ds image step.

5. Decide on the DS image tag for each build of the image. You’ll use this tag to specify

the --tag argument value in the build DS image step.

6. Build a new DS image that includes your customization:

7. Redeploy DS using your new DS image:

The forgeops build command calls Docker to build a new ds Docker image

and to push the image to your Docker repository. The new image includes your

custom LDAP and schema files. It also updates the image defaulter file so that the

next time you install DS, the deployed DS server includes your custom DS image.

Perform version control activities on your forgeops repository clone:

1. Run the git status command.

Review the state of the kustomize/deploy/image-

defaulter/kustomization.yaml file.

2. (Optional) Run the git commit command to commit changes to the image

defaulter file.

3. Remove DS from your ForgeOps deployment:









$ cd /path/to/forgeops/bin

$./forgeops build ds --env-name my-env --config-profile my-

profile --push-to my-repo --tag my-ds-tag

Deploy using the forgeops command Deploy using Helm

$./forgeops delete ds --env-name my-env

...

deployment.apps "ds" deleted

90 / 248

https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-schema-4
https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-schema-4
https://community.forgerock.com/t/forgeops-ds-customization-guide-7-4-7-5/5525#adding-custom-ldap-schema-4
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#setup-15
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#setup-15
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#setup-15
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#post-init-12
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#post-init-12
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#post-init-12
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#post-init-12
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#ds-setupsh-5
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#ds-setupsh-5
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522#ds-setupsh-5
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#push-to

4. Delete the PVCs attached to DS pods using the kubectl delete pvc

command.

5. Redeploy DS using the new Docker image:

✓ Perform additional setup

✓ Understand custom images

✓ Customize the DS image

❏ Understand AM and IDM configuration

❏ Understand property value substitution

❏ Customize the AM image

❏ Customize the IDM image

AM and IDM use two types of configuration: static configuration and dynamic

configuration.

Static configuration consists of properties and settings used by the Ping Identity

Platform. Examples of static configuration include AM realms, AM authentication trees,

IDM social identity provider definitions, and IDM data mapping models for reconciliation.

Static configuration is stored in JSON configuration files. Because of this, static

configuration is also referred to as file-based configuration.

You build static configuration into the am and idm Docker images during development

using the following general process:

1. Change the AM or IDM configuration in a single-instance ForgeOps deployment

using the UIs and APIs.

2. Export the changes to your forgeops repository clone.

3. Build a new AM or IDM Docker image that contains the updated configuration.

$./forgeops apply ds --env-name my-env --single-instance

Checking cert-manager and related CRDs: cert-manager CRD

found in cluster.

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster

Next step

am and idm images

Static configuration

91 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

4. Restart Ping Identity Platform services using the new Docker images.

5. Test your changes. Incorrect changes to static configuration might cause the

platform to become inoperable.

6. Promote your changes to your test and production environments as desired.

Refer to am image and idm image for more detailed steps.

In Ping Identity Platform deployments, static configuration is immutable. Do not change

static configuration in testing or production. Instead, if you need to change static

configuration, return to the development phase, make your changes, and build new

custom Docker images that include the changes. Then, promote the new images to your

test and production environments.

Dynamic configuration consists of access policies, applications, and data objects used by

the Ping Identity Platform. Examples of dynamic configuration include AM access

policies, AM agents, AM OAuth 2.0 client definitions, IDM identities, and IDM

relationships.

Dynamic configuration can change at any time, including when the platform is running in

production.

You’ll need to devise a strategy for managing AM and IDM dynamic configuration, so that

you can:

Extract sample dynamic configuration for use by developers.

Back up and restore dynamic configuration.

You can use one or both of the following techniques to manage AM dynamic

configuration:

Use the amster utility to manage AM dynamic configuration. For example:

1. Make modifications to AM dynamic configuration by using the AM admin UI.

2. Export the AM dynamic configuration to your local file system by using the

amster utility. You might manage these files in a Git repository. For example:

Dynamic configuration

Tips for managing AM dynamic configuration

$ cd /path/to/forgeops/bin

$ mkdir /tmp/amster

$./amster export /tmp/amster

Cleaning up amster components

Packing and uploading configs

configmap/amster-files created

92 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

3. If desired, import these files into another AM deployment by using the amster

import command.

Note that the amster utility automatically converts passwords in AM dynamic

configuration to configuration expressions. Because of this, passwords in AM

configuration files will not appear in cleartext. For details about how to work with

dynamic configuration that has passwords and other properties specified as

configuration expressions, refer to Export Utilities and Configuration Expressions.

Write REST API applications to import and export AM dynamic configuration. For

more information, refer to Rest API in the AM documentation.

You can use one or both of the following techniques to manage IDM dynamic

configuration:

Migrate dynamic configuration by using IDM’s Data Migration Service. For more

information, refer to Migrate Data in the IDM documentation.

Write REST API applications to import and export IDM dynamic configuration. For

more information, refer to the Rest API Reference in the IDM documentation.

A Ping Identity Platform configuration profile is a named set of configuration that

describes the operational characteristics of a running ForgeOps deployment. A

configuration profile consists of:

AM static configuration

configmap/amster-export-type created

configmap/amster-retain created

Deploying amster

job.batch/amster created

Waiting for amster job to complete. This can take several

minutes.

pod/amster-r99l9 condition met

tar: Removing leading `/' from member names

Updating amster config.

Updating amster config complete.

Cleaning up amster components

job.batch "amster" deleted

configmap "amster-files" deleted

configmap "amster-export-type" deleted

configmap "amster-retain" deleted

Tips for managing IDM dynamic configuration

Configuration profiles

93 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html#export-config-expr
https://backstage.forgerock.com/docs/am/7.5/REST-guide/preface.html
https://backstage.forgerock.com/docs/idm/7.5/upgrade-guide/data-migration.html
https://backstage.forgerock.com/docs/idm/7.5/rest-api-reference/preface.html

IDM static configuration

Configuration profiles reside in the following paths in the forgeops repository:

docker/am/config-profiles

docker/idm/config-profiles

User-customized configuration profiles are stored in subdirectories of these paths. For

example, a configuration profile named my-profile would be stored in the paths

docker/am/config-profiles/my-profile and docker/idm/config-

profiles/my-profile.

Use Git to manage the directories that contain configuration profiles.

✓ Perform additional setup

✓ Understand custom images

✓ Customize the DS image

✓ Understand AM and IDM configuration

❏ Understand property value substitution

❏ Customize the AM image

❏ Customize the IDM image

Many property values in ForgeOps deployments' canonical configuration profile are

specified as configuration expressions instead of as hard-coded values. Fully-qualified

domain names (FQDNs), passwords, and several other properties are all specified as

configuration expressions.

Configuration expressions are property values in the AM and IDM configurations that

are set when AM and IDM start up. Instead of being set to fixed, hard-coded values in

the AM and IDM configurations, their values vary, depending on conditions in the run-

time environment.

Using configuration expressions lets you use a single configuration profile that takes

different values at run-time depending on the deployment environment. For example,

you can use a single configuration profile for development, test, and production

deployments.

In the Ping Identity Platform, configuration expressions are preceded by an ampersand

and enclosed in braces. For example, &{am.encryption.key} .

The statement, am.encryption.pwd=&{am.encryption.key} in the AM configuration

indicates that the value of the property, am.encryption.pwd , is determined when AM

Next step

About property value substitution

94 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

starts up. Contrast this with a statement, am.encryption.pwd=myPassw0rd , which sets

the property to a hard-coded value, myPassw0rd , regardless of the run-time

environment.

This example shows how property value substitution works for a value specified as a

configuration expression in the AM configuration:

1. Search the /path/to/forgeops/docker directory for the string &{ .

2. Locate this line in your search results:

Because the property am.encryption.pwd is being set to a configuration

expression, its value will be determined when AM starts up.

3. Search the forgeops repository for the string AM_ENCRYPTION_KEY . You’ll notice

that the secret agent operator sets the environment variable, AM_ENCRYPTION_KEY .

The property, am.encryption.pwd , will be set to the value of the environment

variable, AM_ENCRYPTION_KEY when AM starts up.

Configuration expressions take their values from environment variables as follows:

Uppercase characters replace lowercase characters in the configuration

expression’s name.

Underscores replace periods in the configuration expression’s name.

For more information about configuration expressions, refer to Property Value

Substitution in the IDM documentation.

This section covers differences in how forgeops repository utilities export

configuration that contains configuration expressions from a running ForgeOps

deployment.

The IDM admin UI is aware of configuration expressions.

Passwords specified as configuration expressions in the IDM admin UI are stored in

IDM’s JSON-based configuration files as configuration expressions.

IDM static configuration export

The forgeops repository’s bin/config export idm command exports IDM static

configuration from running ForgeOps deployments to your forgeops repository clone.

How property value substitution works

"am.encryption.pwd=&{am.encryption.key}",

Export utilities and configuration expressions

In the IDM configuration

95 / 248

https://backstage.forgerock.com/docs/idm/7.5/setup-guide/using-property-substitution.html
https://backstage.forgerock.com/docs/idm/7.5/setup-guide/using-property-substitution.html

The config utility makes no changes to IDM static configuration; if properties are

specified as configuration expressions, the configuration expressions are preserved in

the IDM configuration.

The AM admin UI is not aware of configuration expressions.

Properties cannot be specified as configuration expressions in the AM admin UI; they

must be specified as string values. The string values are preserved in the AM

configuration.

AM supports specifying configuration expressions in both static and dynamic

configuration.

AM static configuration export

The forgeops repository’s bin/config export am command exports AM static

configuration from running ForgeOps deployments to your forgeops repository clone.

All AM static configuration properties, including passwords, have string values. However,

after the config utility copies the AM static configuration from the forgeops

repository, it calls the AM configuration upgrader. The upgrader transforms the AM

configuration, following rules in the etc/am-upgrader-

rules/placeholders.groovy file.

These rules tell the upgrader to convert a number of string values in AM static

configuration to configuration expressions. For example, there are rules to convert all

the passwords in AM static configuration to configuration expressions.

You’ll need to modify the etc/am-upgrader-rules/placeholders.groovy file if:

You add AM static configuration that contains new passwords.

You want to change additional properties in AM static configuration to use

configuration expressions.

AM dynamic configuration export

The forgeops repository’s bin/amster export command exports AM dynamic

configuration from running ForgeOps deployments to your forgeops repository clone.

When dynamic configuration is exported, it contains properties with string values. The

amster utility transforms the values of several types of properties to configuration

expressions:

Passwords

In the AM configuration

An alternative to modifying the etc/am-upgrader-

rules/placeholders.groovy file is using the jq command to modify the output

from the config utility.

NOTE

96 / 248

Fully-qualified domain names

The Amster version

The Secret Agent configuration computes and propagates passwords for AM dynamic

configuration. You’ll need to modify the

kustomize/base/secrets/secret_agent_config.yaml file if:

You add new AM dynamic configuration that contains passwords to be generated.

You want to hard code a specific value for an existing password, instead of using a

generated password.

Limitations on property value substitution in AM

AM doesn’t support property value substitution for several types of configuration

properties. Refer to Property value substitution in the AM documentation for more

information.

✓ Perform additional setup

✓ Understand custom images

✓ Customize the DS image

✓ Understand AM and IDM configuration

✓ Understand property value substitution

❏ Customize the AM image

❏ Customize the IDM image

The am Docker image contains the AM configuration.

Customize AM’s configuration data by using the AM admin UI and REST APIs.

Capture changes to the AM configuration by exporting them from the AM service

running on Kubernetes to the staging area.

Save the modified AM configuration to a configuration profile in your forgeops

repository clone.

Build an updated am Docker image that contains your customizations.

Redeploy AM.

Verify that changes you’ve made to the AM configuration are in the new Docker

image.

Next step

am image

Customization overview

97 / 248

https://backstage.forgerock.com/docs/am/7.5/setup-guide/property-value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

1. Verify that:

You have access to a single-instance ForgeOps deployment.

The namespace where the platform is deployed is set in your Kubernetes

context.

All required third-party software is installed in your local environment

(Minikube|GKE|EKS|AKS).

You have set up your environment to push to your Docker registry.

2. Perform version control activities on your forgeops repository clone:

a. Run the git status command.

b. Review the state of the docker/am/config-profiles/my-profile

directory.

c. (Optional) Run the git commit command to commit changes to files that have

been modified.

3. Modify the AM configuration using the AM admin UI or the REST APIs.

You can find more information about how to access the AM admin UI or REST APIs

in AM Services.

You can find important information about configuring values that vary at run-time,

such as passwords and host names in About property value substitution.

4. Export the changes you made to the AM configuration in the running ForgeOps

deployment to a configuration profile:

Detailed steps

$ cd /path/to/forgeops/bin

$./config export am my-profile --sort

[INFO] Running export for am in am-6fb64659f-bmdhh

[INFO] Updating existing profile:

/path/to/forgeops/docker/am/config-profiles/my-profile

[INFO] Clean profile: /path/to/forgeops/docker/am/config-

profiles/my-profile

[INFO] Exported AM config

[INFO] Running AM static config through the am-config-upgrader

to upgrade to the current version of forgeops.

+ docker run --rm --user 502:20 --volume

/path/to/forgeops/docker/am/config-profiles/my-profile:/am-

config ...

Reading existing configuration from files in /am-

config/config/services...

98 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#docker-push
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#am-services-cdm
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html

If the configuration profile doesn’t exist yet, the config export command creates

it.

The config export am my-profile command copies AM static configuration

from the ForgeOps deployment to the configuration profile:

Modifying configuration based on rules in

[/rules/latest.groovy]...

reading configuration from file-based config files

Writing configuration to new location at /am-

config/config/services...

Upgrade Completed, modified configuration saved to /am-

config/config/services

[INFO] Completed upgrading AM configuration

[INFO] Running AM static config through the am-config-upgrader

to replace any missing default placeholders.

+ docker run --rm --user 502:20 --volume

/path/to/forgeops/docker/am/config-profiles/my-profile:/am-

config

...

Reading existing configuration from files in /am-

config/config/services...

Modifying configuration based on rules in

[/rules/placeholders.groovy]...

reading configuration from file-based config files

...

Writing configuration to new location at /am-

config/config/services...

Upgrade Completed, modified configuration saved to /am-

config/config/services

[INFO] Completed replacing AM placeholders

[INFO] Completed export

[INFO] Sorting configuration.

[INFO] Sorting completed.

99 / 248

docker

am

Overwrite

Single-instance ForgeOps deployment

config-
profiles

my-
profile

5. Perform version control activities on your forgeops repository clone:

a. Review the differences in the files you exported to the configuration profile. For

example:

Note that if this is the first time that you have exported AM configuration

changes to this configuration profile, the git diff command will not show

$ git diff

diff --git a/docker/am/config-profiles/my-

profile/config/services/realm/root/selfservicetrees/1.0/or

ganizationconfig/default.json b/docker/am/config-

profiles/my-

profile/config/services/realm/root/selfservicetrees/1.0/or

ganizationconfig/default.json

index 970c5a257..19f4f17f0 100644

--- a/docker/am/config-profiles/my-

profile/config/services/realm/root/selfservicetrees/1.0/or

ganizationconfig/default.json

+ b/docker/am/config-profiles/my-

profile/config/services/realm/root/selfservicetrees/1.0/or

ganizationconfig/default.json

@@ -9,6 +9,7 @@

"enabled": true,

"treeMapping": {

"Test": "Test",

+ "Test1": "Test1",

"forgottenUsername": "ForgottenUsername",

"registration": "Registration",

"resetPassword": "ResetPassword",

100 / 248

any changes.

b. Run the git status command.

c. If you have new untracked files in your clone, run the git add command.

d. Review the state of the docker/am/config-profiles/my-profile

directory.

e. (Optional) Run the git commit command to commit changes to files that have

been modified.

6. Identify the repository to which you’ll push the Docker image. You’ll use this location

to specify the --push-to argument value in the build am image step.

7. Decide on the image tag name to tag each build of the image. You’ll use this tag

name to specify the --tag argument in the build am image step.

8. Build a new am image that includes your changes to AM static configuration:

9. Redeploy AM using your new AM image:

While the forgeops build command uses the Docker engine by default for

ForgeOps deployments, it supports Podman as well. If you are using Podman

engine instead of Docker in your environment, then set the

CONTAINER_ENGINE environment variable to podman before running the

forgeops build command, for example:

NOTE

$ export CONTAINER_ENGINE="podman"

$./forgeops build am --env-name my-env --config-profile my-

profile --push-to my-repo --tag my-am-tag

Flag --short has been deprecated, and will be removed in the

future.

[+] Building 3.2s (10/10) FINISHED

...

⇒ [5/5] WORKDIR /home/forgerock

⇒ exporting to image

⇒ ⇒ exporting layers

⇒ ⇒ writing image sha256:...

⇒ ⇒ naming to docker.io/library/am

What’s Next?

View a summary of image vulnerabilities and recommendations

→ docker scout quickview

Updated the image_defaulter with your new image for am: "am".

101 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#push-to

If you installed the platform using the forgeops command, follow the steps in

Redeploy AM: Kustomize deployments.

If you installed the platform using Helm, follow the steps in Redeploy AM: Helm

deployments.

The forgeops build command calls Docker to build a new am Docker image and to

push the image to your Docker repository. The new image includes your configuration

profile. It also updates the image defaulter file so that the next time you install AM, the

forgeops apply command gets AM static configuration from your new custom Docker

image.

forgeops build

Image

Defaulter

config-
profiles/

my-profile

1. Perform version control activities on your forgeops repository clone:

a. Run the git status command.

b. Review the state of the kustomize/deploy/image-

defaulter/kustomization.yaml file.

c. (Optional) Run the git commit command to commit changes to the image

defaulter file.

2. Remove AM from your ForgeOps deployment:

3. Redeploy AM:

Redeploy AM: Kustomize deployments



$./forgeops delete am --env-name my-env

... platform detected in namespace: "my-namespace".

Uninstalling component(s): ['am'] from namespace: "my-

namespace".

OK to delete components? [Y/N] Y

service "am" deleted

deployment.apps "am" deleted

102 / 248

https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml

4. Validate that AM has the expected configuration:

Run the kubectl get pods command to monitor the status of the AM pod.

Wait until the pod is ready before proceeding to the next step.

Describe the AM pod. Locate the tag of the Docker image that Kubernetes

loaded, and verify that it’s your new custom Docker image’s tag.

Start the AM admin UI and verify that your configuration changes are present.

1. Locate the Successfully tagged message in the forgeops build output, which

contains the new AM Docker image’s repository and tag.

2. Redeploy AM using the new AM Docker image:

3. Validate that AM has the expected configuration:

Run the kubectl get pods command to monitor the status of the AM pod.

Wait until the pod is ready before proceeding to the next step.

Describe the AM pod. Locate the tag of the Docker image that Kubernetes

loaded, and verify that it’s your new custom Docker image’s tag.

Start the AM admin UI and verify that your configuration changes are present.

✓ Perform additional setup

$./forgeops apply am --env-name my-env --single-instance

Checking cert-manager and related CRDs: cert-manager CRD found

in cluster.

Checking secret-agent operator and related CRDs: secret-agent

CRD found in cluster

Installing component(s): ['am'] ... from deployment manifests

in ...

service/am created

deployment.apps/am created

Enjoy your deployment!

Redeploy AM: Helm deployments

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade identity-platform ./ \

--version 2025.1.1 --namespace my-namespace \

--set 'am.image.repository=my-repository' \

--set 'am.image.tag=my-am-tag' \

--values /path/to/forgeops/helm/my-env/values.yaml

Next step

103 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html

✓ Understand custom images

✓ Customize the DS image

✓ Understand AM and IDM configuration

✓ Understand property value substitution

✓ Customize the AM image

❏ Customize the IDM image

The idm Docker image contains the IDM configuration.

Customize IDM’s configuration data by using the IDM admin UI and REST APIs.

Capture changes to the IDM configuration by exporting them from the IDM service

running on Kubernetes to the staging area.

Save the modified IDM configuration to a configuration profile in your forgeops

repository clone.

Build an updated idm Docker image that contains your customizations.

Redeploy IDM.

Verify that changes you’ve made to the IDM configuration are in the new Docker

image.

1. Verify that:

You have access to a single-instance ForgeOps deployment.

The namespace where the platform is deployed is set in your Kubernetes

context.

All required third-party software is installed in your local environment

(Minikube|GKE|EKS|AKS).

You have set up your environment to push to your Docker registry.

2. Perform version control activities on your forgeops repository clone:

a. Run the git status command.

b. Review the state of the docker/idm/config-profiles/my-profile

directory.

c. (Optional) Run the git commit command to commit changes to files that have

been modified.

idm image

Customization overview

Detailed steps

104 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#docker-push

3. Modify the IDM configuration using the IDM admin UI or the REST APIs.

For information about how to access the IDM admin UI or REST APIs, refer to IDM

Services.

Refer to About property value substitution for important information about

configuring values that vary at run-time, such as passwords and host names.

4. Export the changes you made to the IDM configuration in the running ForgeOps

deployment to a configuration profile:

If the configuration profile doesn’t exist yet, the config export command creates

it.

The config export idm my-profile command copies IDM static configuration

from the ForgeOps deployment to the configuration profile:

docker

idm

Overwrite

Single-instance ForgeOps deployment

config-
profiles

my-
profile

5. Perform version control activities on your forgeops repository clone:

$ cd /path/to/forgeops/bin

$./config export idm my-profile --sort

[.cyan][INFO] Running export for idm in idm-6b9db8cd7c-s7d46

[INFO] Updating existing profile:

/path/to/forgeops/docker/idm/config-profiles/my-profile/conf

[INFO] Creating a new profile:

/path/to/forgeops/docker/idm/config-profiles/my-

profile/ui/admin/default/config#

tar: Removing leading `/' from member names

[INFO] Completed export

[INFO] Sorting configuration.

[INFO] Sorting completed.

105 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#idm-services-cdm
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#idm-services-cdm
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html

a. Review the differences in the files you exported to the configuration profile. For

example:

Note that if this is the first time that you have exported IDM configuration

changes to this configuration profile, the git diff command will not show

any changes.

b. Run the git status command.

c. If you have new untracked files in your clone, run the git add command.

d. Review the state of the docker/idm/config-profiles/my-profile

directory.

e. (Optional) Run the git commit command to commit changes to files that have

been modified.

6. Identify the repository to which you’ll push the Docker image. You’ll use this location

to specify the --push-to argument value in the build idm image step.

7. Decide on the image tag name so you can tag each build of the image. You’ll use this

tag name to specify the --tag argument value in the build idm image step.

8. Build a new idm image that includes your changes to IDM static configuration:

$ git diff

diff --git a/docker/idm/config-profiles/my-

profile/conf/audit.json b/docker/idm/config-profiles/my-

profile/conf/audit.json

index 0b3dbeed6..1e5419eeb 100644

--- a/docker/idm/config-profiles/my-

profile/conf/audit.json

+ b/docker/idm/config-profiles/my-profile/conf/audit.json

@@ -135,7 +135,9 @@

},

"exceptionFormatter": {

"file":

"bin/defaults/script/audit/stacktraceFormatter.js",

- "globals": {},

+ "globals": {

+ "Test": "Test value"

+ },

"type": "text/javascript"

}

}

NOTE

106 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#push-to

9. Redeploy IDM using your new IDM image:

If you installed the platform using the forgeops command, follow the steps in

Redeploy IDM: Kustomize deployments.

While the forgeops build command uses the Docker engine by default for

ForgeOps deployments, it supports Podman as well. If you are using Podman

engine instead of Docker in your environment, then set the

CONTAINER_ENGINE environment variable to podman before running the

forgeops build command, for example:

NOTE

$ export CONTAINER_ENGINE="podman"

$./forgeops build idm --env-name my-env --config-profile my-

profile --push-to my-repo --tag my-idm-tag

Flag --short has been deprecated, and will be removed in the

future.

[+] Building 3.3s (12/12) FINISHED

docker:default

⇒ [internal] load build definition from Dockerfile

⇒ ⇒ transferring dockerfile: 1.09kB

...

⇒ [internal] load metadata for us-docker.pkg.dev/forgeops-

public/images-base/idm:...

2.0s

⇒ [internal] load build context

0.1s

⇒ ⇒ transferring context: 563.76kB

...

⇒ [7/7] COPY --chown=forgerock:root /opt/openidm

⇒ exporting to image

⇒ ⇒ exporting layers

⇒ ⇒ writing image

⇒ ⇒ naming to docker.io/library/idm

What’s Next?

View a summary of image vulnerabilities and recommendations

→ docker scout quickview

Updated the image_defaulter with your new image for idm:

"idm".

107 / 248

If you installed the platform using Helm, follow the steps in Redeploy IDM:

Helm deployments.

The forgeops build command calls Docker to build a new idm Docker image and to

push the image to your Docker repository. The new image includes your configuration

profile. It also updates the image defaulter file so that the next time you install IDM,

the forgeops apply command gets IDM static configuration from your new custom

Docker image.

forgeops build

Image

Defaulter

config-
profiles/

my-profile

1. Perform version control activities on your forgeops repository clone:

a. Run the git status command.

b. Review the state of the kustomize/deploy/image-

defaulter/kustomization.yaml file.

c. (Optional) Run the git commit command to commit changes to the image

defaulter file.

2. Remove IDM from your ForgeOps deployment:

3. Redeploy IDM:

Redeploy IDM: Kustomize deployments



$./forgeops delete idm --env-name my-env

"cdk" platform detected in namespace: "my-namespace".

Uninstalling component(s): ['idm'] from namespace: "my-

namespace".

OK to delete components? [Y/N] Y

service "idm" deleted

deployment.apps "idm" deleted

$./forgeops apply idm --env-name my-env --single-instance

Checking cert-manager and related CRDs: cert-manager CRD found

108 / 248

https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/deploy/image-defaulter/kustomization.yaml

4. Validate that IDM has the expected configuration:

Run the kubectl get pods command to monitor the status of the IDM pod.

Wait until the pod is ready before proceeding to the next step.

Describe the IDM pod. Locate the tag of the Docker image that Kubernetes

loaded, and verify that it’s your new custom Docker image’s tag.

Start the IDM admin UI and verify that your configuration changes are present.

1. Locate the Successfully tagged message in the forgeops build output, which

contains the new IDM Docker image’s repository and tag.

2. Redeploy IDM using the new IDM Docker image:

3. Validate that IDM has the expected configuration:

Run the kubectl get pods command to monitor the status of the AM pod.

Wait until the pod is ready before proceeding to the next step.

Describe the IDM pod. Locate the tag of the Docker image that Kubernetes

loaded, and verify that it’s your new custom Docker image’s tag.

Start the IDM admin UI and verify that your configuration changes are present.

✓ Perform additional setup

✓ Understand custom images

in cluster.

Checking secret-agent operator and related CRDs: secret-agent

CRD found in cluster

Installing component(s): ['idm'] platform: ...

configmap/idm created

configmap/idm-logging-properties created

service/idm created

deployment.apps/idm created

Enjoy your deployment!

Redeploy IDM: Helm deployments

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade identity-platform ./ \

--version 2025.1.1 --namespace my-namespace \

--set 'idm.image.repository=my-repository' \

--set 'idm.image.tag=my-idm-tag' \

--values /path/to/forgeops/helm/my-env/values.yaml

Next step

109 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/custom-images.html

✓ Customize the DS image

✓ Understand AM and IDM configuration

✓ Understand property value substitution

✓ Customize the AM image

✓ Customize the IDM image

ForgeOps provides 11 Docker images for deploying the Ping Identity Platform:

Eight component base images:

amster

am-cdk

am-config-upgrader

ds

idm-cdk

ig

java-17

Four base images that implement the platform’s user interface elements and

ForgeOps operators:

platform-admin-ui

platform-enduser-ui

platform-login-ui

secret-agent

1. Set up your local ForgeOps deployment environment using the forgeops env

command.

Customized Docker images

Before you begin building custom images, ensure that you are using Java version 17

on your computer. For example:

NOTE

$ java --version

openjdk 17.0.10 2024-01-16

OpenJDK Runtime Environment Temurin-17.0.10+7 (build 17.0.10+7)

OpenJDK 64-Bit Server VM Temurin-17.0.10+7 (build 17.0.10+7, mixed

mode)

Building deployable ForgeOps Docker images

110 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/am.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/idm.html

2. Select the ForgeOps image release you want to use for building your images.

The following example uses the 7.5.1 image release from ForgeOps and names

locally as my-7.5.1:

3. Copy your customized AM and IDM configuration profiles to the

docker/am/config-profiles and docker/idm/config-profiles directories

respectively.

If you don’t have a ForgeOps deployment, you may not have customized

configuration profiles. So you can ignore this step to create the first ForgeOps

deployment.

4. Build your custom docker images. Use the --push-to option of the forgeops

build command to push the customized images to your Docker repository.

If you don’t have customized configuration profiles, then you don’t specify the --

config-profile my-profile option.

$./bin/forgeops env --env-name my-env

Updating existing overlay.

Helm environment dir exists, but has no values.yaml.

When creating a new environment, it’s best practice to specify

a HTTPS

certificate issuer (--issuer or --cluster-issuer).

You can also skip issuer creation with --skip-issuer.

For demos, you can use 'bin/certmanager-deploy.sh' to deploy

cert-manager and

create a self-signed ClusterIssuer called 'default-issuer'.

Continue using a ClusterIssuer called "default-issuer"? [Y/N]

y

Using ClusterIssuer: default-issuer

$./bin/forgeops image --release 7.5.1 --release-name my-7.5.1

platform

...

Updating release file(s) for docker builds [my-7.5.1]

$./bin/forgeops build --env-name my-env \

--release-name my-7.5.1 \

--config-profile my-profile --push-to my-repo platform

111 / 248

You can use the --dryrun option to validate your forgeops build command

before actual execution. For example:

5. Perform a ForgeOps deployment using your customized Docker images.

$./bin/forgeops build --env-name my-env --release-name my-

7.5.1 platform --dryrun

...

Component 'platform' given, setting components

docker build --build-arg REPO=us-docker.pkg.dev/forgeops-

public/images-base/am --build-arg TAG=7.5.1 -t am -f

.../forgeops/docker/am/Dockerfile .../forgeops/docker/am

.../forgeops/bin/commands/image -e my-env -k

.../forgeops/kustomize -H .../forgeops/helm --image-repo none

-b .../forgeops/docker am

docker build --build-arg REPO=us-docker.pkg.dev/forgeops-

public/images-base/idm --build-arg TAG=7.5.1 -t idm -f

.../forgeops/docker/idm/Dockerfile .../forgeops/docker/idm

.../forgeops/bin/commands/image -e my-env -k

.../forgeops/kustomize -H .../forgeops/helm --image-repo none

-b .../forgeops/docker idm

docker build --build-arg REPO=us-docker.pkg.dev/forgeops-

public/images-base/ds --build-arg TAG=7.5.1 -t ds -f

.../forgeops/docker/ds/Dockerfile .../forgeops/docker/ds

.../forgeops/bin/commands/image -e my-env -k

.../forgeops/kustomize -H .../forgeops/helm --image-repo none

-b .../forgeops/docker ds

docker build --build-arg REPO=us-docker.pkg.dev/forgeops-

public/images-base/amster --build-arg TAG=7.5.1 -t amster -f

.../forgeops/docker/amster/Dockerfile

.../forgeops/docker/amster

.../forgeops/bin/commands/image -e my-env -k

.../forgeops/kustomize -H .../forgeops/helm --image-repo none

-b .../forgeops/docker amster

If you have performed the first ForgeOps deployment, then you need to customize

your configuration profiles and redo the steps from the Copying configuration files

step and redeploy the ForgeOps platform with your configuration.

NOTE

Prepare to deploy in production

112 / 248

After you get your ForgeOps deployment up and running, you can add deployment

customizations—options that are not part of an out-of-the-box ForgeOps deployment,

but which you may need when you deploy in production.



Customize, deploy, and

maintain a production

ForgeOps deployment.

Production

Deployment Overview



Add PingGateway to

your deployment.

Identity Gateway



Customize Prometheus

monitoring and alerts.

Monitoring



Customize the security

features built into

ForgeOps deployments.

Security



Run the lightweight

benchmarks.

Benchmarks



Back up and restore

data, such as identities

and tokens.

Backup

Identity Gateway


IG Deployment


Custom IG Image

113 / 248

file:///home/pptruser/Downloads/build/site/start/start-here.html#build-own-service
file:///home/pptruser/Downloads/build/site/forgeops/ig/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/monitoring/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/security/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/benchmark/overview.html
file:///home/pptruser/Downloads/build/site/backup/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy-default-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy-custom-ig.html

ForgeOps deployments don’t include PingGateway by default.

To deploy PingGateway after you have performed a ForgeOps deployment:

1. Verify that the ForgeOps deployment is up and running.

2. Set the active namespace in your local Kubernetes context to the namespace in

which you have deployed the platform components.

3. Add the - ./ig line in the default overlay file, kustomize/overlay/my-

env/kustomization.yaml:

4. Add PingGateway Docker image to your ForgeOps deployment configuration:

5. Deploy PingGateway:

a. In a Kustomize-based deployment:

Add PingGateway to a

ForgeOps deployment.

Build a custom

PingGateway image and

add it to a single-

instance ForgeOps

deployment.

Deploy PingGateway

kind: Kustomization

apiVersion: kustomize.config.k8s.io/v1beta1

resources:

- ./base

- ./secrets

- ./ds-cts

- ./ds-idrepo

- ./am

- ./amster

- ./idm

- ./ig

- ./ldif-importer

- ./admin-ui

- ./end-user-ui

- ./login-ui

$ cd /path/to/forgeops/bin/

$./forgeops image --release 2024.11.0 ig --env-name my-env

114 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy-default-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy-default-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy-custom-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy-custom-ig.html

b. In a Helm-based deployment:

6. Run the kubectl get pods command to check the status of the PingGateway pod.

Wait until the pod is ready before proceeding to the next step.

7. Verify that PingGateway is running:

8. Verify that the reverse proxy to the IDM pod is running:

$ /path/to/forgeops/bin/forgeops apply --env-name my-env

ig

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--version 2025.1.1 --namespace my-namespace \

--values /path/to/forgeops/helm/my-env/values.yaml

$ curl --insecure -L -X GET https://my-fqdn/ig/openig/ping -v

...

> GET /ig/openig/ping HTTP/2

> Host: my-fqdn

> User-Agent: curl/7.64.1

> Accept: /

* Connection state changed (MAX_CONCURRENT_STREAMS == 128)!

< HTTP/2 200

< date: Thu, 29 Jul 2021 21:07:44 GMT

<

* Connection #0 to host my-fqdn left intact

* Closing connection 0

$ curl --insecure -L -X GET https://my-

fqdn/ig/openidm/info/ping -v

...

* Using HTTP2, server supports multi-use

* Connection state changed (HTTP/2 confirmed)

* Copying HTTP/2 data in stream buffer to connection buffer

after upgrade: len=0

...

* Connection state changed (MAX_CONCURRENT_STREAMS == 128)!

< HTTP/2 200

...

Custom PingGateway image

115 / 248

The default PingGateway configuration provided for use with ForgeOps deployments is

an example. Replace this configuration with your own routes before using PingGateway

in your environment.

Refer to the PingGateway Deployment Guide for configuring routes.

To build a custom PingGateway image and deploy PingGateway:

1. Verify that you have already set up ForgeOps deployment environment using the

forgeops env command.

2. Verify that your ForgeOps deployment is up and running.

3. Set up your environment to push to your Docker registry.

4. Configure PingGateway by creating, modifying, or deleting rules in the

/path/to/forgeops/docker/ig/config-profiles/my-

profile/config/routes-service directory.

5. Identify the repository to which you’ll push the Docker image. You’ll use this location

in the next step to specify the --push-to argument’s value.

6. Build a new ig image that includes your changes to PingGateway static

configuration:

7. If PingGateway hadn’t already been deployed in the existing ForgeOps deployment,

add the - ./ig line in the default overlay file, kustomize/overlay/my-

env/kustomization.yaml:

$ cd /path/to/forgeops/bin*

...

$ forgeops image --release 2024.11.0 --release-name my-ig-

release ig

...

$./forgeops build ig --env-name my-env \

--config-profile my-profile --push-to my-repo

kind: Kustomization

apiVersion: kustomize.config.k8s.io/v1beta1

resources:

- ./base

- ./secrets

- ./ds-cts

- ./ds-idrepo

- ./am

- ./amster

- ./idm

- ./ig

- ./ldif-importer

116 / 248

https://backstage.forgerock.com/docs/ig/2024.11/ig/devops-guide/preface.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#docker-push
file:///home/pptruser/Downloads/build/site/forgeops/customize/setup.html#push-to

8. Uninstall previously deployed PingGateway from your ForgeOps deployment:

a. Set the active namespace in your local Kubernetes context to the namespace in

which you have deployed the PingGateway.

b. Delete PingGateway:

9. Deploy PingGateway using your customized PingGateway image:

a. In a Kustomize-based deployment:

b. In a Helm-based deployment:

10. Run the kubectl get pods command to check the status of the PingGateway pod.

Wait until the PingGateway pod is ready before proceeding to the next step.

11. Verify that your PingGateway routes work.

ForgeOps deployments optionally use Prometheus to monitor Ping Identity Platform

components and Kubernetes objects, Prometheus Alertmanager to send alert

notifications, and Grafana to analyze metrics using dashboards.

This topic describes the use of monitoring tools in ForgeOps deployments:

- ./admin-ui

- ./end-user-ui

- ./login-ui

$./forgeops delete --env-name my-env ig

...

secret "openig-secrets-env" deleted

service "ig" deleted

deployment.apps "ig" deleted

$ /path/to/forgeops/bin/forgeops apply --env-name my-env

ig

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--version 2025.1.1 --namespace my-namespace \

--values /path/to/forgeops/helm/my-env/values.yaml

ForgeOps deployment monitoring

 
117 / 248

file:///home/pptruser/Downloads/build/site/forgeops/monitoring-intro.html
file:///home/pptruser/Downloads/build/site/forgeops/pods.html

Prometheus, Alertmanager, and Grafana, used for monitoring ForgeOps deployments,

are deployed if you run the prometheus-deploy.sh script after performing a ForgeOps

deployment. This script installs Helm charts from the prometheus-operator project

into the monitoring namespace of a ForgeOps deployment. The Prometheus operator

project provides monitoring definitions for Kubernetes services and deployment, and

management of Prometheus instances.

The Helm charts deploy Kubernetes pods that run the Prometheus and Grafana

services. The Prometheus operator then watches for service monitor CRDs—Kubernetes

custom resource definitions. CRDs are Kubernetes class types that you manage with the

kubectl command. The service monitor CRDs define targets to be scraped.

In ForgeOps deployments, the Prometheus operator configuration is defined in the

prometheus-operator.yaml file in the forgeops repository. For information about

how to customize Prometheus, Alertmanager, and Grafana, refer to the Prometheus

README file in the forgeops repository .

After a ForgeOps deployment is done, you can access the monitoring dashboards. For

details, refer to ForgeOps deployment monitoring.

Monitoring installation

and architecture.

Overview

Prometheus and

Grafana pods that

monitor ForgeOps

deployments and

provide reporting

services.

Monitoring Pods



Grafana dashboards for

the platform that are

available in ForgeOps

deployments.

Grafana Dashboards

!

Prometheus alerts for

the platform that are

available in ForgeOps

deployments.

Prometheus Alerts

About ForgeOps deployment monitoring







NOTE

118 / 248

https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
https://github.com/coreos/prometheus-operator
file:///home/pptruser/Downloads/build/site/forgeops/prepare/monitoring/pods.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/monitoring/pods.html
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/prometheus-operator.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/prometheus-operator.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/prometheus-operator.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#cdm-monitoring
file:///home/pptruser/Downloads/build/site/forgeops/monitoring-intro.html
file:///home/pptruser/Downloads/build/site/forgeops/monitoring-intro.html
file:///home/pptruser/Downloads/build/site/forgeops/pods.html
file:///home/pptruser/Downloads/build/site/forgeops/pods.html
file:///home/pptruser/Downloads/build/site/forgeops/dashboards.html
file:///home/pptruser/Downloads/build/site/forgeops/alerts.html

The following Prometheus and Grafana pods from the prometheus-operator project

run in the monitoring namespace:

Pod Description

alertmanager-prometheus-operator-

kube-p-alertmanager-0

Handles Prometheus alerts by grouping

them together, filtering them, and then

routing them to a receiver, such as a

Slack channel.

prometheus-operator-kube-state-

metrics-...

Generates Prometheus metrics for

cluster node resources, such as CPU,

memory, and disk usage. One pod is

deployed for each node in a ForgeOps

deployment.

prometheus-operator-prometheus-

node-exporter-...

Generates Prometheus metrics for

Kubernetes objects, such as deployments

and nodes.

prometheus-operator-grafana-... Provides the Grafana service.

prometheus-prometheus-operator-

kube-p-prometheus-0

Provides the Prometheus service.

prometheus-operator-kube-p-

operator-...

Runs the Prometheus operator.

See the prometheus-operator Helm chart README file for more information about the

pods in the preceding table.

In addition to the pods from the prometheus-operator project, ForgeOps

deployments include a set of Grafana dashboards. The import-dashboards-... pod

Out-of-the-box ForgeOps deployments use Prometheus, Grafana, and

Alertmanager for monitoring, reporting, and sending alerts. If you prefer to use

different tools, deploy infrastructure in Kubernetes to support those tools.

Prometheus and Grafana are evolving technologies. Descriptions of these

technologies were accurate at the time of this writing, but might differ when you

deploy them.

NOTE

Monitoring pods



Custom Grafana dashboards

119 / 248

https://github.com/helm/charts/blob/master/stable/prometheus-operator/README.md
https://github.com/helm/charts/blob/master/stable/prometheus-operator/README.md
https://github.com/helm/charts/blob/master/stable/prometheus-operator/README.md

from the forgeops repository runs after Grafana starts up. This pod imports Grafana

dashboards for the Ping Identity Platform and terminates after importing has

completed.

You can customize, export and import Grafana dashboards using the Grafana UI or

HTTP API.

For information about importing custom Grafana dashboards, refer to the Import

Custom Grafana Dashboards section of the Prometheus and Grafana Deployment

README file in the forgeops repository.

Alerts for ForgeOps deployments are defined in the fr-alerts.yaml file in the forgeops

repository.

To configure additional alerts, refer to the Configure Alerting Rules section of the

Prometheus and Grafana Deployment README file in the forgeops repository.

This topic describes several options for securing a ForgeOps deployment:



Alerts





Security



Kubernetes operator

that generates secrets

and provides cloud

secret management.

Secret Agent



Secure HTTP and

certificate management.

Secure

Communications



Access restriction by

incoming IP address,

enforced by the Ingress-

NGINX controller.

IP Address Restriction



Secure cross-pod

communications,

enforced by Kubernetes

network policies.

Network Policies

120 / 248

https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#import-custom-grafana-dashboards
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#import-custom-grafana-dashboards
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#import-custom-grafana-dashboards
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#import-custom-grafana-dashboards
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/forgerock-metrics/templates/fr-alerts.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/forgerock-metrics/templates/fr-alerts.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/forgerock-metrics/templates/fr-alerts.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#Configure-alerting-rules
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#Configure-alerting-rules
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus/README.md#Configure-alerting-rules
file:///home/pptruser/Downloads/build/site/forgeops/secret-agent.html
file:///home/pptruser/Downloads/build/site/forgeops/https.html
file:///home/pptruser/Downloads/build/site/forgeops/restrict-access-ip-address.html
file:///home/pptruser/Downloads/build/site/forgeops/network-policies.html
file:///home/pptruser/Downloads/build/site/forgeops/multi-user-access-aws.html

The open source Secret Agent operator generates all the secrets needed for ForgeOps

deployments except for the DS master key and TLS key. When directory instances are

created, certificate manager is called to generate these two keys.

In addition to generating secrets, the operator also integrates with Google Cloud Secret

Manager, AWS Secrets Manager, and Azure Key Vault to manage secrets, providing cloud

backup and retrieval for secrets.

The Secret Agent operator runs as a Kubernetes deployment that must be available

before you can install AM, IDM, and DS.

By default, the operator examines your namespace to determine whether it contains all

the secrets that it manages for Ping Identity Platform deployments. If any of the secrets

it manages are not present, the operator generates them.

Refer to the Secret Agent project README for information about:

Importing your own secrets

Secret Agent naming conventions

Modifying the Secret Agent configuration

Configuring the Secret Agent operator to integrate with a cloud secret manager, such as

Google Cloud Secret Manager, AWS Secret Manager, or Azure Key Vault, changes the

operator’s behavior:

First, the operator examines your namespace to determine whether it contains all

the secrets it manages for Ping Identity Platform deployments.



User entries in the

Amazon EKS

authorization

configuration map.

Cluster Access on AWS

Secret Agent operator

Secret generation







Cloud secret management

121 / 248

https://github.com/ForgeRock/secret-agent#importing-your-own-secrets
https://github.com/ForgeRock/secret-agent#importing-your-own-secrets
https://github.com/ForgeRock/secret-agent#importing-your-own-secrets
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#secret-agent-configuration-schema
https://github.com/ForgeRock/secret-agent#secret-agent-configuration-schema
https://github.com/ForgeRock/secret-agent#secret-agent-configuration-schema
file:///home/pptruser/Downloads/build/site/forgeops/multi-user-access-aws.html
file:///home/pptruser/Downloads/build/site/forgeops/multi-user-access-aws.html

If any of the secrets it manages are not in your namespace, the operator checks to

refer to if the missing secrets are available in the cloud secret manager:

If any of the secrets missing from your namespace are available in the cloud

secret manager, the operator gets them from the cloud secret manager and

adds them to your namespace.

If missing secrets are not available in the cloud secret manager, the Secret

Agent operator generates them.

Configure cloud secret management when you have multiple Ping Identity Platform

deployments that need to use the same secrets.

Refer to the Secret Agent project README for information about how to configure the

Secret Agent operator for cloud secret management using these cloud secret managers:

Google Cloud Secret Manager

AWS Secret Manager

Azure Key Vault

ForgeOps deployments use these administration passwords:

The AM and IDM administration user, amadmin

The AM application store service account, uid=am-config,ou=admins,ou=am-

config

The AM CTS service account,

uid=openam_cts,ou=admins,ou=famrecords,ou=openam-session,ou=tokens

The shared identity repository service account, uid=am-identity-bind-

account,ou=admins,ou=identities

The DS root user, uid=admin

Some organizations have a requirement to change administration passwords from time

to time. Follow these steps if you need to change the administration passwords:

1. Set the value of the secretsManagerPrefix key to prod in your Secret Agent

configuration .

You can set the value of the secretsManagerPrefix key to any prefix you like.

These steps use prod as an example prefix.

2. Change the amadmin user’s password:

a. Change to the bin directory in your forgeops repository clone.

b. Run the forgeops info command. Note the current password for the

amadmin user.







Administration password changes



122 / 248

https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-gcp-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-gcp-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-gcp-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-aws-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-aws-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-aws-secret-manager
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-azure-key-vault
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-azure-key-vault
https://github.com/ForgeRock/secret-agent#set-up-cloud-backup-with-azure-key-vault
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups
https://github.com/ForgeRock/secret-agent#naming-convention-for-cloud-backups

c. If you have enabled cloud secret management, delete the entry that contains

the amadmin user’s password from the cloud secret manager:

List the secrets managed by the cloud secret manager, locate the URI for the

secret that contains the AM-PASSWORDS-AMADMIN-CLEAR password, and

delete it. For example:

List the secrets managed by the cloud secret manager, locate the ARN for the

secret that contains the AM-PASSWORDS-AMADMIN-CLEAR password, and

delete it. For example:

Soft delete the secret that contains the AM-PASSWORDS-AMADMIN-CLEAR

password from Azure Key Vault. For example:

Purge the soft deleted secret from Azure Key Vault. For example:

d. Make the namespace where the platform is deployed the active namespace in

your local Kubernetes context.

e. Delete the Kubernetes secret that contains the amadmin user’s password from

the namespace in which the platform is deployed:

Google Cloud

$ gcloud secrets list --uri

$ gcloud secrets delete \

https://secretmanager.googleapis.com/.../prod-am-env-

secrets-AM-PASSWORDS-AMADMIN-CLEAR

AWS

$ aws secretsmanager list-secrets --region=my-region

$ aws secretsmanager delete-secret --region=my-region \

--force-delete-without-recovery \

--secret-id arn:aws:secretsmanager:...:prod-am-env-

secrets-AM-PASSWORDS-AMADMIN-CLEAR-c3KfsL

Azure

$ az keyvault secret delete --vault-name my-key-vault --

name prod-am-env-secrets-AM-PASSWORDS-AMADMIN-CLEAR

$ az keyvault secret purge --vault-name my-key-vault --

name prod-am-env-secrets-AM-PASSWORDS-AMADMIN-CLEAR

$ kubectl patch secrets am-env-secrets --type=json \

--patch='[{"op":"remove", "path":

123 / 248

f. Restart AM by deleting all active AM pods: list all the pods in the namespace

where you deployed the platform and then delete all the pods running AM.

g. After AM comes up, run the forgeops info command again to get the

current administration passwords.

Verify that the amadmin user’s password has changed by comparing its

previous value to its current value.

h. Verify that you can log in to the platform UI using the new password.

3. Change the AM application store service account’s password:

a. Change to the bin directory in your forgeops repository clone.

b. Run the forgeops info command. Note the current password for the AM

application store service account.

c. If you have enabled cloud secret management, delete the entry that contains

this account’s password from the cloud secret manager:

List the secrets managed by the cloud secret manager, locate the URI for the

secret that contains the AM_STORES_APPLICATION_PASSWORD password, and

delete it. For example:

List the secrets managed by the cloud secret manager, locate the ARN for the

secret that contains the AM_STORES_APPLICATION_PASSWORD password, and

delete it. For example:

Soft delete the secret that contains the AM_STORES_APPLICATION_PASSWORD

password from Azure Key Vault. For example:

"/data/AM_PASSWORDS_AMADMIN_CLEAR"}]'

Google Cloud

$ gcloud secrets list --uri

$ gcloud secrets delete \

https://secretmanager.googleapis.com/.../prod-ds-env-

secrets-AM_STORES_APPLICATION_PASSWORD

AWS

$ aws secretsmanager list-secrets --region=my-region

$ aws secretsmanager delete-secret --region=my-region \

--force-delete-without-recovery \

--secret-id arn:aws:secretsmanager:...:prod-ds-env-

secrets-AM_STORES_APPLICATION_PASSWORD-1d4432

Azure

124 / 248

Purge the deleted secret from Azure Key Vault. For example:

d. Make the namespace where the platform is deployed the active namespace in

your local Kubernetes context.

e. Delete the Kubernetes secret that contains the service account’s password

from the namespace where the platform is deployed:

f. Remove your ForgeOps deployment. Be sure to reply N when you’re prompted

to delete PVCs, volume snapshots, and secrets:

g. Redeploy the platform:

h. Review the administration passwords listed in the forgeops install

command’s' output.

Verify that the AM application store service account’s password has changed by

comparing its previous value to its current value.

4. Change the CTS service account’s password:

a. Change to the bin directory in your forgeops repository clone.

$ az keyvault secret delete --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_APPLICATION_PASSWORD

$ az keyvault secret purge --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_APPLICATION_PASSWORD

$ kubectl patch secrets ds-env-secrets --type=json \

--patch='[{"op":"remove", "path":

"/data/AM_STORES_APPLICATION_PASSWORD"}]'

$ cd /path/to/forgeops/bin

$./forgeops delete

"small" platform detected in namespace: "my-namespace".

Uninstalling component(s): ['all'] from namespace: "my-

namespace".

OK to delete components? [Y/N] Y

OK to delete PVCs? [Y/N] N

OK to delete volume snapshots? [Y/N] N

OK to delete secrets? [Y/N] N

service "admin-ui" deleted

...

$ forgeops apply --small --fqdn my-fqdn

125 / 248

b. Run the forgeops info command. Note the current password for the identity

repository service account.

c. If you have enabled cloud secret management, delete the entry that contains

this account’s password from the cloud secret manager:

List the secrets managed by the cloud secret manager, locate the URI for the

secret that contains the AM_STORES_CTS_PASSWORD password, and delete it.

For example:

List the secrets managed by the cloud secret manager, locate the ARN for the

secret that contains the AM_STORES_CTS_PASSWORD password, and delete it.

For example:

Soft delete the secret that contains the AM_STORES_CTS_PASSWORD

password from Azure Key Vault. For example:

Purge the deleted secret from Azure Key Vault. For example:

d. Make the namespace where the platform is deployed the active namespace in

your local Kubernetes context.

e. Delete the Kubernetes secret that contains the service account’s password

from the namespace where the platform is deployed:

Google Cloud

$ gcloud secrets list --uri

$ gcloud secrets delete \

https://secretmanager.googleapis.com/.../prod-ds-env-

secrets-AM_STORES_CTS_PASSWORD

AWS

$ aws secretsmanager list-secrets --region=my-region

$ aws secretsmanager delete-secret --region=my-region \

--force-delete-without-recovery \

--secret-id arn:aws:secretsmanager:...:prod-ds-env-

secrets-AM_STORES_CTS_PASSWORD-1d4432

Azure

$ az keyvault secret delete --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_CTS_PASSWORD

$ az keyvault secret purge --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_CTS_PASSWORD

126 / 248

f. Remove your ForgeOps deployment. Be sure to reply N when you’re prompted

to delete PVCs, volume snapshots, and secrets:

g. Redeploy the platform:

h. Review the administration passwords listed in the forgeops install

command’s' output.

Verify that the CTS service account’s password has changed by comparing its

previous value to its current value.

5. Change the identity repository service account’s password:

a. Change to the bin directory in your forgeops repository clone.

b. Run the forgeops info command. Note the current password for the the

identity repository service account.

c. If you have enabled cloud secret management, delete the entry that contains

this account’s password from the cloud secret manager:

List the secrets managed by the cloud secret manager, locate the URI for the

secret that contains the AM_STORES_USER_PASSWORD password, and delete

it. For example:

$ kubectl patch secrets ds-env-secrets --type=json \

--patch='[{"op":"remove", "path":

"/data/AM_STORES_CTS_PASSWORD"}]'

$ cd /path/to/forgeops/bin

$./forgeops delete

"small" platform detected in namespace: "my-namespace".

Uninstalling component(s): ['all'] from namespace: "my-

namespace".

OK to delete components? [Y/N] Y

OK to delete PVCs? [Y/N] N

OK to delete volume snapshots? [Y/N] N

OK to delete secrets? [Y/N] N

service "admin-ui" deleted

...

$ forgeops apply --small --fqdn my-fqdn

Google Cloud

$ gcloud secrets list --uri

$ gcloud secrets delete \

127 / 248

List the secrets managed by the cloud secret manager, locate the ARN for the

secret that contains the AM_STORES_USER_PASSWORD password, and delete

it. For example:

Soft delete the secret that contains the AM_STORES_USER_PASSWORD

password from Azure Key Vault. For example:

Purge the deleted secret from Azure Key Vault. For example:

d. Make the namespace where the platform is deployed the active namespace in

your local Kubernetes context.

e. Delete the Kubernetes secret that contains the service account’s password

from the namespace where the platform is deployed:

f. Remove your ForgeOps deployment. Be sure to reply N when you’re prompted

to delete PVCs, volume snapshots, and secrets:

https://secretmanager.googleapis.com/.../prod-ds-env-

secrets-AM_STORES_USER_PASSWORD

AWS

$ aws secretsmanager list-secrets --region=my-region

$ aws secretsmanager delete-secret --region=my-region \

--force-delete-without-recovery \

--secret-id arn:aws:secretsmanager:...:prod-ds-env-

secrets-AM_STORES_USER_PASSWORD-1d4432

Azure

$ az keyvault secret delete --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_USER_PASSWORD

$ az keyvault secret purge --vault-name my-key-vault --

name prod-ds-env-secrets-AM_STORES_USER_PASSWORD

$ kubectl patch secrets ds-env-secrets --type=json \

--patch='[{"op":"remove", "path":

"/data/AM_STORES_USER_PASSWORD"}]'

$ cd /path/to/forgeops/bin

$./forgeops delete

"small" platform detected in namespace: "my-namespace".

Uninstalling component(s): ['all'] from namespace: "my-

namespace".

128 / 248

g. Redeploy the platform:

h. Review the administration passwords listed in the forgeops install

command’s' output.

Verify that the identity repository service account’s password has changed by

comparing its previous value to its current value.

6. Change the DS root user’s password:

a. Change to the bin directory in your forgeops repository clone.

b. Run the forgeops info command. Note the current password for the

uid=admin account.

c. If you have enabled cloud secret management, delete the entry that contains

this account’s password from the cloud secret manager:

List the secrets managed by the cloud secret manager, locate the URI for the

secret that contains the dirmanager-pw password, and delete it. For

example:

List the secrets managed by the cloud secret manager, locate the ARN for the

secret that contains the dirmanager-pw password, and delete it. For

example:

OK to delete components? [Y/N] Y

OK to delete PVCs? [Y/N] N

OK to delete volume snapshots? [Y/N] N

OK to delete secrets? [Y/N] N

service "admin-ui" deleted

...

$ forgeops apply --small --fqdn my-fqdn

Google Cloud

$ gcloud secrets list --uri

$ gcloud secrets delete \

https://secretmanager.googleapis.com/.../prod-ds-

passwords-dirmanager-pw

AWS

$ aws secretsmanager list-secrets --region=my-region

$ aws secretsmanager delete-secret --region=my-region \

--force-delete-without-recovery \

--secret-id arn:aws:secretsmanager:...:prod-ds-

passwords-dirmanager-pw-2eeaa0

129 / 248

Soft delete the secret that contains the dirmanager-pw password from

Azure Key Vault. For example:

Purge the deleted secret from Azure Key Vault. For example:

d. Make the namespace where the platform is deployed the active namespace in

your local Kubernetes context.

e. Delete the Kubernetes secret that contains the service account’s password

from the namespace where the platform is deployed:

f. Remove your ForgeOps deployment. Be sure to reply N when you’re prompted

to delete PVCs, volume snapshots, and secrets:

g. Redeploy the platform:

h. Review the administration passwords listed in the forgeops install

command’s' output.

Azure

$ az keyvault secret delete --vault-name my-key-vault --

name prod-ds-passwords-dirmanager-pw

$ az keyvault secret purge --vault-name my-key-vault --

name prod-ds-passwords-dirmanager-pw

$ kubectl patch secrets ds-passwords --type=json \

--patch='[{"op":"remove", "path":

"/data/dirmanager.pw"}]'

$ cd /path/to/forgeops/bin

$./forgeops delete

"small" platform detected in namespace: "my-namespace".

Uninstalling component(s): ['all'] from namespace: "my-

namespace".

OK to delete components? [Y/N] Y

OK to delete PVCs? [Y/N] N

OK to delete volume snapshots? [Y/N] N

OK to delete secrets? [Y/N] N

service "admin-ui" deleted

...

$ forgeops apply --small --fqdn my-fqdn

130 / 248

Verify that the password for the uid=admin account has changed by

comparing its previous value to its current value.

ForgeOps deployments use a TLS-enabled ingress controller to enable secure

communication to the cluster . Incoming requests and outgoing responses are

encrypted. TLS is terminated at the ingress controller.

ForgeOps deployments install the Ingress-NGINX controller . The

/path/to/forgeops/kustomize/base/ingress/ingress.yaml file contains an

annotation— cert-manager.io/cluster-issuer —that configures the Ingress-NGINX

controller to use cert-manager software for certificate management .

The forgeops apply command installs the cert-manager utility in the cert-

manager namespace and configures cert-manager to generate self-signed certificates

for securing communication into the ingress.

When self-signed certificates are used, communication is encrypted, but users receive

warnings about insecure communication from some browsers. Because of this, self-

signed certificates are suitable for test environments only.

For all other environments, reconfigure certificate management. Two common

configurations are:

Using a certificate with a trust chain that starts at a trusted root certificate—

Communication is encrypted, and users do not receive warnings from their

browsers.

TLS certificate contains a simple example of how to deploy a certificate from a

trusted authority in a ForgeOps deployment. The steps in the example:

Remove the cert-manager annotation from the ingress.

Create a secret named sslcert that contains the certificate you want to use

in your deployment.

Using a dynamically obtained certificate from Let’s Encrypt —Communication is

encrypted and users do not receive warnings from their browsers.

You reconfigure cert-manager to use a ClusterIssuer that calls Let’s Encrypt to

obtain a certificate and installs the certificate as a Kubernetes secret.

There are many options for certificate management in a Ping Identity Platform

deployment. For more information about configuring certificate manager, refer to the

cert-manager documentation .

Secure HTTP

[11]

[12]

 [13]





TLS certificate

131 / 248

https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://github.com/jetstack/cert-manager
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://cert-manager.io/docs
https://cert-manager.io/docs
https://cert-manager.io/docs

The forgeops apply command installs cert-manager software . Similarly, when using

Helm, the default ForgeOps deployment requires cert-manager annotations.

By default, cert-manager configures the ingress controller in ForgeOps deployments

with a self-signed certificate . This is the simplest encryption option—you don’t have to

make any changes to your deployment to get encryption.

However, when you access one of the Ping Identity web applications from your browser,

you’ll get a "Not Secure" message from your browser. Users will need to bypass the

message.

If you have a certificate from a CA, or a certificate generated by the mkcert utility, you

can use your certificate for TLS encryption instead of the default self-signed certificate:

1. Obtain the certificate:

Make sure that the certificate is PEM-encoded.

A best practice is to include the entire chain of trust with your certificate.

2. Make sure that the deployment FQDN (that you specified in your /etc/hosts file)

works with your certificate. Refer to the hostname resolution page for your cluster

provider: Google Cloud | AWS | Azure | Minikube.

3. Remove cert-manager’s annotation from the ingress definition:

a. If you are using Kustomize, run the kubectl annotate command:

b. If you are using Helm, edit the charts/identity-platform/value.yaml file

and set cert_manager.enabled to false:

4. Delete the certificate resource originally created by cert-manager:

5. Update the secret named sslcert with your certificate. For example:



[14]

$ kubectl annotate ingress forgerock cert-

manager.io/cluster-issuer-

...

cert_manager:

enabled: false

$ kubectl delete certificate sslcert

$ kubectl create secret tls sslcert --cert=/path/to/my-

cert.crt --key=/path/to/my-key.key \

 --dry-run=client -o yaml | kubectl replace -f -

132 / 248

https://cert-manager.io/docs
https://cert-manager.io/docs
https://cert-manager.io/docs
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-ingress
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-ingress
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-ingress
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-ingress

If you don’t have a certificate from a CA, you can use the mkcert utility to generate a

locally trusted certificate. In many cases, it’s acceptable to use mkcert certificates for

development purposes.

To use a certificate generated by the mkcert utility in a ForgeOps deployment that uses

my-fqdn as the deployment FQDN:

1. If you don’t have mkcert software installed locally, install it . Firefox users must

install certutil software. Refer to the mkcert installation instructions for more

information.

2. If you haven’t ever done so, run the mkcert -install command to create a local

certificate authority (CA) and install it in your system root store. Restart your

browser after creating the local CA.

3. Create a wildcard certificate for the example.com domain:

The mkcert utility generates the certificate file as _wildcard.example.com.pem

and the private key file as _wildcard.example.com-key.pem. Use these two file

names when you create the Kubernetes sslcert secret.

When installing the ingress controller in production environments, you should consider

configuring a CIDR block in the Helm chart for the ingress controller so that you restrict

access to worker nodes from a specific IP address or a range of IP addresses.

To specify a range of IP addresses allowed to access resources controlled by the ingress

controller, specify the --set

controller.service.loadBalancerSourceRanges=your IP range option when you

install your ingress controller.

For example:

Certificate generated by the mkcert utility



$ cd

$ mkcert "*.example.com"

Access restriction by IP address

$ helm install --namespace nginx --name nginx \

--set rbac.create=true \

--set controller.publishService.enabled=true \

--set controller.stats.enabled=true \

--set controller.service.externalTrafficPolicy=Local \

--set controller.service.type=LoadBalancer \

--set controller.image.tag="0.21.0" \

133 / 248

https://github.com/FiloSottile/mkcert#installation
https://github.com/FiloSottile/mkcert#installation
https://github.com/FiloSottile/mkcert#installation

Kubernetes network policies let you specify specify how pods are allowed to

communicate with other pods, namespaces, and IP addresses.

The forgeops repository contains two sets of example network policies for the Ping

Identity Platform:

1. Network policies for DS .

2. Network policies for AM and IDM .

Customize the example policies to meet your security needs, or use them to help you

better understand how network policies can make Kubernetes deployments more

secure.

All the example policies have the value Ingress in the spec.policyTypes key:

Network policies with this policy type are called ingress policies, because they limit

ingress traffic in a deployment.

By default, if no network policies exist in a namespace, then all ingress and egress traffic

is allowed to and from pods in that namespace.

The deny-all policy modifies the default network policy for ingress. If a pod isn’t

selected by another network policy in the namespace, ingress is not allowed.

For information about how Kubernetes controls pod ingress when pods are selected by

multiple network policies in a namespace, refer to the Kubernetes documentation .

--set

controller.service.annotations."service\.beta\.kubernetes\.io/aws-

load-balancer-type"="nlb" \

--set controller.service.loadBalancerSourceRanges="

{81.0.0.0/8,3.56.113.4/32}" \

stable/nginx-ingress

Network policies







spec:

policyTypes:

- Ingress

deny-all policy



ds-idrepo-ldap policy

134 / 248

https://kubernetes.io/docs/concepts/services-networking/network-policies
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://kubernetes.io/docs/concepts/services-networking/network-policies
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/ds-netpolicy.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/ds-netpolicy.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/ds-netpolicy.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/app-netpolicy.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/app-netpolicy.yaml
https://github.com/ForgeRock/forgeops/blob/2025.1.1/kustomize/base/security/app-netpolicy.yaml
https://kubernetes.io/docs/concepts/services-networking/network-policies/#isolated-and-non-isolated-pods
https://kubernetes.io/docs/concepts/services-networking/network-policies/#isolated-and-non-isolated-pods
https://kubernetes.io/docs/concepts/services-networking/network-policies/#isolated-and-non-isolated-pods

The ds-idrepo-ldap policy limits access to ds-idrepo pods. Access can only be

requested over port 1389, 1636, or 8080, and must come from an am , idm , or amster

pod.

This part of the network policy specifies that access must be requested over port 1389,

1636, or 8080:

This part of the network policy specifies that access must be from an am , idm , or

amster pod:

Understanding the example network policies and how to customize them requires some

knowledge about labels defined in ForgeOps deployments. For example, am pods are

defined with a label, app , that has the value am . You’ll find this label in

/path/to/forgeops/kustomize/base/am/kustomization.yaml file:

ingress:

- from:

...

ports:

- protocol: TCP

port: 1389

- protocol: TCP

port: 1636

- protocol: TCP

port: 8080

ingress:

- from:

- podSelector:

matchExpressions:

- key: app

operator: In

values:

- am

- idm

- amster

commonLabels:

app.kubernetes.io/name: am

app.kubernetes.io/instance: am

app.kubernetes.io/component: am

app.kubernetes.io/part-of: forgerock

tier: middle

app: am

135 / 248

The ds-cts-ldap policy limits access to ds-cts pods. Access can only be requested

over port 1389, 1636, or 8080, and must come from an am or amster pod.

ds pods in ForgeOps deployments are labeled with tier: ds ; they’re said to reside in

the ds tier of the deployment.

The ds-replication policy limits access to the pods on the ds tier. This policy

specifies that access to ds tier pods over port 8989 can only come from other pods in

the same tier.

Note that port 8989 is the default DS replication port. This network policy ensures that

only DS pods can access the replication port.

The backend-http-access policy limits access to the pods in the middle tier, which

contains the am , idm , and ig pods. Access can only be requested over port 8080.

The front-end-http-access policy limits access to the pods in the ui tier: the

login-ui , admin-ui , and end-user-ui pods. Access can only be requested over port

8080.

Note that users send HTTPS requests for the Ping Identity Platform UIs to the ingress

controller over port 443. The ingress controller terminates TLS, and then forwards

requests to the UI pods over port 8080.

It’s common for team members to share the use of a cluster. For team members to

share a cluster, the cluster owner must grant access to each user:

1. Get the ARNs and names of users who need access to your cluster.

2. Set the Kubernetes context to your Amazon EKS cluster.

3. Edit the authorization configuration map for the cluster using the kubectl edit

command:

ds-cts-ldap policy

ds-replication policy

backend-http-access policy

front-end-http-access policy

Cluster access for multiple AWS users

$ kubectl edit -n kube-system configmap/aws-auth

136 / 248

4. Under the mapRoles section, insert the mapUser section. An example is shown

here with the following parameters:

The user ARN is arn:aws:iam::012345678901:user/new.user .

The user name registered in AWS is new.user.

5. For each additional user, insert the - userarn: entry in the mapUsers: section:

6. Save the configuration map.

The benchmarking instructions in this part of the documentation give you a method to

validate performance of your ForgeOps deployment.

The benchmarking techniques we present are a lightweight example, and are not a

substitute for load testing a production deployment. Use our benchmarking techniques

to help you get started with the task of constructing your own load tests.

When youcreate a project plan, you’ll need to think about how you’ll put together

production-quality load tests that accurately measure your own deployment’s

performance.

❏ Become familiar with ForgeOps benchmarking

❏ Install third-party software

... mapUsers: |

- userarn: arn:aws:iam::012345678901:user/new.user

username: new.user

groups:

- system:masters

...

... mapUsers: |

- userarn: arn:aws:iam::012345678901:user/new.user

username: new.user

groups:

- system:masters

- userarn: arn:aws:iam::901234567890:user/second.user

username: second.user

groups:

- system:masters

...

ForgeOps benchmarks

ForgeOps benchmarking checklist

137 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html

❏ Generate test users

❏ Benchmark the authentication rate

❏ Benchmark the OAuth 2.0 authorization code flow

ForgeOps benchmarks provides instructions for running lightweight benchmarks to give

you a means for validating your own ForgeOps deployment.

The ForgeOps team runs the same benchmark tests. Our results are available upon

request. To get them, contact your Ping Identity sales representative.

We conduct our tests using the configurations specified for small, medium, and large

clusters. We create our clusters using the techniques described in the Setup

documentation.

Next, we generate test users:

1,000,000 test users for a small cluster.

10,000,000 test users for a medium cluster.

100,000,000 test users for a large cluster.

Finally, we run tests that measure authentication rates and OAuth 2.0 authorization

code flow performance.

If you follow the same method of performing a ForgeOps deployment and running

benchmarks, the results you obtain similar results. However, factors beyond the scope

of ForgeOps deployment or a failure to use our documented sizing and configuration

may affect your benchmark test results. These factors might include (but are not limited

to) updates to cloud platform SDKs, changes to third-party software required for

Kubernetes, and changes you have made to sizing or configuration to suit your business

needs.

ForgeOps deployments are designed to:

Conform to DevOps best practices

Facilitate continuous integration and continuous deployment

Scale and deploy on any Kubernetes environment in the cloud

If you require higher performance than the benchmarks reported here, you can scale

your deployment horizontally and vertically. Vertically scaling Ping Identity Platform

works particularly well in the cloud. For more information about scaling your

deployment, contact your qualified Ping Identity partner or technical consultant.

About ForgeOps benchmarking

Next step

138 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cluster-and-deployment-sizes
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html

✓ Become familiar with ForgeOps benchmarking

❏ Install third-party software

❏ Generate test users

❏ Benchmark the authentication rate

❏ Benchmark the OAuth 2.0 authorization code flow

The ForgeOps team uses Gradle 6.8.3 to benchmark ForgeOps deployments. Before you

start running benchmarks, install this version of Gradle in your local environment.

Earlier and later versions will probably work. If you want to try using another version, it is

your responsibility to validate it.

In addition to Gradle, you’ll need all the third-party software required to perform a

ForgeOps deployment

GKE

EKS

AKS

✓ Become familiar with ForgeOps benchmarking

✓ Install third-party software

❏ Generate test users

❏ Benchmark the authentication rate

❏ Benchmark the OAuth 2.0 authorization code flow

Running the Authentication rate and OAuth 2.0 authorization code flow benchmarks

requires a set of test users. This page provides instructions for generating a set of test

users suitable for these two lightweight AM benchmarks. Note that these test users are

not necessarily suitable for other benchmarks or load tests, and that they can’t be used

with IDM.

Follow these steps to generate test users for lightweight AM benchmarks, provision the

user stores, and prime the directory servers:

1. Set up your Kubernetes context:

Third-party software

Next step

Test user generation

For small and medium clusters

139 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html

a. Set the KUBECONFIG environment variable so that your Kubernetes context

references the cluster where you’ll perform the ForgeOps deployment.

b. Set the active namespace in your Kubernetes context to the Kubernetes

namespace where you deployed the platform.

2. Obtain the password for the directory superuser, uid=admin :

Make a note of this password. You’ll need it for subsequent steps in this procedure.

3. Change to the directory that contains the source for the dsutil Docker container:

You’ll generate test users from a pod you create from the dsutil container.

4. Build and push the dsutil Docker container to your container registry, and then

run the container.

The my-registry parameter varies, depending on the location of your registry:

The kubectl run command creates the dsutil pod, and leaves you in a shell

that lets you run commands in the pod.

5. Generate the test users—1,000,000 users for a small cluster and 10,000,000 for a

medium cluster:

Run these substeps from the dsutil pod’s shell:

a. Make an LDIF file that has the number of user entries for your cluster size:

For example, for a small cluster:

$ cd /path/to/forgeops/bin

$./forgeops info | grep uid=admin

$ cd /path/to/forgeops/docker/ds/dsutil

$ docker build --tag=my-registry/dsutil .

$ docker push my-registry/dsutil

$ kubectl run -it dsutil --image=my-registry/dsutil --

restart=Never -- bash

$ /opt/opendj/bin/makeldif -o data/entries.ldif \

-c numusers=1000000 config/MakeLDIF/ds-idrepo.template

Processed 1000 entries

Processed 2000 entries

Processed 3000 entries

...

140 / 248

When the ForgeOps team ran the makeldif script, it took approximately:

30 seconds to run on a small cluster.

4 minutes to run on a medium cluster.

b. Create the user entries in the directory:

ADD operation successful messages appear as user entries are added to

the directory.

When the ForgeOps team ran the ldapmodify command, it took

approximately:

15 minutes to run on a small cluster.

2 hours 35 minutes to run on a medium cluster.

6. Prime the directory servers:

a. Open a new terminal window or tab.

Use this new terminal window—not the one running the dsutil pod’s shell—

for the remaining substeps in this step.

b. Prime the directory server running in the ds-idrepo-0 pod:

i. Start a shell that lets you run commands in the ds-idrepo-0 pod:

ii. Run the following command:

iii. Exit from the id-dsrepo-0 pod’s shell:

Processed 1000000 entries

LDIF processing complete. 1000003 entries written

$ /opt/opendj/bin/ldapmodify \

-h ds-idrepo-0.ds-idrepo -p 1389 --useStartTls --trustAll

\

-D "uid=admin" -w directory-superuser-password --

noPropertiesFile \

--no-prompt --continueOnError --numConnections 10

data/entries.ldif

$ kubectl exec ds-idrepo-0 -it -- bash

$ ldapsearch -D "uid=admin" -w directory-superuser-

password \

-p 1389 -b "ou=identities" uid=user.* | grep dn: |

wc -l

10000000

141 / 248

c. Prime the directory server running in the ds-idrepo-1 pod.

Here are some very general steps you can follow if you want to generate test users for

benchmarking or load testing a large cluster:

1. Install DS in a VM in the cloud.

2. Run the makeldif and ldapmodify commands, as described above.

3. Back up your directory.

4. Upload the backup files to cloud storage.

5. Restore an idrepo pod from your backup following steps similar to the procedure

in Restore.

✓ Become familiar with ForgeOps benchmarking

✓ Install third-party software

✓ Generate test users

❏ Benchmark the authentication rate

❏ Benchmark the OAuth 2.0 authorization code flow

The AMRestAuthNSim.scala simulation tests authentication rates using the REST API. It

measures the throughput and response times of an AM server performing REST

authentications when AM is configured to use CTS-based sessions.

To run the simulation:

1. Make sure the userstore is provisioned, and the PingDS cache is primed.

Refer to Test user generation.

2. Set environment variables that specify the host on which to run the test, the

number of concurrent threads to spawn when running the test, the duration of the

test (in seconds), the first part of the user ID, and the user password, and the

number of users for the test:

$ exit

For large clusters

Next step

Authentication rate

$ export TARGET_HOST=

$ export CONCURRENCY=100

$ export DURATION=60

142 / 248

file:///home/pptruser/Downloads/build/site/forgeops/backup/dsbackup.html#dsbackup-restore
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html

where n-users is 1000000 for a small cluster, 10000000 for a medium cluster, and

100000000 for a large cluster.

3. Configure AM for CTS-based sessions:

a. Log in to the Identity Platform admin UI as the amadmin user. For details, refer

to AM Services.

b. Access the AM admin UI.

c. Select the top level realm.

d. Select Properties.

e. Make sure the Use Client-based Sessions option is disabled.

If it’s not disabled, disable it, and then select Save Changes.

4. Change to the /path/to/forgeops/docker/gatling directory.

5. Run the simulation:

When the simulation is complete, the name of a file containing the test results

appears near the end of the output.

6. Open the file containing the test results in a browser to review the results.

✓ Become familiar with ForgeOps benchmarking

✓ Install third-party software

✓ Generate test users

✓ Benchmark the authentication rate

❏ Benchmark the OAuth 2.0 authorization code flow

The AMAccessTokenSim.scala simulation tests OAuth 2.0 authorization code flow

performance. It measures the throughput and response time of an AM server

performing authentication, authorization, and session token management when AM is

configured to use client-based sessions, and OAuth 2.0 is configured to use client-based

tokens. In this test, one transaction includes all three operations.

To run the simulation:

$ export USER_PREFIX=user.

$ export USER_PASSWORD=T35tr0ck123

$ export USER_POOL=n-users

$ gradle clean; gradle gatlingRun-am.AMRestAuthNSim

Next step

OAuth 2.0 authorization code flow

143 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#am-services-cdm
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html

1. Make sure the userstore is provisioned, and the PingDS cache is primed.

Refer to Test user generation.

2. Set environment variables that specify the host on which to run the test, the

number of concurrent threads to spawn when running the test, the duration of the

test (in seconds), the first part of the user ID, and the user password, and the

number of users for the test:

where n-users is 1000000 for a small cluster, 10000000 for a medium cluster, and

100000000 for a large cluster.

3. Configure AM for CTS-based sessions:

a. Log in to the Identity Platform admin UI as the amadmin user. For details, refer

to AM Services.

b. Access the AM admin UI.

c. Select the top level realm.

d. Select Properties.

e. Make sure the Use Client-based Sessions option is disabled.

If it’s not disabled, disable it, and then select Save Changes.

4. Configure AM for CTS-based OAuth2 tokens:

a. Select Realms > Top Level Realm.

b. Select Services > OAuth2 Provider.

c. Make sure the Use Client-based Access & Refresh Tokens option is disabled.

If it’s not disabled, disable it, and then select Save Changes.

5. Change to the /path/to/forgeops/docker/gatling directory.

6. Run the simulation:

When the simulation is complete, the name of a file containing the test results

appears near the end of the output.

7. Open the file containing the test results in a browser to review the results.

$ export TARGET_HOST=my-fqdn

$ export CONCURRENCY=100

$ export DURATION=60

$ export USER_PREFIX=user.

$ export USER_PASSWORD=T35tr0ck123

$ export USER_POOL=n-users

$ gradle clean; gradle gatlingRun-am.AMAccessTokenSim

144 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#am-services-cdm

You’ve successfully run the lightweight benchmark tests on a ForgeOps deployment.

✓ Become familiar with ForgeOps benchmarking

✓ Install third-party software

✓ Generate test users

✓ Benchmark the authentication rate

✓ Benchmark the OAuth 2.0 authorization code flow

By default, ForgeOps deployments use Ingress-NGINX controller.

For deployments on GKE, EKS, and AKS, the tf-apply cluster creation script deploys

Ingress-NGINX Controller when it creates new Kubernetes clusters. Alternatively, you can

deploy HAProxy Ingress as your ingress controller.

For deployments on Minikube, the minikube start command example installs the

ingress add-on in your Minikube cluster.

This section lists adjustments you’ll need to make if you want to perform a ForgeOps

deployment that uses HAProxy Ingress as the ingress controller instead of Ingress-

NGINX controller.

When you create your GKE, EKS, or AKS cluster:

1. Before you run the tf-apply script, configure Terraform to deploy HAProxy Ingress

in your cluster.

Modify these values under cluster.tf_cluster_gke_small in the

override.auto.tfvars file:

a. Set the value of the helm.ingress-nginx.deploy variable to false .

b. Set the value of the helm.ingress-haproxy.deploy variable to false .

2. After you have run the tf-apply script, deploy HAProxy Ingress Controller by

running the bin/ingress-controller-deploy.sh script.

Be sure to specify the -i haproxy option when you run the script.

3. To get the ingress controller’s external IP address on your GKE, EKS, or AKS cluster,

specify --namespace haproxy-ingress (instead of --namespace nginx-

ingress) when you run the kubectl get services command. For example:

Congratulations!

Ingress

HAProxy Ingress

145 / 248

file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/intro.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/sw.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/testusers.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/authrate.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/benchmark/oauth2.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-cluster
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-cluster
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-cluster

When you perform your ForgeOps deployment:

1. Specify the --ingress-class haproxy argument. For example:

ForgeOps deployments include two directory services:

The ds-idrepo service, which stores identities, application data, and AM policies

The ds-cts service, which stores AM Core Token Service data

Before deploying the Ping Identity Platform in production, create and test a backup plan

that lets you recover these two directory services should you experience data loss.

There are numerous options to implement data backup. ForgeOps deployments provide

two solutions:

Kubernetes volume snapshots

The dsbackup utility

You can also use backup products from third-party vendors. For example:

Backup tooling from your cloud provider. For example, Google backup for GKE .

Third-party utilities, such as Velero, Kasten K10, TrilioVault, Commvault, and

Portworx Backup. These third-party products are cloud-platform agnostic, and can

be used across cloud platforms.

Your organization might have specific needs for its backup solution. Some factors to

consider include:

$ kubectl get services --namespace haproxy-ingress

NAME TYPE CLUSTER-IP EXTERNAL-IP

PORT(S) AGE

haproxy-ingress LoadBalancer 10.84.6.68 34.82.11.221

80:32288/TCP,443:32325/TCP 38s

...

$ cd /path/to/forgeops/bin

$./forgeops apply --small --ingress-class haproxy --fqdn my-

fqdn --namespace my-namespace

Backup and restore overview

Choose a backup solution



146 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/architecture.html#cdm-topology
file:///home/pptruser/Downloads/build/site/forgeops/backup/snapshots.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/dsbackup.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/dsbackup.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/dsbackup.html
https://cloud.google.com/blog/products/storage-data-transfer/google-cloud-launches-backups-for-gke
https://cloud.google.com/blog/products/storage-data-transfer/google-cloud-launches-backups-for-gke
https://cloud.google.com/blog/products/storage-data-transfer/google-cloud-launches-backups-for-gke

Does your organization already have a backup strategy for Kubernetes

deployments? If it does, you might want to use the same backup strategy for your

Ping Identity Platform deployment.

Do you plan to deploy the platform in a hybrid architecture, where part of your

deployment is on-premises and another part of it is in the cloud? If you do, then you

might want to employ a backup strategy that lets you move around DS data most

easily.

When considering how to store your backup data, is cost or convenience more

important to you? If cost is more important, then you might need to take into

account that archival storage in the cloud is much less expensive than snapshot

storage—ten times less expensive, as of this writing.

If you’re thinking about using snapshots for backup, are there any limitations

imposed by your cloud provider that are unacceptable to you? Historically, cloud

providers have placed quotas on snapshots. Check your cloud provider’s

documentation for more information.

Kubernetes volume snapshots provide a standardized way to create copies of

persistent volumes at a point in time without creating new volumes. Backing up your

directory data with volume snapshots lets you perform rapid recovery from the last

snapshot point. Volume snapshot backups also facilitate testing by letting you initialize

DS with sample data.

In ForgeOps deployments, the DS data, changelog, and configuration are stored in the

same persistent volume. This ensures the volume snapshot captures DS data and

changelog together.

Kustomize overlays and Helm values necessary for configuring volume snapshots are

already provided, but they have not been enabled to take backup. The default volume

snapshot setup takes snapshots of the data-ds-idrepo-0 and data-ds-cts-0 PVCs

once a day.

Enable volume snapshot before deployment

You can enable volume snapshot when you set up an environment before

performing a ForgeOps deployment. For example, to enable snapshot for both

idrepo and cts :

Backup and restore using volume snapshots



Backup

Set up backup

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn \

147 / 248

https://kubernetes.io/docs/concepts/storage/volume-snapshots
https://kubernetes.io/docs/concepts/storage/volume-snapshots
https://kubernetes.io/docs/concepts/storage/volume-snapshots

Enable volume snapshot in a ForgeOps deployment

To enable volume snapshots of DS data where ForgeOps has been deployed in my-

namespace namespace:

1. Revise the environment to enable snapshot:

2. Apply the changes to your ForgeOps deployment:

a. In a Kustomize-based deployment:

b. In a Helm-based deployment:

You can view the volume snapshots that are available for restore, using this command:

--namespace my-namespace --cluster-issuer my_issuer \

--idrepo-snap-enable --cts-snap-enable

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --idrepo-snap-enable --

cts-snap-enable

If you want to enable snapshot for idrepo alone, don’t specify --cts-

snap-enable in the forgeops env command.

NOTE

$ cd /path/to/forgeops/bin

$./forgeops apply --env-name my-env

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--namespace my-namespace --values

/path/to/forgeops/helm/my-env/values.yaml

$ kubectl get volumesnapshots --namespace my-namespace

NAME READYTOUSE SOURCEPVC

SOURCESNAPSHOTCONTENT RESTORESIZE SNAPSHOTCLASS

SNAPSHOTCONTENT

CREATIONTIME AGE

ds-idrepo-snapshot-20231117-1320 true data-ds-idrepo-0

100Gi ds-snapshot-class snapcontent-be3f4a44-cfb2-4f68-

aa2b-60902

bb44192 3h29m 3h29m

ds-idrepo-snapshot-20231117-1330 true data-ds-idrepo-0

100Gi ds-snapshot-class snapcontent-7bcf6779-382d-40e3-

148 / 248

When enabled, volume snapshots are created once every day by default and purged

after three days. You can customize the backup schedules as required in your

environment.

To modify the default schedule and purge delay for the idrepo repository :

1. In a terminal window, change to the path/to/idrepo directory.

2. Copy the schedule.yaml file to a temporary location, so you can restore if

needed.

3. Edit the schedule.yaml file and set the schedule and purge-delay

parameters as needed.

4. Run the kubectl apply command.

Examples for scheduling snapshots

1. To schedule snapshots twice a day, at noon and midnight:

2. To schedule snapshots every 8 hours:

9c9f-edf31

c54768e 3h19m 3h19m

ds-idrepo-snapshot-20231117-1340 true data-ds-idrepo-0

100Gi ds-snapshot-class snapcontent-c9c88332-ad05-4880-

bda7-48616

ec13579 3h9m 3h9m

ds-idrepo-snapshot-20231117-1401 true data-ds-idrepo-0

100Gi ds-snapshot-class snapcontent-1f3f4ce9-0083-447f-

9803-f6b45

e03ac27 167m 167m

ds-idrepo-snapshot-20231117-1412 true data-ds-idrepo-0

100Gi ds-snapshot-class snapcontent-4c39c095-0891-4da8-

ae61-fac78

c7147ff 156m 156m

Customize the backup schedule

In a Kustomize-based deployment In a Helm-based deployment

[15]

...

spec:

schedule: "0 0/12 * * *"

...

...

spec:

149 / 248

Examples for purging schedule

1. To schedule purge after 4 days:

2. To schedule purge after a week:

The snapshot-restore.sh script lets you restore DS instances in a ForgeOps

deployment. By default, this script restores a DS instance from the latest available

snapshot.

There are two options when using the snapshot-restore.sh script to restore a DS

from a volume snapshot:

Full—Use the full option to fully restore a DS instance from a volume snapshot.

When you specify this option, the DS is scaled down to 0 pods before restoring data.

The data is restored to an existing PVC from a snapshot. This operation requires

downtime.

Selective—Use the selective option to restore a portion of DS data from volume

snapshot. The selective restore creates a new temporary DS instance with a new DS

pod. You can selectively export from the temporary DS pod and import into your

functional DS instance. After restoring data, you can clean up the temporary

resources.

The snapshot-restore.sh command is available in the bin directory of the

forgeops repository. To learn more about the snapshot-restore.sh command and

its options, run snapshot-restore.sh --help.

schedule: "0 */8 * * *"

...

...

env:

- name: PURGE_DELAY

value: "-4 day"

...

env:

- name: PURGE_DELAY

value: "-7 day"

Restore from volume snapshot

Restore examples

150 / 248

Trial run without actually restoring DS data

1. In a terminal window, change to the /path/to/forgeops/bin directory.

2. Set your Kubernetes context to the correct cluster and namespace.

3. Run the snapshot-restore.sh command with the --dryrun option:

Full restore of the idrepo instance from the latest available volume snapshot

1. In a terminal window, change to the /path/to/forgeops/bin directory.

2. Set your Kubernetes context to the correct cluster and namespace.

3. Get a list of available volume snapshots:

4. Restore the full DS instance:

5. Verify that DS data has been restored.

Selective restore from a specific volume snapshot and storing data in a user-defined

storage path

1. In a terminal window, change to the /path/to/forgeops/bin directory.

2. Set your Kubernetes context to the correct cluster and namespace.

3. Get a list of available volume snapshots:

$./snapshot-restore.sh --dryrun --namespace my-namespace

full idrepo

./snapshot-restore.sh --dryrun --namespace my-namespace

full idrepo

/usr/local/bin/kubectl apply -f /tmp/snapshot-restore-

idrepo.20231121T23:03:15Z/sts-restore.json -n my-namespace

/usr/local/bin/kubectl delete pvc data-ds-idrepo-0 -n my-

namespace

/usr/local/bin/kubectl apply -f /tmp/snapshot-restore-

idrepo.20231121T23:03:15Z/data-ds-idrepo-0.json -n my-

namespace

/usr/local/bin/kubectl apply -f /tmp/snapshot-restore-

idrepo.20231121T23:03:15Z/sts.json -n my-namespace

$ kubectl get volumesnapshots --namespace my-namespace

$./snapshot-restore.sh --namespace my-namespace full

idrepo

$ kubectl get volumesnapshots --namespace my-namespace

151 / 248

4. Perform a selective restore trial run:

5. Perform a selective restore using a specific snapshot:

6. Verify that a new ds-idrepo-restore-0 pod was created:

$./snapshot-restore.sh --dryrun --path /tmp/ds-restore --

snapshot ds-idrepo-snapshot-20231121-2250 --namespace my-

namespace selective idrepo

VolumeSnapshot ds-idrepo-snapshot-20231121-2250 is ready to

use

/usr/local/bin/kubectl apply -f /tmp/ds-rest/sts-

restore.json -n my-namespace

/usr/local/bin/kubectl apply -f /tmp/ds-rest/svc.json -n

my-namespace

$./snapshot-restore.sh --path /tmp/ds-restore --snapshot

ds-idrepo-snapshot-20231121-2250 --namespace my-namespace

selective idrepo

statefulset.apps/ds-idrepo-restore created

service/ds-idrepo configured

$ kubectl get pods

NAME READY STATUS RESTARTS

AGE

admin-ui-656db67f54-2brbf 1/1 Running 0

3h17m

am-7fffff59fd-mkks5 1/1 Running 0

107m

amster-hgkv9 0/1 Completed 0

3h18m

ds-idrepo-0 1/1 Running 0

39m

ds-idrepo-restore-0 1/1 Running 0

2m40s

end-user-ui-df49f79d4-n4q54 1/1 Running 0

3h17m

idm-fc88578bf-lqcdj 1/1 Running 0

3h18m

login-ui-5945d48fc6-ljxw2 1/1 Running 0

3h17m

NOTE

152 / 248

7. Clean up resources from the selective restore:

This page provides instructions for backing up and restoring DS data in a ForgeOps

deployment using the dsbackup utility.

Before you can back up DS data using the dsbackup utility, you must set up a cloud

storage container in Google Cloud Storage, Amazon S3, or Azure Blob Storage and

configure a Kubernetes secret with the container’s credentials in your ForgeOps

deployment. Then, you schedule backups by running the ds-backup.sh script.

Cloud storage setup varies depending on your cloud provider. Expand one of the

following sections for provider-specific setup instructions:

Set up a Google Cloud Storage (GCS) bucket for the DS data backup and configure the

ForgeOps deployment with the credentials for the bucket:

1. Create a Google Cloud service account with required privileges to write objects in

a GCS bucket. For example, Storage Object Creator.

2. Add a key to the service account, and then download the JSON file containing the

new key.

3. Configure a multi-region GCS bucket for storing DS backups:

a. Create a new bucket, or identify an existing bucket to use.

b. Note the bucket’s Link for gsutil value.

c. Grant permissions on the bucket to the service account you created in step

1.

The ds-idrepo-restore-0 pod is temporary and not to be used as a

complete DS instance. You can export required data from the temporary

pod, and import data into your functional DS instance.

NOTE

$./snapshot-restore.sh clean idrepo

statefulset.apps "ds-idrepo-restore" deleted

persistentvolumeclaim "data-ds-idrepo-restore-0" deleted

dsbackup utility

Back up using the dsbackup utility

Set up cloud storage

Google Cloud

153 / 248

4. Make sure your current Kubernetes context references the cluster and

namespace where the DS pods are running.

5. Create secrets that contain credentials to write to cloud storage. The DS pods use

these when performing backups.

For my-sa-credential.json , specify the JSON file containing the service

account’s key:

a. Create the cloud-storage-credentials-cts secret:

b. Create the cloud-storage-credentials-idrepo secret:

6. Restart the pods that perform backups so that DS can obtain the credentials

needed to write to the backup location:

After the pods have restarted, you can schedule backups.

Set up an S3 bucket for the DS data backup and configure the ForgeOps deployment

with the credentials for the bucket:

1. Create or identify an existing S3 bucket for storing the DS data backup and note

the S3 link of the bucket.

2. Make sure your current Kubernetes context references the cluster and

namespace where the DS pods are running.

3. Create secrets that contain credentials to write to cloud storage. The DS pods use

these when performing backups:

a. Create the cloud-storage-credentials-cts secret:

$ kubectl create secret generic cloud-storage-

credentials-cts \

--from-file=GOOGLE_CREDENTIALS_JSON=/path/to/my-sa-

credential.json

$ kubectl create secret generic cloud-storage-

credentials-idrepo \

--from-file=GOOGLE_CREDENTIALS_JSON=/path/to/my-sa-

credential.json

$ kubectl delete pods ds-cts-0

$ kubectl delete pods ds-idrepo-0

AWS

$ kubectl create secret generic cloud-storage-

credentials-cts \

154 / 248

b. Create the cloud-storage-credentials-idrepo secret:

4. Restart the pods that perform backups so that DS can obtain the credentials

needed to write to the backup location:

After the pods have restarted, you can schedule backups.

Set up an Azure Blob Storage container for the DS data backup and configure the

ForgeOps deployment with the credentials for the container:

1. Create or identify an existing Azure Blob Storage container for the DS data

backup. For more information on how to create and use Azure Blob Storage, refer

to Quickstart: Create, download, and list blobs with Azure CLI .

2. Log in to Azure Container Registry:

3. Get the full Azure Container Registry ID:

With the full registry ID, you can connect to a container registry even if you are

logged in to a different Azure subscription.

4. Add permissions to connect your AKS cluster to the container registry:

--from-literal=AWS_ACCESS_KEY_ID=my-access-key \

--from-literal=AWS_SECRET_ACCESS_KEY=my-secret-access-

key

$ kubectl create secret generic cloud-storage-

credentials-idrepo \

--from-literal=AWS_ACCESS_KEY_ID=my-access-key \

--from-literal=AWS_SECRET_ACCESS_KEY=my-secret-access-

key

$ kubectl delete pods ds-cts-0

$ kubectl delete pods ds-idrepo-0

Azure



$ az acr login --name my-acr-name

$ ACR_ID=$(az acr show --name my-acr-name --query id | tr -d

'"')

$ az aks update --name my-aks-cluster-name --resource-group

my-cluster-resource-group --attach-acr $ACR_ID

155 / 248

https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli
https://docs.microsoft.com/en-us/azure/storage/blobs/storage-quickstart-blobs-cli

5. Make sure your current Kubernetes context references the cluster and

namespace where the DS pods are running.

6. Create secrets that contain credentials to write to cloud storage. The DS pods use

these when performing backups:

a. Get the name and access key of the Azure storage account for your storage

container .

b. Create the cloud-storage-credentials secret:

7. Restart the pods that perform backups so that DS can obtain the credentials

needed to write to the backup location:

After the pods have restarted, you can schedule backups.

1. Make sure you’ve set up cloud storage for your cloud provider platform.

2. Make sure your current Kubernetes context references the cluster and namespace

where the DS pods are running.

3. Make sure you’ve backed up and saved the shared master key and TLS key for the

ForgeOps deployment.

4. Set variable values in the /path/to/forgeops/bin/ds-backup.sh script:

Variable Name Default Notes

HOSTS ds-idrepo-2 The ds-idrepo or ds-cts replica or

replicas to back up. Specify a comma-

separated list to back up more than

one replica. For example, to back up

the ds-idrepo-2 and ds-cts-2

replicas, specify ds-idrepo-2,ds-

cts-2 .

[17]

$ kubectl create secret generic cloud-storage-credentials \

--from-literal=AZURE_STORAGE_ACCOUNT_NAME=my-storage-

account-name \

--from-literal=AZURE_ACCOUNT_KEY=my-storage-account-access-

key

$ kubectl delete pods ds-cts-0

$ kubectl delete pods ds-idrepo-0

Schedule backups

156 / 248

Variable Name Default Notes

BACKUP_SCHEDUL

E_IDREPO

On the hour and

half hour

How often to run backups of the ds-

idrepo directory. Specify using cron

job format .

BACKUP_DIRECTO

RY_IDREPO

n/a Where the ds-idrepo directory is

backed up. Specify:

gs://bucket/path to back up to

Google Cloud Storage

s3://bucket/path to back up to

Amazon S3

az://container/path to back

up to Azure Blob Storage

BACKUP_SCHEDUL

E_CTS

On the hour and

half hour

How often to run backups of the ds-

cts directory. Specify using cron job

format .

BACKUP_DIRECTO

RY_CTS

n/a Where the ds-cts directory is backed

up. Specify:

gs://bucket/path to back up to

Google Cloud Storage

s3://bucket/path to back up to

Amazon S3

az://container/path to back

up to Azure Blob Storage

5. Run the ds-backup.sh create command to schedule backups:

The first backup is a full backup; all later backups are incremental from the previous

backup.

By default, the ds-backup.sh create command configures:

The backup task name to be recurringBackupTask

The backup tasks to back up all DS backends

If you want to change either of these defaults, configure variable values in the ds-

backup.sh script.





$ /path/to/forgeops/bin/ds-backup.sh create

NOTE

157 / 248

https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules
https://cloud.google.com/scheduler/docs/configuring/cron-job-schedules

This section covers three options to restore data from dsbackup backups:

New ForgeOps deployment using DS backup

Restore all DS directories

Restore one DS directory

Creating new instances from previously backed up DS data is useful when a system

disaster occurs or when directory services are lost. It is also useful when you want to

port test environment data to a production deployment.

To create new DS instances with data from a previous backup:

1. Make sure your current Kubernetes context references the new ForgeOps cluster.

Also make sure that the namespace of your Kubernetes context contains the DS

pods into which you plan to load data from backup.

2. Create Kubernetes secrets containing your cloud storage credentials:

In this example, specify the path and file name of the JSON file containing the

Google service account key for my-sa-credential.json.

To cancel a backup schedule, run the ds-backup.sh cancel command.

NOTE

Restore

New ForgeOps deployment using DS backup

On Google Cloud

$ kubectl create secret generic cloud-storage-credentials \

--from-file=GOOGLE_CREDENTIALS_JSON=/path/to/my-sa-

credential.json

On AWS

$ kubectl create secret generic cloud-storage-credentials \

--from-literal=AWS_ACCESS_KEY_ID=my-access-key \

--from-literal=AWS_SECRET_ACCESS_KEY=my-secret-access-key

--from-literal=AWS_REGION=my-region

On Azure

$ kubectl create secret generic cloud-storage-credentials \

--from-literal=AZURE_STORAGE_ACCOUNT_NAME=my-storage-

account-name \

158 / 248

3. Configure the backup bucket location and enable the automatic restore capability:

a. Change to the /path/to/forgeops/kustomize/base/kustomizeConfig

directory.

b. Open the kustomization.yaml file.

c. Set the DSBACKUP_DIRECTORY parameter to the location of the backup

bucket. For example:

DSBACKUP_DIRECTORY="gs://my-backup-bucket"

DSBACKUP_DIRECTORY="s3://my-backup-bucket"

DSBACKUP_DIRECTORY="az://my-backup-bucket"

d. Set the AUTORESTORE_FROM_DSBACKUP parameter to "true" .

4. Then Deploy the platform.

When the platform is deployed, new DS pods are created, and the data is

automatically restored from the most recent backup available in the cloud storage

location you configured.

To verify that the data has been restored:

Use the IDM UI or platform UI.

Review the logs for the DS pods' init container. For example:

To restore all the DS directories in your ForgeOps deployment from backup:

1. Delete all the PVCs attached to DS pods using the kubectl delete pvc

command.

2. Because PVCs might not get deleted immediately when the pods to which they’re

attached are running, stop the DS pods.

--from-literal=AZURE_ACCOUNT_KEY=my-storage-account-access-

key

In a Kustomize-based deployment In a Helm-based deployment

On Google Cloud

On AWS

On Azure

$ kubectl logs --container init ds-idrepo-0

Restore all DS directories

159 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy.html

Using separate terminal windows, stop every DS pod using the kubectl delete

pod command. This deletes the pods and their attached PVCs.

Kubernetes automatically restarts the DS pods after you delete them. The

automatic restore feature of ForgeOps deployments recreates the PVCs as the pods

restart by retrieving backup data from cloud storage and restoring the DS

directories from the latest backup.

3. After the DS pods come up, restart IDM pods to reconnect IDM to the restored

PVCs:

a. List all the pods in the namespace.

b. Delete all the pods running IDM.

In a ForgeOps deployment with automatic restore enabled, you can recover a failed DS

pod if the latest backup is within the replication purge delay:

1. Delete the PVC attached to the failed DS pod using the kubectl delete pvc

command.

2. Because the PVC might not get deleted immediately if the attached pod is running,

stop the failed DS pod.

In another terminal window, stop the failed DS pod using the kubectl delete

pod command. This deletes the pod and its attached PVC.

Kubernetes automatically restarts the DS pod after you delete it. The automatic

restore feature recreates the PVC as the pod restarts by retrieving backup data

from cloud storage and restoring the DS directory from the latest backup.

3. If the DS instance you restored was the ds-idrepo instance, restart IDM pods to

reconnect IDM to the restored PVC:

a. List all the pods in the namespace.

b. Delete all the pods running IDM.

For information about manually restoring DS where the latest available backup is older

than the replication purge delay, refer to the Restore section in the DS documentation.

The PingDS disaster recovery involves additional steps beyond restoring a complete

PingDS environment from backup. The dsrepl disaster-recovery must be run after

a normal restore and before the PingDS server starts.

The disaster recovery process resets replication metadata to allow the newly restored

version of the PingDS topology. The new topology is identified by a disaster recovery ID.

Restore one DS directory

Restore a PingDS deployment after a disaster

160 / 248

https://backstage.forgerock.com/docs/ds/7.5/configref/objects-replication-synchronization-provider.html#replication-purge-delay
https://backstage.forgerock.com/docs/ds/7.5/maintenance-guide/backup-restore.html#restore

The data pods not being restored have a different disaster recovery ID and don’t

exchange data with pods already recovered.

The disaster recovery process is automated in Forgeops. When a restore is initiated, the

disaster recovery is also initiated using the disaster recovery ID defined in the

configuration. If the disaster recovery ID matches the contents of the restored backup,

the disaster recovery is stopped; otherwise, the data is disaster recovered.

The disaster recovery ID is configured in the platform-config configmap as follows:

For Helm: update ds_restore.disasterRecoveryId in your custom values file

For Kustomize: update DISASTER_RECOVERY_ID in your custom overlay in

base/platform-config.yaml

Use a backup newer than the last replication purge.

When you restore a single DS replica, the backup must be recent. Learn more at DS

README .

This section provides the conceptual and procedural details for upgrading your

ForgeOps deployment environment.

Upgrading ForgeOps deployments involves three main sections:

Upgrading ForgeOps deployment tools from previous releases

Migrate Kustomize overlays to the new format.

Migrate from a ForgeOps 7.4 or 7.5 release branch to the 2025.1.x tag.

Upgrading AM, DS, or DS Docker images

Upgrade the platform product Docker images to a new major or minor version.

Upgrade AM, DS, or DS Docker images to newer patch release.

Upgrading Helm charts used in ForgeOps deployment

Upgrade Helm charts

Best practices for restoring directories



Upgrade Overview

Because the Ping Identity Platform is highly customizable, testing all possible

upgrade scenarios is challenging. It is your responsibility to validate that these

upgrade steps work correctly in a test environment with your customized

configuration before you upgrade a production environment.

IMPORTANT

161 / 248

https://github.com/ForgeRock/forgeops/blob/dev/docker/ds/README.md#restore-of-a-single-instance-rest-of-topology-still-valid
https://github.com/ForgeRock/forgeops/blob/dev/docker/ds/README.md#restore-of-a-single-instance-rest-of-topology-still-valid
https://github.com/ForgeRock/forgeops/blob/dev/docker/ds/README.md#restore-of-a-single-instance-rest-of-topology-still-valid
https://github.com/ForgeRock/forgeops/blob/dev/docker/ds/README.md#restore-of-a-single-instance-rest-of-topology-still-valid
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/migrate-forgeops.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/mig-74-75.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/upgrade-product.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/upgrade-patch.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/update-helm.html

This section covers steps required to migrate your Kustomize overlays from your 7.4

or 7.5 forgeops release branch to overlays in the new ForgeOps deployment

environment.

The format and layout of the overlays in the new main branch have changed from the

previous ForgeOps releases. Two main changes are:

Each overlay contains sub-overlays for each product. This enables users to deploy

products individually or collectively just as with the previous version of the

forgeops command.

The image-defaulter is included in the overlay, so it is specific for a deployment

environment.

Using the new forgeops command, you can select the version of products you want to

deploy from 7.4 onwards. ForgeOps team recommends you migrate your deployment in

the following way:

1. Migrate your overlay to the new overlay layout using the steps below.

2. Upgrade your images to a new version once your overlay is updated. Learn more at

Migrate from a ForgeOps 7.4 or 7.5 release branch to the 2025.1.x tag.

To migrate your Kustomize overlays from previous versions, you need either of:

Your custom overlay and the contents of kustomize/deploy/image-

defaulter/kustomization.yaml, or

Your custom deployment environment directory you have used to create a

dedicated image-defaulter for your environment using the --deploy-env

option.

Steps:

1. Ensure your custom overlay or custom deployment environment directory is saved

locally so it is accessible when you check out the 2025.1.1 tag.

Migrate Kustomize configurations to the new format





If you are using DS Operator in your deployment, then use step 3 in Upgrade from

version 7.3 to migrate away from using the DS Operator and then perform the

migration.

NOTE



Considerations

Steps to migrate your overlay

162 / 248

https://github.com/ForgeRock/forgeops/tree/release/7.4-20240805
https://github.com/ForgeRock/forgeops/tree/release/7.4-20240805
https://github.com/ForgeRock/forgeops/tree/release/7.4-20240805
https://github.com/ForgeRock/forgeops/tree/release/7.5-20240618
https://github.com/ForgeRock/forgeops/tree/release/7.5-20240618
https://github.com/ForgeRock/forgeops/tree/release/7.5-20240618
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/mig-74-75.html
https://docs.pingidentity.com/forgeops/7.4/how-to/73to74.html#upgrade_the_7_3_pods_to_7_4_and_build_custom_7_4_docker_images
https://docs.pingidentity.com/forgeops/7.4/how-to/73to74.html#upgrade_the_7_3_pods_to_7_4_and_build_custom_7_4_docker_images
https://docs.pingidentity.com/forgeops/7.4/how-to/73to74.html#upgrade_the_7_3_pods_to_7_4_and_build_custom_7_4_docker_images
https://docs.pingidentity.com/forgeops/7.4/how-to/73to74.html#upgrade_the_7_3_pods_to_7_4_and_build_custom_7_4_docker_images

2. Check out the 2025.1.1 tag.

3. Create a new custom overlay specifying your FQDN and the certificate issuer.

4. Copy the patch information from the previous custom overlay patch files or your

deployment directory to the new overlay files.

For example:

Old overlay: From old-overlay/am.yaml to new-

overlay/am/deployment.yaml

Environment directory: From deploy-custom/apps/am.yaml to new-

overlay/am/deployment.yaml

If you need to include additional patches, add them in to the corresponding sub-overlay

and update the corresponding kustomization.yaml file to include them. The new

forgeops command applies the overlays correctly during ForgeOps deployment unlike

the forgeops command in previous releases that ignored kustomization.yaml .

Other things to watch out for

Update the base/base.yaml file, and ensure that the FQDN is specified

correctly.

A separate ingress file exists for each product. The FQDN is populated in these

files when you set up the deployment environment using the forgeops env

command.

Update your image-defaulter/kustomization.yaml in the new overlay with

image URLs and images tags from your old deploy/image-

defaulter/kustomization.yaml or your custom my-env/image-

defaulter/kustomization.yaml .

$ cd /path/to/forgeops/

$ git checkout 2025.1.1

$./bin/forgeops env --e my-env --fqdn my-fqdn --cluster-

issuer my-cluster-issuer

1. Specify your FQDN when creating a new custom overlay as it will populate

the required manifests in the new overlay.

2. If you want to use a specific issuer for your deployment environment

instead of the ClusterIssuer, then replace the --cluster-issuer option

with --issuer option appropriately.

IMPORTANT

163 / 248

If you’ve already installed Ping Identity Platform using the previous release branch of the

forgeops repository, such as release/7.4-20240126 or release/7.5-20240608 ,

follow the steps provided on this page to upgrade to the latest platform 2025.1.x branch.

This upgrade methodology has been tested against a deployment based on ForgeOps-

provided Docker images with basic configuration settings.

If you’ve deployed the Ping Identity Platform from a previous release of ForgeOps, such

as release/7.4-20240126 or release/7.5-20240608 :

If you are using Kustomize to manage your ForgeOps deployment, Migrate

Kustomize configurations to the new format first.

You would have created your custom branch with the new ForgeOps release .

Copy your product configuration profiles from your 7.4 or 7.5 release branch, for

example: /path/to/forgeops/docker/am/config-profile/my-profile to

the same location in your new custom branch.

To upgrade the platform from release 7.4 or 7.5 to 2025.1.x, you’ll need:

A running 7.4 or 7.5 release of ForgeOps deployment. If you need to port your AM

custom configurations, then the running ForgeOps deployment should be a single-

instance deployment with your AM and IDM configurations.

A forgeops repository clone with a branch that contains 7.4 or 7.5 artifacts.

A forgeops repository clone with a branch that contains 2025.1.x artifacts.

Example commands in the steps on this page assume:

7.4 or 7.5-profile is the name of the 7.4 or 7.5 configuration profile.

Your 7.4 or 7.5 ForgeOps deployment is a small cluster.

Your 7.4 or 7.5 small, medium, or large ForgeOps deployment doesn’t include

PingGateway.

When you perform the upgrade:

Migrate from a ForgeOps 7.4 or 7.5 release branch to the 2025.1.x

tag

Because the Ping Identity Platform is highly customizable, it is challenging to test all

possible upgrade scenarios. It is your responsibility to validate that these upgrade

steps work correctly in a test environment with your customized configuration

before you upgrade a production environment.

IMPORTANT

Prerequisites and assumptions



164 / 248

file:///home/pptruser/Downloads/build/site/forgeops/upgrade/migrate-forgeops.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/migrate-forgeops.html
https://github.com/ForgeRock/forgeops
https://github.com/ForgeRock/forgeops
https://github.com/ForgeRock/forgeops

Choose a different name for the configuration profile if you prefer.

Specify a different cluster size, if applicable.

Add commands to upgrade PingGateway, if applicable.

Get updates from ForgeOps when there are changes to ForgeOps 2025.1.1.

For more information about getting notifications or subscribing to the ForgeOps

2025.1.1 RSS feed, refer to ForgeOps 2025.1 release notes.

Before upgrading, back up all critical data, including:

Directory data stored in the ds-idrepo and ds-cts backends

AM and IDM configuration data

Customized artifacts in your forgeops repository clone

After you’ve started to upgrade, you might not be able to roll back directory data easily

because the data is upgraded in place. If you need to roll back directory data, you’ll have

to redeploy DS and restore directory data from a backup. For a simpler restore scenario,

consider backing up directory data on volume snapshots.

You can manage multiple releases in ForgeOps 2025.1.x using the forgeops image

command. Learn more about the forgeops image command .

1. If you don’t have the 7.4 or 7.5 release file for your 7.4 or 7.5 deployment, create a

7.4 or 7.5 release file in your forgeops branch. For example, to create the release

file for 7.4.0 release:

This is in case you need to roll back AM or IDM or you have configuration changes

you wish to export from your single-instance environment.

2. Create a 2025.1.x release in docker/COMPONENT/releases/2025.1.x in your

forgeops branch:

Subscribe to release note updates

Back up critical data

Create the new release in your forgeops branch



$ cd /path/to/forgeops

$./bin/forgeops image --release 7.4.0 platform --release-

name 7.4.0

165 / 248

file:///home/pptruser/Downloads/build/site/forgeops/rn/rn.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/snapshots.html
https://github.com/ForgeRock/forgeops/blob/main/how-tos/manage-platform-images.md
https://github.com/ForgeRock/forgeops/blob/main/how-tos/manage-platform-images.md
https://github.com/ForgeRock/forgeops/blob/main/how-tos/manage-platform-images.md

3. Set the images in your environment to the new release:

If you have AM or IDM configuration changes, in a single-instance deployment, that you

haven’t yet exported to a configuration profile:

1. Locate a branch of your forgeops repository clone that contains release 7.4 or 7.5

artifacts and check out the branch.

2. (Optional) Check out a new branch based on the branch that contains release 7.4 or

7.5 artifacts.

3. Locate a namespace running release 7.4 or 7.5 of the single-instance deployment

that contains your AM and IDM configurations.

4. Export the AM and IDM configurations from the 7.4 or 7.5 single-instance

deployment:

1. Run the am-config-upgrader utility to upgrade the AM configuration to 2025.1.x:

$ cd /path/to/forgeops

$./bin/forgeops image --release 2025.1.x platform --release-

name 2025.1.x

$./bin/forgeops image --release 2025.1.x --env-name my-

custom-env platform

Export the release 7.4 or 7.5 AM and IDM configurations

$ cd /path/to/forgeops

$./bin/config export am 7.4 or 7.5-profile --sort --release-

name 7.4 or 7.5

$./bin/config export idm 7.4 or 7.5-profile --sort --release-

name 7.4 or 7.5

The --release-name option is required to ensure you use the release of the

am-config-upgrader that matches your deployment. This only replaces any

default config expressions that are lost during config updates in PingAM. It

doesn’t carry out any upgrades.

IMPORTANT

Build new images containing your ForgeOps configuration

$ cd /path/to/forgeops

$./bin/forgeops upgrade-am-config docker/am/config-

166 / 248

2. Run the git add . and git commit commands.

3. Build Docker images for the newer patch release that contain your configuration

profile:

The newly built Docker images are based on ForgeOps-provided Docker images.

In Kustomize environment

1. Set your Kubernetes context to the cluster on which ForgeOps is deployed.

2. Upgrade the ds-cts pods to the new patch release.

a. Run the forgeops apply ds-cts command to update ds-cts pods

sequentially:

b. Run the kubectl get pods --watch command to observe the pod

upgrades.

c. After all the ds-cts pods have been upgraded, run the ds-debug.sh

command to verify that directory replication is working correctly in each ds-

cts pod:

3. Similarly, upgrade the ds-idrepo pods to the new patch release and verify that

directory replication is working correctly in each ds-idrepo pod.

4. Upgrade all the Ping Identity Platform pods to the new patch release:

profiles/my-config-profile --release-name 2025.1.x

$ cd /path/to/forgeops

$./bin/forgeops build am --config-profile my-config-profile \

--env-name my-custom-env --release-name 2025.1.x --push-to

my-repo \

--tag custom-am-tag

$./bin/forgeops build idm --config-profile my-config-profile

\

--env-name my-custom-env --release-name 2025.1.x \

--push-to my-repo --tag custom-idm-tag

Upgrade the exported configuration profiles to release 2025.1.x

$ cd /path/to/forgeops

$./bin/forgeops apply ds-cts --env-name my-custom-env

$./bin/ds-debug.sh --pod-name ds-cts-0 rstatus

167 / 248

Wait for all the pods to be upgraded. Run the kubectl get pods --watch

command to observe the progress of upgrade.

5. Start the admin UIs for AM and IDM in the upgraded deployment and verify that:

The start page for each admin UI displays the expected component release

for the 2025.1.x release.

AM and IDM use your custom configuration.

In Helm environment

1. Set your Kubernetes context to the cluster on which ForgeOps is deployed.

2. Upgrade the platform:

3. After all the ds-cts pods have been upgraded, run the ds-debug.sh

command to verify that directory replication is working correctly in each ds-cts

pod:

4. After the ds-idrepo pods have been upgraded, run the ds-debug.sh command

to verify that directory replication is working correctly:

5. Start the admin UIs for AM and IDM in the upgraded deployment and verify that:

The start page for each admin UI displays the expected component release

for the 2025.1.x release.

AM and IDM use your custom configuration.

If you are using ForgeOps deployment in production, you must rebuild base Docker

images and custom Docker images for release 2025.1.x:

Learn more about building base docker images in Your own base Docker images.

$./bin/forgeops apply ui --env-name my-custom-env

$ cd /path/to/forgeops

$ helm upgrade --install identity-platform \

oci://us-docker.pkg.dev/forgeops-public/charts/identity-

platform \

--version 2025.1.x --namespace my-namespace \

--values helm/my-custom-env/values.yaml

$./bin/ds-debug.sh --pod-name ds-cts-0 rstatus

$./bin/ds-debug.sh --pod-name ds-idrepo-0 rstatus

Rebuild your new images

168 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html#base-images

Learn more about building your Docker images with custom configurations in

Creating Docker images for use in production.

If you’ve performed ForgeOps deployment using the older AM, IDM, and DS Docker

images, you should upgrade your ForgeOps deployment to use the newer version of

platform product Docker images.

This upgrade methodology has been tested against a deployment based on ForgeOps-

provided Docker images with basic configuration settings.

To upgrade platform products in a ForgeOps deployment to a newer release, you’ll need:

A forgeops repository clone of ForgeOps 2025.1.0 release tag or later.

A running ForgeOps deployment environment, which has been configured using the

forgeops env command.

Example commands in the steps on this page assume that your ForgeOps deployment:

Is using the default configuration.

Doesn’t include PingGateway.

Before upgrading, back up all critical data, including:

Directory data stored in the ds-idrepo and ds-cts backends

AM and IDM configuration data

Customized artifacts in your forgeops repository clone

Upgrade the platform product Docker images to a new major or

minor version

Using this procedure, you can upgrade all the platform product Docker images

sequentially, one at a time.

NOTE

Because the Ping Identity Platform is highly customizable, testing all possible

upgrade scenarios is challenging. It is your responsibility to validate that these

upgrade steps work correctly in a test environment with your customized

configuration before you upgrade a production environment.

IMPORTANT

Prerequisites and assumptions

Back up critical data

169 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html#_create_docker_images_for_use_in_production

After you’ve started upgrading, you might not be able to roll back directory data easily

because the data is upgraded in place. To roll back directory data, you must redeploy DS

and restore directory data. Consider backing up directory data on volume snapshots for

a simpler restore scenario.

1. Set your Kubernetes context to the cluster running your ForgeOps deployment.

2. View the list of supported product versions:

1. Create a new release file for all the platform products. In the forgeops image

command, specify:

The new product version in the --release flag, such as 7.5.1.

The platform option to apply the product version to the whole platform.

2. Upgrade your custom AM configuration profile to the new version:

3. Build new custom images for all platform products:

Get ready to upgrade

$ cd /path/to/forgeops

$./bin/forgeops info --list-releases

Upgrade the platform product images to a new major or minor version

Amster and AM images need to be on the same version. So if you’re upgrading AM,

carry out the same steps to upgrade Amster.

IMPORTANT

$ cd /path/to/forgeops

$./bin/forgeops image --release 7.5.1 --release-name my-

custom-release platform

Use the --release-name option to ensure you use the version of the

upgrade-am-config that matches your deployment.

NOTE

$ cd /path/to/forgeops

$./bin/forgeops upgrade-am-config --release-name my-custom-

release \

--config-profile docker/am/config-profiles/my-config-profile

170 / 248

file:///home/pptruser/Downloads/build/site/forgeops/backup/snapshots.html

4. Deploy your updated images for all platform products:

This section refers to an upgrade to the platform UIs only.

You don’t need to build new Docker images when you upgrade Platform UIs.

1. Update your environment to the new version. Specify the new version in the --

release flag:

2. Deploy your updated version (Kustomize only)

Patched images are released for each platform product separately. So you may need to

update each of PingAM, PingIDM, or PingDS images to a newer image patch release

separately.

$ cd /path/to/forgeops

$./bin/forgeops build platform --env-name my-custom-env \

--release-name my-custom-release \

--config-profile docker/am/config-profiles/my-config-profile

In a Kustomize environment

$ cd /path/to/forgeops

$./bin/forgeops apply --env-name my-custom-env platform

In a Helm environment

$ cd /path/to/forgeops/charts/identity-platform

$ helm upgrade --install identity-platform ./ \

--values /path/to/forgeops/helm/my-env/values.yaml

Upgrade the platform UIs to a new version

$ cd /path/to/forgeops

$./bin/forgeops image --release 8.0.0 ui --env-name my-

custom-env

$ cd /path/to/forgeops

$./bin/forgeops apply --env-name my-custom-env ui

Upgrade PingAM, PingIDM, or PingDS image to a newer patch

release

IMPORTANT

171 / 248

To upgrade PingAM, PingIDM, or PingDS image to a newer patch release, you’ll need:

A local clone of the ForgeOps repository.

A running ForgeOps deployment deployed using ForgeOps 2025.1.0 or later.

A configured ForgeOps deployment environment in your forgeops repository clone

using the forgeops env command.

Example commands in this section assume that your ForgeOps deployment:

Is using the default configuration.

Doesn’t include PingGateway.

If upgrading DS, back up all the directory data stored in the ds-idrepo and ds-cts

backends. After you’ve started to upgrade, you can’t roll back directory data changes

easily because the data is upgraded in place. To roll back directory data, you must

redeploy DS and restore directory data. Consider backing up directory data on volume

snapshots for a simpler restore scenario.

1. Set your Kubernetes context so that you can access the cluster which contains your

ForgeOps deployment.

2. Check the current supported product versions available if required:

Because the Ping Identity Platform is highly customizable, testing all possible

upgrade scenarios is challenging. It is your responsibility to validate that these

upgrade steps work correctly in a test environment with your customized

configuration before you upgrade a production environment.

IMPORTANT

Prerequisites and assumptions

Back up critical Directory data

For upgrading a dev environment, ensure that you have exported your AM or IDM

configuration changes to your custom configuration profile.

IMPORTANT

Get ready for upgrade

$ cd /path/to/forgeops

$./bin/forgeops info --list-releases

Upgrade a product to a newer patch release

172 / 248

This section covers the steps to upgrade AM, Amster, IDM, or DS to a new patch release.

1. Create a new release in your ForgeOps repository clone that includes your

customized configuration of the product to be updated, using one of the following

options:

a. To update to a new patch release use the forgeops image command and

specify:

The new patch version in the --release flag.

Your current release in the --release-name flag.

For example, to upgrade your AM image to 7.5.2 release:

b. To update to the latest secure image in your current release, use the forgeops

image command and specify:

The product version you have deployed in the --release flag.

Specify your current release in the --release-name flag.

For example, to upgrade your AM image to the latest secure image of 7.5.1

release:

2. If you’re upgrading AM, upgrade your custom AM configuration profile to the new

version.

Amster and AM need to be on the same version. So if you’re upgrading AM, carry

out the same steps to upgrade Amster.

IMPORTANT

$ cd /path/to/forgeops

$./bin/forgeops image --release 7.5.2 --release-name

my-custom-release am

When you specify the current release in the forgeops image

command, it selects the latest available secure image automatically.

NOTE

$ cd /path/to/forgeops

$./bin/forgeops image --release 7.5.1 --release-name

my-custom-release am

The --release-name option is required to ensure you use the version of the

am-config-upgrader that matches your target AM version.

IMPORTANT

173 / 248

3. Build your new custom image for the product you are upgrading.

4. Deploy your updated version.

Use the steps in this section to upgrade platform UIs in a ForgeOps deployment. Usually

the new platform UI patch versions are available together, so the steps upgrade all the

platform UIs together. You don’t need to build new Docker images when you upgrade

Platform UIs.

1. Upgrade your deployment environment to the new patch version.

$ cd /path/to/forgeops

$./bin/forgeops upgrade-am-config --release-name my-custom-

release \

--config-profile docker/am/config-profiles/my-custom-release

The --config-profile option isn’t required to build DS image.

NOTE

$ cd /path/to/forgeops

$./bin/forgeops build AM --env-name my-custom-env \

--release-name my-custom-release --config-profile \

docker/am/config-profiles/my-config-profile

In a Helm environment

$ cd /path/to/forgeops

$ helm upgrade --install identity-platform \

oci://us-docker.pkg.dev/forgeops-public/charts/identity-

platform \

--version deployed version --namespace my-namespace \

--values helm/my-custom-env/values.yaml

In a Kustomize environment

$ cd /path/to/forgeops

$./bin/forgeops apply --env-name my-custom-env product

In the forgeops apply command, specify the product, such as am , idm ,

or ds for product.

NOTE

Upgrade the platform UIs to a newer patch version

174 / 248

a. To upgrade to the new patch release of platform UIs, specify the new patch

number in the --release flag of the forgeops image command. For

example, to upgrade to the 7.5.2 version UIs:

b. To update to the latest platform UI secure image for the currently deployed

release, specify the current platform UI version in the --release flag:

2. Deploy your updated patch image:

In ForgeOps deployments using Helm chart version 2025.1.0 version or later, the

customized values.yaml files are independent of the Helm chart versions. Therefore, you

can update the version of a Helm chart and continue to work with your customized

values.yaml files in your ForgeOps deployment environment.

$ cd /path/to/forgeops

$./bin/forgeops image --release 7.5.2 ui --env-name my-

custom-env

$ cd /path/to/forgeops

$./bin/forgeops image --release 7.5.1 ui --env-name my-

custom-env

In a Helm environment

$ cd /path/to/forgeops

$ helm upgrade --install identity-platform \

oci://us-docker.pkg.dev/forgeops-public/charts/identity-

platform \

--version deployed version --namespace my-namespace \

--values helm/my-custom-env/values.yaml

In a Kustomize environment

$ cd /path/to/forgeops

$./bin/forgeops apply --env-name [.var}#my-custom-env# ui

Update Helm Chart

The values.yaml files in ForgeOps deployments using 7.4 and 7.5 releases

are not independent of the Helm chart versions. You cannot upgrade the Helm

chart version in your ForgeOps deployment of 7.4 and 7.5 releases.

Check the ForgeOps release notes to see what changes are in the new version

of the Helm chart.

IMPORTANT

175 / 248

1. If you used the helm upgrade --install command to perform ForgeOps

deployment, you can update the Helm chart version:

In the helm upgrade command, specify the new version of the Helm chart, such as

2025.1.1 for new-version.

Kubernetes deployments are multi-layered and often complex.

Errors and misconfigurations can crop up in a variety of places. Performing a logical,

systematic search for the source of a problem can be daunting.

Here are some techniques you can use to troubleshoot problems with ForgeOps

deployments:

Problem Troubleshooting Technique

Some pods don’t start. Review Kubernetes logs and other diagnostics.

Verify if your cluster is resource-constrained. Check for

underconfigured clusters by using the kubectl describe

nodes and kubectl get events -w commands. Pods

killed with out of memory (OOM) conditions indicate that

your cluster is underconfigured.

Make sure that you’re using tested versions of third-party

software.

Stage your installation. Install Ping Identity Platform

components separately, instead of installing all the

components with a single command. Staging your

installation lets you make sure each component works

correctly before installing the next component.

$ cd /path/to/forgeops

$ helm upgrade --install identity-platform \

oci://us-docker.pkg.dev/forgeops-public/charts/identity-

platform \

--version new-version --namespace my-namespace \

--values helm/my-custom-env/values.yaml

Troubleshooting

176 / 248

file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/pods.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/sw-versions.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/sw-versions.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/staged-deployment.html

Problem Troubleshooting Technique

All the pods have

started, but you can’t

reach the services

running in them.

Make sure you don’t have any ingress issues.

AM doesn’t work as

expected.

Set the AM logging level , recreate the issue, and analyze

the AM log files.

Turn on audit logging in AM.

IDM doesn’t work as

expected.

Set the IDM logging level , recreate the issue, and analyze

the IDM log files.

Turn on audit logging in IDM.

Your JVM crashed with

an out of memory error

or you suspect that you

have a memory leak.

Collect and analyze Java thread dumps and heap dumps .

Changes you’ve made

to ForgeOps’s

Kustomize files don’t

work as expected.

Fully expand the Kustomize output, and then examine the

output for unintended effects.

Your Minikube

deployment doesn’t

work.

Make sure that you don’t have a problem with virtual

hardware requirements.

You’re having name

resolution or other DNS

issues.

Use diagnostic tools in the debug tools container.

You want to run DS

utilities without

disturbing a DS pod.

Use the bin/ds-debug.sh script or DS tools in the debug

tools container.

You want to keep the

amster pod running to

diagnose AM

configuration issues.

Use the amster command.











177 / 248

file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/ingress.html
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-am/3133
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-am/3133
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-am/3133
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-idm/3152
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-idm/3152
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-7-3-for-idm/3152
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops-7-3/3263/1
https://backstage.forgerock.com/knowledge/kb/article/a67657787
https://backstage.forgerock.com/knowledge/kb/article/a67657787
https://backstage.forgerock.com/knowledge/kb/article/a67657787
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/kustomize.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/minikube.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/minikube.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/debug-tools.html#debug-tools-container
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/debug-tools.html#ds-debug
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/debug-tools.html#ds-debug
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/debug-tools.html#debug-tools-container
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/debug-tools.html#debug-tools-container
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/amster.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/amster.html

Problem Troubleshooting Technique

You want to

troubleshoot AM

configuration upgrade

issues.

Use the config --no-upgrade option.

The kubectl

command requires too

much typing.

Enable kubectl tab autocompletion.

Look at pod descriptions and container log files for irregularities that indicate problems.

Pod descriptions contain information about active Kubernetes pods, including their

configuration, status, containers (including containers that have finished running),

volume mounts, and pod-related events.

Container logs contain startup and run-time messages that might indicate problem

areas. Each Kubernetes container has its own log that contains all output written to

stdout by the application running in the container. The am container logs are

especially important for troubleshooting AM issues in Kubernetes deployments. AM

writes its debug logs to stdout . Therefore, the am container logs include all the AM

debug logs.

The debug-logs utility generates the following HTML-formatted output, which you can

view in a browser:

Descriptions of all the Kubernetes pods running the Ping Identity Platform in your

namespace

Logs for all of the containers running in these pods

Descriptions of the PVCs running in your cluster

Operator logs

Information about your local environment, including:

The Kubernetes context

Third-party software versions

CRDs installed in your cluster

Kubernetes storage classes

The most recent commits in your forgeops repository clone’s commit log

Kubernetes logs and other diagnostics

debug-logs utility

178 / 248

file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/am-no-upgrade.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/am-no-upgrade.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/tab-completion.html

Details about a variety of Kubernetes objects on your cluster

Suppose you performed a ForgeOps deployment but noticed that one of the pods had

an ImagePullBackOff error at startup. Here’s an example of how you can use pod

descriptions and container logs to troubleshoot the problem:

1. Make sure the active namespace in your local Kubernetes context is the one that

contains the component you are debugging.

2. Make sure you’ve checked out the 2025.1.1 branch of the forgeops repository.

3. Change to the /path/to/forgeops/bin directory in your forgeops repository

clone.

4. Run the debug-logs command:

5. In a browser, go to the URL shown in the debug-logs output. In this example, the

URL is file:///tmp/forgeops/log.html. The browser displays a screen with a link for

each Ping Identity Platform pod in your namespace:

Example troubleshooting steps

$./debug-logs

Writing environment information

Writing pod descriptions and container logs

admin-ui-5ff5c55bd9-vrvrq

am-7cd8f55b87-nt9hw

ds-idrepo-0

end-user-ui-59f84666fb-wzw59

idm-6db77b6f47-vw9sm

login-ui-856678c459-5pjm8

Writing PVC descriptions

data-ds-idrepo-0

Writing operator logs

secret-agent

ds-operator

Writing information about various Kubernetes objects

Open /tmp/forgeops/log.html in your browser.

179 / 248

6. Access the information for the pod that didn’t start correctly by selecting its link

from the Pod Descriptions and Container Logs section of the debug-logs output.

Selecting the link takes you to the pod’s description. Logs for each of the pod’s

containers follow the pod’s description.

After you’ve obtained the pod descriptions and container logs, here are some actions

you might take:

Examine each pod’s event log for failures.

180 / 248

If a Docker image could not be pulled, verify that the Docker image name and tag

are correct. If you are using a private registry, verify that your image pull secret is

correct.

Examine the init containers. Did each init container complete with a zero (success)

exit code? If not, examine the logs from that failed init container using the kubectl

logs pod-xxx -c init-container-name command.

Look at the pods' logs to check if the main container entered a crashloop.

The bin/ds-debug.sh script lets you obtain diagnostic information for any DS pod

running in your cluster. It also lets you perform several cleanup and recovery operations

on DS pods.

Run bin/ds-debug.sh -h to refer to the command’s syntax.

The following bin/ds-debug.sh subcommands provide diagnostic information:

Subcomm

and

Diagnostics

status Server details, connection handlers, backends, and disk space

rstatus Replication status

idsearch All the DNs in the ou=identities branch

monitor All the directory entries in the cn=monitor branch

list-

backups

A list of the backups associated with a DS instance

The bin/ds-debug.sh purge command purges all the backups associated with a DS

instance.

The ds-util debug tools container provides a suite of diagnostic tools that you can

execute inside of a running Kubernetes cluster.

The container has two types of tools:

DS tools—A DS instance is installed in the /opt/opendj directory of the ds-util

container. DS tools, such as the ldapsearch and ldapmodify commands, are

DS diagnostic tools

Debug script

Debug tools container

181 / 248

available in the /opt/opendj/bin directory.

Miscellaneous diagnostic tools—A set of diagnostic tools, including dig , netcat ,

nslookup , curl , and vi , have been installed in the container. The file,

/path/to/forgeops/docker/ds/dsutil/Dockerfile, has the list of operating

system packages that have been installed in the debug tools container.

To start the debug tools container:

After you start the tools container, a command prompt appears:

You can access all the tools available in the container from this prompt. For example:

When ForgeOps deployments start, the amster pod starts and imports AM dynamic

configuration. Once dynamic configuration is imported, the amster pod is stopped and

remains in Completed status.

$ kubectl run -it ds-util --image=gcr.io/forgeops-public/ds-util -

- bash

root@ds-util:/opt/opendj#

root@ds-util:/opt/opendj# nslookup am

Server: 10.96.0.10

Address: 10.96.0.10#53

Name: am.my-namespace.svc.cluster.local

Address: 10.100.20.240

Troubleshooting the amster pod

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

admin-ui-b977c857c-2m9pq 1/1 Running 0 10m

am-666687d69c-94thr 1/1 Running 0 12m

amster-4prdg 0/1 Completed 0 12m

ds-idrepo-0 1/1 Running 0 13m

end-user-ui-674c4f79c-h4wgb 1/1 Running 0 10m

idm-869679958c-brb2k 1/1 Running 0 12m

login-ui-56dd46c579-gxrtx 1/1 Running 0 10m

Start the amster pod

182 / 248

After you install AM, use the forgeops amster run command to start the amster

pod for manually interacting with AM using the forgeops amster run command line

interface and perform tasks such as exporting and importing AM configuration and

troubleshooting:

The amster jobs have a default time-to-live (TTL) value set to 600 seconds. The amster

jobs are removed from the namespace after 10 minutes to allow later runs of amster

jobs if the spec is updated in the user’s environment and redeployed.

A Kubernetes job cannot be updated after it has started running. If the amster job is

running when you apply an update, then an error is thrown. The beginning of the error

appears similar to the following:

If an amster job fails due to low TTL, then delete amster jobs using the kubectl

delete jobs command and redeploy.

To export AM configuration, use the forgeops amster export command. Similarly,

use the forgeops amster import command to import AM configuration. At the end

of the export or import session, the amster pod is stopped by default. To keep the

amster pod running, use the --retain option. You can specify the time (in seconds) to

keep the amster running. To keep it running indefinitely, specify --retain infinity.

In the following example, the amster pod is kept running for 900 seconds after

completing export:

$./bin/forgeops amster run --env-name my-env

starting...

...

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

admin-ui-b977c857c-2m9pq 1/1 Running 0 22m

am-666687d69c-94thr 1/1 Running 0 24m

amster-852fj 1/1 Running 0 12s

ds-idrepo-0 1/1 Running 0 25m

end-user-ui-674c4f79c-h4wgb 1/1 Running 0 22m

idm-869679958c-brb2k 1/1 Running 0 24m

login-ui-56dd46c579-gxrtx 1/1 Running 0 22m

The Job "amster" is invalid: spec.template: Invalid value: ...

...

"batch.kubernetes.io/job-name":"amster", ...

"job-name":"amster"}

Export and import AM configuration

183 / 248

After 900 seconds notice that the amster pod is in Completed status:

$./bin/forgeops amster export --env-name my-env --retain 900

/tmp/myexports

Cleaning up amster components

job.batch "amster" deleted

configmap "amster-files" deleted

Packing and uploading configs

configmap/amster-files created

configmap/amster-export-type created

configmap/amster-retain created

Deploying amster

job.batch/amster created

Waiting for amster job to complete. This can take several minutes.

pod/amster-d6vsv condition met

tar: Removing leading `/' from member names

Updating amster config.

Updating amster config complete.

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

admin-ui-b977c857c-2m9pq 1/1 Running 0 27m

am-666687d69c-94thr 1/1 Running 0 29m

amster-d6vsv 1/1 Running 0 53s

ds-idrepo-0 1/1 Running 0 30m

end-user-ui-674c4f79c-h4wgb 1/1 Running 0 27m

idm-869679958c-brb2k 1/1 Running 0 29m

login-ui-56dd46c579-gxrtx 1/1 Running 0 27m

$ kubectl get pods

NAME READY STATUS RESTARTS AGE

admin-ui-b977c857c-2m9pq 1/1 Running 0 78m

am-666687d69c-94thr 1/1 Running 0 80m

amster-d6vsv 0/1 Completed 0 51m

ds-idrepo-0 1/1 Running 0 81m

end-user-ui-674c4f79c-h4wgb 1/1 Running 0 78m

idm-869679958c-brb2k 1/1 Running 0 80m

login-ui-56dd46c579-gxrtx 1/1 Running 0 78m

The no-upgrade option of config export

184 / 248

When you export AM configuration using the config export am command, the

config export command exports the configuration from the AM pod and runs the

configuration rules twice:

First, run rules to reapply any placeholders.

Next, to run rules to upgrade to the current version of AM.

If you need to troubleshoot issues with the config export am command, then you

can separate the steps for applying placeholder rules from the steps for applying

upgrade rules.

An example, with no-upgrade option:

By default, the forgeops apply command installs the entire Ping Identity Platform.

You can also install the platform in stages to help troubleshoot deployment issues.

To install the platform in stages:

1. Verify that the namespace in which the Ping Identity Platform is to be installed is set

in your Kubernetes context.

2. Identify the size of the cluster you’re deploying the platform on. You’ll specify the

cluster size as an argument to the forgeops install command:

--cdk for a single-instance deployment

--small, --medium, or --large, for other ForgeOps deployments

3. Install the base and ds components first. Other components have dependencies

on these two components:

a. Install the platform base component:

$ config export am my-profile --no-upgrade

[INFO] Running export for am in am-54c87b86cb-rr8mm

[INFO] Updating existing profile:

/path/to/forgeops/docker/am/config-profiles/my-profile

[INFO] Clean profile: /path/to/forgeops/docker/am/config-

profiles/my-profile

[INFO] Exported AM config

[INFO] Completed export

Staged installation

$ cd /path/to/forgeops/bin

$./forgeops apply base --size --fqdn myfqdn.example.com

Checking secret-agent operator and related CRDs: secret-

185 / 248

agent CRD not found. Installing secret-agent.

namespace/secret-agent-system created

...

Waiting for secret agent operator...

customresourcedefinition.apiextensions.k8s.io/secretagentc

onfigurations.secret-agent.secrets.forgerock.io condition

met

deployment.apps/secret-agent-controller-manager condition

met

pod/secret-agent-controller-manager-694f9dbf65-52cbt

condition met

Checking ds-operator and related CRDs: ds-operator CRD not

found. Installing ds-operator.

namespace/fr-system created

customresourcedefinition.apiextensions.k8s.io/directoryser

vices.directory.forgerock.io created

...

Waiting for ds-operator...

customresourcedefinition.apiextensions.k8s.io/directoryser

vices.directory.forgerock.io condition met

deployment.apps/ds-operator-ds-operator condition met

pod/ds-operator-ds-operator-f974dd8fc-55mxw condition met

Installing component(s): ['base']

configmap/dev-utils created

configmap/platform-config created

Warning: networking.k8s.io/v1beta1 Ingress is deprecated

in v1.19+, unavailable in v1.22+; use networking.k8s.io/v1

Ingress

ingress.networking.k8s.io/end-user-ui created

ingress.networking.k8s.io/forgerock created

ingress.networking.k8s.io/ig-web created

ingress.networking.k8s.io/login-ui created

ingress.networking.k8s.io/platform-ui created

secretagentconfiguration.secret-

agent.secrets.forgerock.io/forgerock-sac created

Waiting for K8s secrets

Waiting for secret: am-env-secrets ...done

Waiting for secret: idm-env-secrets ...done

Waiting for secret: rcs-agent-env-secrets ...done

186 / 248

b. After you’ve installed the base component, install the ds component:

4. Install the other Ping Identity Platform components. You can either install all the

other components by using the forgeops apply apps command, or install them

separately:

a. Install AM:

Waiting for secret: ds-passwords ...done

Waiting for secret: ds-env-secrets ...done

Relevant passwords:

...

Relevant URLs:

https://myfqdn.example.com/platform

https://myfqdn.example.com/admin

https://myfqdn.example.com/am

https://myfqdn.example.com/enduser

Enjoy your deployment!

$./forgeops apply ds --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['ds']

directoryservice.directory.forgerock.io/ds-idrepo created

Enjoy your deployment!

$./forgeops apply am --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['am']

service/am created

deployment.apps/am created

187 / 248

b. Install Amster:

c. Install IDM:

5. Install the user interface components. You can either install all the applications by

using the forgeops apply ui command, or install them separately:

a. Install the administration UI:

Enjoy your deployment!

$./forgeops apply amster --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['amster']

job.batch/amster created

Enjoy your deployment!

$./forgeops apply idm --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['idm']

configmap/idm created

configmap/idm-logging-properties created

service/idm created

deployment.apps/idm created

Enjoy your deployment!

$./forgeops apply admin-ui --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

188 / 248

b. Install the login UI:

c. Install the end user UI:

6. In a separate terminal tab or window, run the kubectl get pods command to

monitor status of the deployment. Wait until all the pods are ready.

You can specify multiple components with a single forgeops apply command. For

example, to install the base , ds , am , and amster components in a ForgeOps

deployment:

Installing component(s): ['admin-ui']

service/admin-ui created

deployment.apps/admin-ui created

Enjoy your deployment!

$./forgeops apply login-ui --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['login-ui']

service/login-ui created

deployment.apps/login-ui created

Enjoy your deployment!

$./forgeops apply end-user-ui --size

Checking secret-agent operator and related CRDs: secret-

agent CRD found in cluster.

Checking ds-operator and related CRDs: ds-operator CRD

found in cluster.

Installing component(s): ['end-user-ui']

service/end-user-ui created

deployment.apps/end-user-ui created

Enjoy your deployment!

Multiple component installation

189 / 248

If the pods in a ForgeOps deployment are starting successfully, but you can’t reach the

services in those pods, you probably have ingress issues.

To diagnose ingress issues:

1. Use the kubectl describe ing and kubectl get ing ingress-name -o yaml

commands to view the ingress object.

2. Describe the service using the kubectl get svc; kubectl describe svc xxx

command. Does the service have an Endpoint: binding? If the service endpoint

binding is not present, the service did not match any running pods.

The ForgeOps team recommends installing tested versions of third-party software in

environments where you’ll run ForgeOps deployments.

Refer to the tables that list the tested versions of third-party software for your

deployment:

On Minikube

On GKE

On EKS

On AKS

You can use the debug-logs utility to get the versions of third-party software installed

in your local environment. After you’ve performed a ForgeOps deployment:

1. Run the /path/to/forgeops/bin/debug-logs utility.

2. Open the log file in your browser.

3. Select Environment Information > Third-party software versions.

If you’ve modified any of the Kustomize bases and overlays that come with the cdk

canonical configuration, you might want to consider how your changes affect

deployment. Use the kustomize build command to assess how Kustomize expands

your bases and overlays into YAML files.

For example:

$./forgeops apply base ds am amster --size

Ingress issues

Third-party software versions

Expanded Kustomize output

190 / 248

file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html#minikube-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/google-cloud.html#gcp-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/aws.html#aws-third-party-software
file:///home/pptruser/Downloads/build/site/forgeops/setup/azure.html#azure-third-party-software

$ cd /path/to/forgeops/kustomize/overlay

$ kustomize build all

apiVersion: v1

data:

IDM_ENVCONFIG_DIRS: /opt/openidm/resolver

LOGGING_PROPERTIES: /var/run/openidm/logging/logging.properties

OPENIDM_ANONYMOUS_PASSWORD: anonymous

OPENIDM_AUDIT_HANDLER_JSON_ENABLED: "false"

OPENIDM_AUDIT_HANDLER_STDOUT_ENABLED: "true"

OPENIDM_CLUSTER_REMOVE_OFFLINE_NODE_STATE: "true"

OPENIDM_CONFIG_REPO_ENABLED: "false"

OPENIDM_ICF_RETRY_DELAYSECONDS: "10"

OPENIDM_ICF_RETRY_MAXRETRIES: "12"

PROJECT_HOME: /opt/openidm

RCS_AGENT_CONNECTION_CHECK_SECONDS: "5"

RCS_AGENT_CONNECTION_GROUP_CHECK_SECONDS: "900"

RCS_AGENT_CONNECTION_TIMEOUT_SECONDS: "10"

RCS_AGENT_HOST: rcs-agent

RCS_AGENT_IDM_PRINCIPAL: idmPrincipal

RCS_AGENT_PATH: idm

RCS_AGENT_PORT: "80"

RCS_AGENT_USE_SSL: "false"

RCS_AGENT_WEBSOCKET_CONNECTIONS: "1"

kind: ConfigMap

metadata:

labels:

app: idm

app.kubernetes.io/component: idm

app.kubernetes.io/instance: idm

app.kubernetes.io/name: idm

app.kubernetes.io/part-of: forgerock

tier: middle

name: idm

apiVersion: v1

data:

logging.properties: |

...

Minikube hardware resources

Cluster configuration

191 / 248

The minikube start command example in Minikube provides a good default virtual

hardware configuration for a Minikube cluster running a single-instance ForgeOps

deployment.

When the Minikube cluster runs low on disk space, it acts unpredictably. Unexpected

application errors can appear.

Verify that adequate disk space is available by logging in to the Minikube cluster and

running a command to display free disk space:

In the preceding example, 16 GB of disk space is available on the Minikube cluster.

The kubectl shell autocompletion extension lets you extend the Tab key completion

feature of Bash and Zsh shells to the kubectl commands. While not a troubleshooting

tool, this extension can make troubleshooting easier, because it lets you enter kubectl

commands more easily.

For more information about the Kubernetes autocompletion extension, see Enabling

shell autocompletion in the Kubernetes documentation.

Note that to install the autocompletion extension in Bash, you must be running version

4 or later of the Bash shell. To determine your bash shell version, run the bash --

version command.

This section includes:

Disk space

$ minikube ssh

$ df -h

Filesystem Size Used Avail Use% Mounted on

devtmpfs 3.9G 0 3.9G 0% /dev

tmpfs 3.9G 0 3.9G 0% /dev/shm

tmpfs 3.9G 383M 3.6G 10% /run

tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup

tmpfs 3.9G 64K 3.9G 1% /tmp

/dev/sda1 25G 7.7G 16G 33% /mnt/sda1

/Users 465G 219G 247G 48% /Users

$ exit

logout

kubectl shell autocompletion



References

192 / 248

file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html
https://kubernetes.io/docs/tasks/kubectl/install/#enabling-shell-autocompletion
https://kubernetes.io/docs/tasks/kubectl/install/#enabling-shell-autocompletion
https://kubernetes.io/docs/tasks/kubectl/install/#enabling-shell-autocompletion
https://kubernetes.io/docs/tasks/kubectl/install/#enabling-shell-autocompletion

Steps to create your own Base Docker images

Reference documentation for the forgeops command

A glossary of terminology used in this documentation

Links to pertinent articles and knowledge base entries that are not part of the

official ForgeOps documentation

I am a developer using a single-instance ForgeOps deployment.

UI elements. Deploy the supported images from ForgeOps.

Other platform elements. Deploy either:

The ForgeOps-provided images.

Customizied Docker images that are based on ForgeOps-provided images

and contain customized configuration profile.

I am doing a proof-of-concept ForgeOps deployment.

UI elements. Deploy the supported images from ForgeOps.

Other platform elements. Deploy either:

The ForgeOps-provided images.

Customized Docker images that are based on ForgeOps-provided images

and contain customized configuration profile.

I am deploying the platform in production.

UI elements. Deploy the supported images from ForgeOps.

Other platform elements. Deploy Docker images you have built that are based

on your own base images, but contain your customized configuration profile.

Base Docker images

This section is moved into the reference section, because creating Docker images

from scratch is only required under special circumstances.

Before you begin building custom images, ensure that you are using Java version 17

on your computer. For example:

IMPORTANT

$ java --version

openjdk 17.0.10 2024-01-16

OpenJDK Runtime Environment Temurin-17.0.10+7 (build 17.0.10+7)

OpenJDK 64-Bit Server VM Temurin-17.0.10+7 (build 17.0.10+7, mixed

mode)

Which Docker images do I deploy?

193 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/glossary.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/beyond-the-docs.html

Perform the following steps to build base images. After you’ve built your own base

images, push them to your Docker repository:

1. Download the latest versions of the AM, Amster, IDM, and DS .zip files from the

Ping Identity Download Center . Optionally, you can also download the latest

version of the PingGateway .zip file.

2. If you haven’t already done so, clone the forgeops and forgeops-extras

repositories. For example:

Both repositories are public; you do not need credentials to clone them.

3. Check out the forgeops repository’s 2025.1.1 tag:

4. Check out the forgeops-extras repository’s main tag:

5. Build the Java base image, which is required by several of the other Dockerfiles:

Your initial base Docker images

The procedures here describe the use of:

1. Docker container engine to create images for ForgeOps deployment. You can

use Podman container engine for the same.

2. The latest ForgeOps-provided Docker images. You can select a specific image

release suitable to your environment.

NOTE



$ git clone https://github.com/ForgeRock/forgeops.git

$ git clone https://github.com/ForgeRock/forgeops-extras.git

$ cd /path/to/forgeops

$ git checkout 2025.1.1

$ cd /path/to/forgeops-extras

$ git checkout main

$ cd /path/to/forgeops-extras/images/java-17

$ docker build --tag my-repo/java-17 .

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 2.38kB

0.0s

⇒ [internal] load .dockerignore

194 / 248

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

6. Build the base Docker image for Amster. The Amster image is required to build the

base image for AM in the next step:

a. Unzip the Amster .zip file.

b. Change to the amster/samples/docker directory in the expanded .zip file

output.

c. Run the setup.sh script:

d. Edit the Dockerfile in the samples/docker directory. Change the line:

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for

docker.io/library/debian:bullseye-slim

1.1s

⇒ [internal] load metadata for docker.io/azul/zulu-openjdk-

debian:17

1.3s

⇒ [jdk 1/3] FROM docker.io/azul/zulu-openjdk-

debian:17@sha256:420a137d0576e3fd0d6f6332f5aa1aef85314ed83b379

7d7f965e0b9169cbc57 17.7s

...

⇒ exporting to image

0.3s

⇒ ⇒ exporting layers

0.3s

⇒ ⇒ writing image

sha256:cc52e9623b3cd411682ca221a6722e83610b6b7620f126d3f7c4686

e79ff1797

0.0s

⇒ ⇒ naming to my-repo/java-17

0.0s

$./setup.sh

+ mkdir -p build

+ find ../.. '!' -name .. '!' -name samples '!' -name

docker -maxdepth 1 -exec cp -R '{}' build/ ';'

+ cp ../../docker/amster-install.sh ../../docker/docker-

entrypoint.sh ../../docker/export.sh ../../docker/tar.sh

build

FROM gcr.io/forgerock-io/java-17:latest

195 / 248

to:

e. Build the amster Docker image:

7. Build the empty AM image:

a. Unzip the AM .zip file.

b. Change to the openam/samples/docker directory in the expanded .zip file

output.

c. If you do not find the AM-7.5.1.war and AM-crypto-tool-7.5.1.jar files

where you extracted AM.zip file, then edit the setup.sh script to correctly

reference the files. For example :

to:

FROM my-repo/java-17

$ docker build --tag amster:7.5.1 .

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 1.67kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for docker.io/my-repo/java-

17:latest

1.1s

⇒ [1/8] FROM docker.io/my-repo/java-17

...

⇒ exporting to image

⇒ ⇒ exporting layers

⇒ ⇒ writing image sha256:bc47...f9e52

0.0s

⇒ ⇒ naming to docker.io/library/amster:7.5.1

cp ../../AM-7.*.war images/am-empty/build/openam.war

cp ../../AM-crypto-tool-*.jar images/am-base/build/crypto-

tool.jar

cp ../../OpenAM-7.*.war images/am-empty/build/openam.war

cp ../../openam-crypto-tool-*.jar images/am-

196 / 248

d. Run the setup.sh script:

e. Change to the images/am-empty directory.

f. Build the am-empty Docker image:

8. Build the base image for AM:

a. Change to the ../am-base directory.

b. Edit the Dockerfile in the ../am-base directory and change the line:

base/build/crypto-tool.jar

$ chmod +x ./setup.sh

./setup.sh

$ docker build --tag am-empty:7.5.1 .

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 3.60kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for

docker.io/library/tomcat:9-jdk17-openjdk-slim-bullseye

1.8s

⇒ [internal] load build context

5.6s

⇒ ⇒ transferring context: 231.59MB

5.6s

⇒ [base 1/14] FROM docker.io/library/tomcat:9-jdk17-

openjdk-slim-bullseye@...

...

⇒ exporting to image

1.7s

⇒ ⇒ exporting layers

1.6s

⇒ ⇒ writing image sha256:9784a73...1d36018c9

0.0s

⇒ ⇒ naming to docker.io/library/am-empty:7.5.1

FROM ${docker.push.repo}/am-empty:${docker.tag}

197 / 248

to:

c. Build the am-base Docker image:

FROM am-empty:7.5.1

$ docker build --build-arg docker_tag=7.5.1 --tag am-

base:7.5.1 .

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 2.72kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for

docker.io/library/amster:7.5.1

0.0s

⇒ [internal] load metadata for docker.io/library/am-

empty:7.5.1

0.0s

⇒ [internal] load build context

0.4s

⇒ ⇒ transferring context: 35.66MB

0.4s

⇒ [generator 1/15] FROM docker.io/library/am-empty:7.5.1

0.4s

⇒ [amster 1/1] FROM docker.io/library/amster:7.5.1

0.2s

⇒ [generator 2/15] RUN apt-get update -y && apt-get

install -y git jq unzip

...

⇒ [am-base 7/11] COPY --chown=forgerock:root docker-

entrypoint.sh /home/forgerock/

0.0s

⇒ [am-base 8/11] COPY --chown=forgerock:root

scripts/import-pem-certs.sh /home/forgerock/

0.0s

⇒ [am-base 9/11] RUN rm

"/usr/local/tomcat"/webapps/am/WEB-INF/lib/click-extras-

*.jar 0.2s

⇒ [am-base 10/11] RUN rm

"/usr/local/tomcat"/webapps/am/WEB-INF/lib/click-nodeps-

198 / 248

d. Change to the ../am-cdk directory.

e. Edit the Dockerfile in the ../am-cdk directory. Change the line:

to:

f. Build the am Docker image:

*.jar 0.3s

⇒ [am-base 11/11] RUN rm

"/usr/local/tomcat"/webapps/am/WEB-INF/lib/velocity-*.jar

0.2s

⇒ exporting to image

0.2s

⇒ ⇒ exporting layers

0.2s

⇒ ⇒ writing image sha256:2c06...87c6c

0.0s

⇒ ⇒ naming to docker.io/library/am-base:7.5.1

FROM ${docker.push.registry}/forgerock-io/am-

base/${docker.promotion.folder}:${docker.tag}

FROM am-base:7.5.1

$ docker build --build-arg docker_tag=7.5.1 --tag my-

repo/am:7.5.1 .

[+] Building 5.1s (10/10) FINISHED

docker:desktop-linux

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 1.71kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for docker.io/library/am-

base:7.5.1

0.0s

⇒ [1/5] FROM docker.io/library/am-base:7.5.1

0.2s

⇒ [internal] load build context

0.2s

⇒ ⇒ transferring context: 403.07kB

199 / 248

9. Now that the AM image is built, tag the base image for Amster in advance of

pushing it to your private repository:

10. Build the am-config-upgrader base image:

a. Change to the openam directory in the expanded AM .zip file output.

b. Unzip the Config-Upgrader-7.5.1.zip file.

c. Change to the amupgrade/samples/docker directory in the expanded

Config-Upgrader-7.5.1.zip file output.

d. Edit the Dockerfile in the amupgrade/samples/docker directory and

change line 16 from:

to:

e. Run the setup.sh script:

0.1s

⇒ [2/5] RUN apt-get update && apt-get install -y

git && apt-get clean && rm -r /var/lib

3.9s

⇒ [3/5] RUN cp -R /usr/local/tomcat/webapps/am/XUI

/usr/local/tomcat/webapps/am/OAuth2_XUI

0.3s

⇒ [4/5] COPY --chown=forgerock:root /config

/home/forgerock/cdk/config

0.0s

⇒ [5/5] RUN rm -rf /home/forgerock/openam/config/services

&& mkdir /home/forgerock/openam/config/services

0.5s

⇒ exporting to image

0.1s

⇒ ⇒ exporting layers

0.1s

⇒ ⇒ writing image

sha256:14b43fb5121cee08341130bf502b7841429b057ff406bbe635b

23119a74dec45 0.0s

⇒ ⇒ naming to my-repo/am:7.5.1

0.0s

$ docker tag amster:7.5.1 my-repo/amster:7.5.1

FROM gcr.io/forgerock-io/java-17:latest

FROM my-repo/java-17

200 / 248

f. Create the base am-config-upgrader image:

11. Build the base image for DS:

$./setup.sh

+ mkdir -p build/amupgrade

+ find ../.. '!' -name .. '!' -name samples '!' -name

docker -maxdepth 1 -exec cp -R '{}' build/amupgrade ';'

+ cp ../../docker/docker-entrypoint.sh .

$ docker build --tag my-repo/am-config-upgrader:7.5.1 .

[+] Building 8.5s (9/9) FINISHED

docker:desktop-linux

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 1.10kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for my-repo/java-17:latest

0.0s

⇒ CACHED [1/4] FROM my-repo/java-17

0.0s

⇒ [internal] load build context

0.3s

⇒ ⇒ transferring context: 20.58MB

0.3s

⇒ [2/4] RUN apt-get update && apt-get upgrade -y

8.3s

⇒ [3/4] COPY --chown=forgerock:root docker-entrypoint.sh

/home/forgerock/ 0.0s

⇒ [4/4] COPY build/ /home/forgerock/

0.0s

⇒ exporting to image

0.1s

⇒ ⇒ exporting layers

0.1s

⇒ ⇒ writing image sha256:3f6845…​44011

0.0s

⇒ ⇒ naming to my-repo/am-config-upgrader:7.5.1

0.0s

201 / 248

a. Unzip the DS .zip file.

b. Change to the opendj directory in the expanded .zip file output.

c. Run the samples/docker/setup.sh script to create a server:

d. Edit the Dockerfile in the opendj directory. Change the line:

to:

e. Build the ds base image:

$./samples/docker/setup.sh

+ rm -f template/config/tools.properties

+ cp -r samples/docker/Dockerfile samples/docker/README.md

...

+ rm -rf — README README.md bat '*.zip' opendj_logo.png

setup.bat upgrade.bat setup.sh

+ ./setup --serverId docker --hostname localhost

...

Validating parameters... Done

Configuring certificates... Done

...

FROM gcr.io/forgerock-io/java-17:latest

FROM my-repo/java-17

$ docker build --tag my-repo/ds:7.5.1 .

[+] Building 11.0s (9/9) FINISHED

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 1.23kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for my-repo/java-17:latest

1.7s

⇒ [internal] load build context

202 / 248

12. Build the base image for IDM:

a. Create a new shell script file named build-idm-image.sh and copy the

following lines into it:

1.2s

⇒ ⇒ transferring context: 60.85MB

1.2s

⇒ CACHED [1/4] FROM my-repo/java-17:latest

...

⇒ [4/4] WORKDIR /opt/opendj

0.0s

⇒ exporting to image

0.4s

⇒ ⇒ exporting layers

0.3s

⇒ ⇒ writing image sha256:713ac...b107e0f

0.0s

⇒ ⇒ naming to my-repo/ds:7.5.1

#!/bin/bash

if [$# -lt 3]; then

echo "$0 <source image> <new base image> <result image>"

exit 0

fi

sourceImage="$1"

javaImage="$2"

resultImage="$3"

container_id=$(docker create $sourceImage)

docker export $container_id -o image.tar

docker rm $container_id

tar xvf image.tar opt/openidm

rm -f image.tar

cd opt/openidm

use | separators because image names often have / and :

sed -i.bak 's|^FROM.*$|FROM '$javaImage'|'

bin/Custom.Dockerfile

rm bin/Custom.Dockerfile.bak

docker build . --file bin/Custom.Dockerfile --tag

203 / 248

b. Change the mode of the file to be executable and run it.

13. (Optional) Build the base image for PingGateway:

a. Unzip the PingGateway .zip file.

b. Change to the identity-gateway directory in the expanded .zip file

output.

c. Edit the Dockerfile in the identity-gateway/docker directory. Change

the line:

to:

d. Build the ig base image:

"$resultImage"

rm -rf opt

$ chmod +x build-idm-image.sh

$./build-idm-image.sh docker.pkg.dev/forgeops-

public/images-base/idm:7.5.1 my-repo/java-17 my-

repo/idm:7.5.1

The build-idm-image.sh script expands the IDM Docker image,

rebuilds the image, and cleans up afterward.

NOTE

FROM gcr.io/forgerock-io/java-17:latest

FROM my-repo/java-17

$ docker build . --file docker/Dockerfile --tag my-

repo/ig:2024.11.0

[+] Building 2.1s (8/8) FINISHED

⇒ [internal] load build definition from Dockerfile

0.0s

⇒ ⇒ transferring dockerfile: 1.43kB

0.0s

⇒ [internal] load .dockerignore

0.0s

⇒ ⇒ transferring context: 2B

0.0s

⇒ [internal] load metadata for my-repo/java-17:latest

0.3s

204 / 248

14. Run the docker images command to verify that you built the base images:

15. Push the new base Docker images to your Docker repository.

Refer to your registry provider documentation for detailed instructions. For most

Docker registries, you run the docker login command to log in to the registry.

Then, you run the docker push command to push a Docker image to the registry.

⇒ [internal] load build context

2.2s

⇒ ⇒ transferring context: 113.60MB

2.2s

⇒ CACHED [1/3] FROM my-repo/java-17:latest

⇒ [2/3] COPY --chown=forgerock:root . /opt/ig

0.7s

⇒ [3/3] RUN mkdir -p "/var/ig" && chown -R

forgerock:root "/var/ig" "/opt/ig" && -R g+rwx

"/var/ig" "/opt/ig" 0.9s

⇒ exporting to image

0.6s

⇒ ⇒ exporting layers

0.6s

⇒ ⇒ writing image sha256:77fc5...6e63

0.0s

⇒ ⇒ naming to my-repo/ig:2024.11.0

$ docker images | grep my-repo

REPOSITORY TAG IMAGE ID CREATED

SIZE

my-repo/am 7.5.1 552073a1c000 1 hour

ago 795MB

my-repo/am-config-upgrader 7.5.1 d115125b1c3f 1 hour

ago 795MB

my-repo/amster 7.5.1 d9e1c735f415 1 hour

ago 577MB

my-repo/ds 7.5.1 ac8e8ab0fda6 1 hour

ago 196MB

my-repo/idm 7.5.1 0cc1b7f70ce6 1 hour

ago 387MB

my-repo/ig 2024.11.0 cc52e9623b3c 1 hour

ago 249MB

my-repo/java-17 latest a504925c2672 1 hour

ago 144MB

205 / 248

Be sure to configure your Docker registry so that you can successfully push your

Docker images. Each cloud-based Docker registry has its own specific requirements.

For example, on Amazon ECR, you must create a repository for each image.

Push the following images to your repository:

my-repo/am:7.5.1

my-repo/am-config-upgrader:7.5.1

my-repo/amster:7.5.1

my-repo/ds:7.5.1

my-repo/idm:7.5.1

my-repo/java-17

If you’re deploying your own PingGateway base image, also push the my-

repo/ig:2024.11.0 image.

After you’ve built and pushed your own base images to your Docker registry, you’re

ready to build customized Docker images that can be used in a production deployment

of the Ping Identity Platform. These images:

Contain customized configuration profiles for AM, IDM, and, optionally,

PingGateway.

Must be based on your own base Docker images.

Create your production-ready Docker images, create a Kubernetes cluster to test them,

and delete the cluster when you’ve finished testing the images:

1. Clone the forgeops repository.

2. Obtain custom configuration profiles that you want to use in your Docker images

from your developer, and copy them into your forgeops repository clone:

Obtain the AM configuration profile from the

/path/to/forgeops/docker/am/config-profiles directory.

Obtain the IDM configuration profile from the

/path/to/forgeops/docker/idm/config-profiles directory.

(Optional) Obtain the PingGateway configuration profile from the

/path/to/forgeops/docker/ig/config-profiles directory.

3. Change the FROM lines of Dockerfiles in the forgeops repositories to refer to your

own base Docker images:

Create Docker images for use in production

206 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html#configuration-profiles

In the forgeops repository file: Change the FROM line to:

docker/am/Dockerfile FROM my-repo/am:7.5.1

docker/amster/Dockerfile FROM my-repo/amster:7.5.1

docker/ds/ds-new/Dockerfile FROM my-repo/ds:7.5.1

docker/idm/Dockerfile FROM my-repo/idm:7.5.1

(Optional) docker/ig/Dockerfile FROM my-repo/ig:2024.11.0

4. If necessary, log in to your Docker registry.

5. Enable the Python3 virtual environment:

6. Set up a ForgeOps deployment environment:

In the command above, replace my-fqdn and my-cluster-issuer with appropriate

values from your environment. If you want to use the issuer provided with the

platform for demo, then you can use default-issuer.

7. Build Docker images that are based on your own base images.

The AM and IDM images contain your customized configuration profiles:

[18]

[19]

$ source .venv/bin/activate

$ cd /path/to/forgeops/bin

$./forgeops env --env-name my-env --fqdn my-fqdn --cluster-

issuer my-cluster-issuer

While the forgeops build command uses the Docker engine by default for

ForgeOps deployments, it supports Podman as well. If you are using Podman

engine instead of Docker in your environment, then set the

CONTAINER_ENGINE environment variable to podman before running the

forgeops build command, for example:

NOTE

$ export CONTAINER_ENGINE="podman"

$ cd /path/to/forgeops/bin

$./forgeops build --env-name my-env ds --push-to my-repo --

tag my-tag

$./forgeops build --env-name my-env amster --push-to my-repo

--tag my-tag

207 / 248

The forgeops build command:

Builds Docker images. The AM and IDM images incorporate customized

configuration profiles.

Pushes Docker images to the repository specified in the --push-to argument.

Updates the image defaulter file, which the forgeops apply command uses

to determine which Docker images to run.

8. (Optional) Build and push an PingGateway Docker image that’s based on your own

base image and contains your customized configuration profile:

9. Prepare a Kubernetes cluster to test your images:

a. Create the cluster. This example assumes that you create a cluster suitable for

a small-sized ForgeOps deployment.

b. Make sure your cluster can access and pull Docker images from your

repository.

c. Create a namespace in the new cluster, and then make the new namespace the

active namespace in your local Kubernetes context.

10. Perform a ForgeOps deployment in your cluster:

11. Access the AM admin UI and the IDM admin UI, and verify that your customized

configuration profiles are active.

12. Delete the Kubernetes cluster that you used to test images.

At the end of this process, the artifacts that you’ll need to deploy the Ping Identity

Platform in production are available:

Docker images for the Ping Identity Platform, in your Docker repository

An updated image defaulter file, in your forgeops repository clone

You’ll need to copy the image defaulter file to your production deployment, so that when

you run the forgeops apply command, it will use the correct Docker images.

$./forgeops build --env-name my-env am --push-to my-repo --

tag my-tag --config-profile my-profile

$./forgeops build --env-name my-env idm --push-to my-repo --

tag my-tag --config-profile my-profile

$./forgeops build --env-name my-env ig --config-profile my-

profile --push-to my-repo



$ cd /path/to/forgeops/bin

$./forgeops apply --env-name my-env --fqdn my-fqdn --

namespace my-namespace

208 / 248

https://kubernetes.io/docs/concepts/containers/images/#configuring-nodes-to-authenticate-to-a-private-registry
https://kubernetes.io/docs/concepts/containers/images/#configuring-nodes-to-authenticate-to-a-private-registry
https://kubernetes.io/docs/concepts/containers/images/#configuring-nodes-to-authenticate-to-a-private-registry

Typically, you model the image creation process in a CI/CD pipeline. Then, you run the

pipeline at milestones in the development of your customized configuration profile.

You can create and manage custom overlays and Helm values files for each deployment.

You can then apply the overlays or value files appropriately using Kustomize or Helm

accordingly.

The forgeops utility lets you:

Use Kustomize natively so you can update and use overlays as expected.

Generate a Kustomize overlay manually when you need the overlay.

Generate Helm value files from the same environment set up.

Build and manage Docker images per overlay to allow different images in an

environment.

Create and manage each ForgeOps deployment configuration.

Apply the environment configuration changes using either Kustomize or Helm.

The current forgeops command has the following limitations:

It generates a Kustomize overlay every time it runs.

It overwrites any post-deployment changes in Kustomize overlays.

It uses the preconfigured patch files and ignores the customizations during

deployment.

The forgeops command doesn’t generate overlay files automatically. Instead, overlay

files are manually generated as needed.

The forgeops command

forgeops — The new generation utility replaces the previous version of

forgeops . The new forgeops utility simplifies deploying and managing Ping

Identity Platform components in a Kubernetes cluster.

The previous version of the forgeops utility is not supported in this ForgeOps

release. It continues to be supported in ForgeOps 7.5 and 7.4, as long as the

corresponding Ping Identity Platform components are supported.

IMPORTANT

Features in forgeops

Discrete overlays

209 / 248

It is recommended to create an overlay for each environment, such as test , stage ,

and prod . It is also recommended to create an overlay for each single-instance

environment, such as test-single , stage-single , and prod-single . The single-

instance overlays help you develop file-based configuration changes, export them, and

build new images.

Each overlay includes an image-defaulter component. When using Kustomize, you

can develop and build and test custom images in your single-instance environment.

Once you are satisfied with the image, you can copy the image-defaulter’s

kustomization.yaml file into your running overlay.

To install and delete individual components, ForgeOps provided overlays are composed

of sub-overlays. Each Ping Identity Platform product has its own overlay. There are other

overlays to handle shared pieces. You can apply or delete sub-overlay or the entire

overlay using kubectl apply -k or kubectl delete -k commands.

With discrete overlays, you need to specify which overlay you want to target when

running the forgeops commands. If you forget to specify the overlay, the command

exits and lets you know to provide one. Only the apply and info commands allow you to

not specify an overlay.

Both Kustomize and Helm are supported by the forgeops command. Use the

forgeops env command to generate Helm values file and Kustomize overlays for

existing environments. The forgeops build command updates the Helm values file

and the Kustomize image-defaulter overlay file for the specified environment.

The values.yaml file contains all the Helm values. While the values.yaml file

contains all the Helm values for an environment, few more files are created each

containing a group of interrelated values that can be copied and used in other

environments, if you need to.

image-defaulter in every overlay

Sub-overlays

Specify overlay or environment to target

Helm Support

The forgeops command can generate the values.yaml file from an already

deployed environment, it cannot generate the values.yaml file for a new

environment.

NOTE

210 / 248

The forgeops command is developed using Python. Run the forgeops configure

command to ensure the required packages are set up:

You need to run the forgeops configure once before creating and managing your

ForgeOps deployment environments.

The workflow of forgeops is designed to be production first and has three distinct

steps:

1. Create an environment

This step is used to manage the overlay and values files on an ongoing basis. Only

the requested changes are incorporated, so the customizations are not impacted.

2. Build images for the environment

The build step assembles the file-based configuration changes into container

images, and updates the image-defaulter and values files for the targeted

environment.

3. Apply the environment

In this step, you deploy the image you configured.

You must create an environment first using the forgeops env command. You need to

specify an FQDN (--fqdn) and an environment name (--env-name).

Previously, the t-shirt sized overlays called small , medium , and large were provided,

along with the default overlay cdk . With forgeops , a single-instance overlay

replaces cdk . The single-instance overlay is considered the default and is provided

in the kustomize-ng/overlay/default directory.

Setup

$ cd /path/to/forgeops/bin

$./forgeops configure

Workflow

It is recommended that you start with a single-instance deployment to develop your

AM and IDM configuration, so you can export them and build your custom

container images.

NOTE

1. Create an environment

211 / 248

You can use --small , --medium , and --large flags to configure your overlay, and

the forgeops env command populates your environment with the size you requested.

For example, the following command creates a medium-sized stage deployment with an

FQDN of stage.example.com:

The default deployment size is single-instance . The following example command

creates a single-instance environment:

You will find the generated Kustomize overlay files in the kustomize-

ng/overlay/ENV-NAME folder. If you are modifying an existing Helm-based

environment, then you will also find the Helm specific value files in the

charts/identity-platform folder.

Use the forgeops build command to create a new container image for the

environment you created in the Create an environment step. The forgeops build

command applies the config profile from the build docker/am/config-

profiles/profile and docker/idm/config-profiles/profile to build AM and

IDM container images and push the images to your container registry. It also updates

the image-defaulter and values files for the targeted environment.

To build new AM and IDM images for our stage environment using the stage-cfg profile,

run the command:

Use the overlay you created in the Create an environment step and deploy the

environment built in the Build images for the environment step.

Kustomize-based deployment

$ cd /path/to/forgeops

$./bin/forgeops env --fqdn stage.example.com --medium --env-name

stage

$ cd /path/to/forgeops

$./bin/forgeops env --fqdn stage.example.com --env-name stage-

single

2. Build images for the environment

$./bin/forgeops build --env-name stage \

--config-profile stage-cfg \

--push-to my.registry.com/my-repo/stage am idm

3. Apply the environment

212 / 248

You have two options to perform ForgeOps deployment in a Kustomize-based

environment:

Using the kubectl apply command, for example:

Using the forgeops apply command, for example:

The forgeops command is a Bash wrapper script that calls appropriate scripts in

bin/commands . These scripts are written in either Bash or Python. All the bash scripts

support the new --dryrun flag which display the command that would be run and

enable you to inspect it before actually running the command. The Python scripts env

and info do not support --dryrun .

Helm Support

Both Kustomize and Helm are supported by the forgeops command. Use the

forgeops env command to generate Helm values files and Kustomize overlays

for each environment. The forgeops build command updates the Helm values

file and the Kustomize image-defaulter overlay file for the specified environment.

The values.yaml file contains all the Helm values. The other files group the

different values so that you can use them individually if you need to.

Custom paths

By default, forgeops uses the docker , kustomize , and helm directories. You can

set up your own locations separately and specify the appropriate flags on the

command line or set the appropriate environment variable in the

path/to/forgeops/forgeops.conf file.

Learn more about the forgeops command options in the forgeops command

reference.

$ kubectl apply -k /path/to/forgops/kustomize-

ng/overlay/my-overlay

$./bin/forgeops apply --env-name stage

If you are using Helm-based deployment methods, you cannot use the forgeops

command to perform ForgeOps deployment. Instead, use the helm install or

helm upgrade command with the Helm values file:

NOTE

$ helm upgrade --install ...

forgeops commands

213 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html

forgeops — The new generation utility simplifies deploying and managing Ping Identity

Platform components in a Kubernetes cluster. You can create and manage custom

Kustomize overlays and Helm value files for each deployment. You can then apply the

customized overlays or value files using Kustomize or Helm appropriately.

forgeops subcommand options

Generate custom component overlays and value files.

Use Kustomize or Helm to install Ping Identity Platform components in a

Kubernetes cluster.

Delete platform components from a Kubernetes cluster.

Build custom Docker images for the Ping Identity Platform.

The forgeops command takes the following option:

--help

Display command usage information.

forgeops apply components options

Runs the kubectl apply -k command to apply Ping Identity Platform Kustomize

overlay from the specified overlay directory into a Kubernetes namespace. If the

forgeops command reference

The forgeops command reference documentation is currently in developmental

preview stage, and not all command options have been documented yet. To get

help in the command-line interface, use the forgeops --help command.

CAUTION

Synopsis

Description

Options

The following subcommands clean , config , install , and generate have

been deprecated because their functionality is provided through other existing

subcommands.

IMPORTANT

Subcommands

forgeops apply

214 / 248

specified overlay directory doesn’t exist, a new one is created.

The forgeops apply subcommand subsumes all the functionality of forgeops

install . Accordingly, forgeops install is deprecated.

For components, specify:

am , amster , ds-cts , ds-idrepo , idm , or ig to deploy each Ping Identity

Platform component.

More than one component or set of components separated by a space to deploy

multiple Ping Identity Platform components. For example, forgeops apply ds-

idrepo ds-cts am.

secrets to deploy Kubernetes secrets. Secrets generated by cert-manager are not

deployed.

base to deploy the platform-config configmap Kubernetes ingress resources

and Kubernetes secrets. Secrets generated by cert-manager are not deployed.

all to deploy all the Ping Identity Platform components.

The default value for components is all .

Options

The forgeops apply subcommand takes the following options:

--amster-retain n

Keep the amster pod running for n seconds. The default is 10 seconds. Specify

infinity to keep the amster pod running indefinitely.

--create-namespace

Create a namespace if it doesn’t exist. The default is the current namespace of the

user.

--debug

Display debug information when executing the command.

--dryrun

To perform a dry run without actually applying or installing the components.

--env-name my-env

Name of environment to apply. The default is demo .

--fqdn my-fqdn

The fully qualified hostname to use in the deployment.

The namespace specified in the forgeops env command is used by default.

For simple demo purposes, the namespace specified in the default overlay file is

used.

215 / 248

Relevant only for the forgeops apply all and forgeops apply base

commands. This option is ignored for other forgeops apply commands.

--namespace ns

The namespace in which to install the ForgeOps platform components. If you need to

create the namespace, then specify the --create-namespace | -c option.

--kustomize my-kustomize-path

The directory that contains Kustomize overlays. Specify the full path to the directory

or the path relative to the base of your local forgeops repository. The default value

is kustomize .

Examples

Use an environment my-env

forgeops apply --env-name my-env

Do a dry run

forgeops apply --dryrun --env-name my-env

forgeops build --env-name my_env components options

Use the forgeops build command to build custom Docker images for one or more

Ping Identity Platform components, and update the Helm values file and the

Kustomize image-defaulter overlay file for the specified environment.

For components, specify:

am , ds , idm , or ig to build a custom Docker image for a single Ping Identity

Platform component.

More than one component or set of components separated by a space to build

multiple Docker images in a single forgeops build command. For example,

forgeops build --env-name [.var]#my-env am idm#.

all to build Docker images for all the Ping Identity Platform components by

running a single forgeops build command.

Options

forgeops build

Building an amster image is not supported, so use bin/forgeops amster.

The --config-profile option is applicable only for AM, idm_abbr, and

PingGateway.

Use the --push-to option or set the PUSH_TO variable in your environment.

Use the --push-to none option for building local images in Minikube.

NOTE

[20]

216 / 248

In addition to the global forgeops command options, the forgeops build

subcommand takes the following options:

--build-path path

The directory path where the build images are to be located. By default, the images

are placed in path/to/forgeops/docker.

--config-profile config-profile-path

Path that contains the configuration for am , idm , or ig . The forgeops build

command incorporates the configuration files located in this path in the custom

Docker image it builds.

Configuration profiles reside in subdirectories of one of these paths in a forgeops

repository clone:

docker/am/config-profiles

docker/idm/config-profiles

docker/ig/config-profiles

Learn more in Configuration profiles.

Customized ds images do not use configuration profiles. To customize the ds

image, add customizations to the docker/ds directory before running the forgeops

build ds command.

--debug

Display debug information when executing the command.

--dryrun

To perform a dry run without actually building the component images.

--env-name my-env

The name of the deployment environment that is used for building or deploying the

image. Deployment environments let you manage deployment manifests and image

defaulters.

You must initialize new deployment environments before using them for the first

time. You must specify the --env-name option in the forgeops build command if

you have not set up the ENV_NAME shell environment variable.

The forgeops build command updates the image defaulter in the target

environment. For example, if you ran forgeops build --env-name prod, the

image defaulter in the kustomize/overlay/deploy-prod/image-defaulter

directory would be updated.

--kustomize

The path to the directory where the Kustomize overlays and the image defaulter files

for the environment are located. You can specify the full path or path relative to the

217 / 248

file:///home/pptruser/Downloads/build/site/forgeops/customize/fr-data.html#configuration-profiles

local directory of your forgeops repository clone.

--push-to registry

Docker registry where the Docker image being built is pushed. You must specify the

push-to option unless you have set the PUSH_TO environment variable.

For deployments on Minikube, specify --push-to none to push the Docker image

to the Docker instance running within Minikube.

If you specify both the --push-to option and the PUSH_TO environment variable,

the value of the --push-to option takes precedence.

--reset

Revert all the tags and new image names in the image defaulter file to their last

committed values.

--tag my-tag

Tag to apply to the Docker image being built.

Examples

Normal operation

forgeops build --config-profile prod --env-name prod --tag prod-

am-123 am

Do a dry run

forgeops build --config-profile prod --env-name prod --dryrun am

forgeops delete --env-name my-env <components> <options>

Delete Ping Identity Platform components or sets of components, PVCs, volume

snapshots, and Kubernetes secrets from a running Kustomize-based ForgeOps

deployment.

By default, the forgeops delete command prompts you to confirm if you want to

delete PVCs, volume snapshots, and Kubernetes secrets. You can suppress confirmation

prompts as necessary by using the --yes option. For example, forgeops delete --

env-name test --yes, deletes all Ping Identity Platform components in the test

environment.

For components, specify:

am , ds-cts , ds-idrepo , idm , or ig to delete a single Ping Identity Platform

component.

secrets to delete the Kubernetes secrets from the deployment.

base to delete the platform-config configmap, Kubernetes ingress

resources, and Kubernetes secrets. Secrets generated by cert-manager are not

deleted.

forgeops delete

218 / 248

all to delete all the Ping Identity Platform components.

More than one component or set of components separated by a space to delete

multiple Ping Identity Platform components. For example, forgeops delete --

env-name my-env am idm.

The default value for components is all .

Options

The forgeops delete subcommand takes the following options:

--debug

Display debug information when executing the command.

--dryrun

To perform a dry run without actually deleting the components.

--env-name my-env

The name of the deployment environment that contains the Kustomization overlays.

You must specify the --env-name option, otherwise the forgeops delete

command fails to run.

--force

When deleting Ping Identity Platform components, also delete PVCs, volume

snapshots, and Kubernetes secrets.

When you specify this option, you still receive the OK to delete components?

confirmation prompt. Specify the --yes option together with --force to suppress

this confirmation prompt.

--namespace my-namespace

The namespace from which to delete Ping Identity Platform components.

Defaults to the active namespace in your local Kubernetes context.

--yes

Suppress all confirmation prompts.

When you specify this option, PVCs, volume snapshots, and Kubernetes secrets are

not deleted. Specify the --force option together with --yes to delete PVCs, volume

snapshots, and Kubernetes secrets.

Examples

Normal operation

forgeops delete --env-name prod am

Do a dry run

forgeops delete --env-name prod am --dryrun

forgeops env

219 / 248

forgeops env --env-name my-env --fqdn my-fqdn

Create, configure, and manage a ForgeOps deployment environment. This command

lets you define the parameters for your deployment environment, such as FQDN,

certificate issuer, and so on by configuring:

Kustomize overlay files for each component in the

/path/to/forgeops/kustomize/overlay/my-env directory.

A Helm values file in the /path/to/forgeops/helm/my-env directory.

By unifying the parameters in a location, you don’t have to specify these parameters

when using the other commands, such as forgeops apply , forgeops build , and so

on.

--fqdn my-fqdn

A comma separated list of FQDNs. For example:

forgeops env --env-name my-env --fqdn my-fqdn1, my-fqdn2

This is a mandatory parameter. Default: None.

--helm path/to/helm/directory

The directory where Helm values files are located. The directory path can be relative

to the forgeops root directory or an absolute path.

--ingress my-ingress

Ingress class name.

Default: None.

--kustomize my/kustomize

The directory that contains Kustomize overlays. The directory path can be an

absolute or relative to the forgeops root directory.

--namespace my-namespace

The Kubernetes namespace where the Ping Identity Platform components are

deployed.

Default: None.

--no-namespace

Remove namespace from Kustomize overlay.

Default: False.

--env-name my-env

Name of environment to manage.

Default: None.

220 / 248

--single-instance

To use a single-instance configuration. In a Minikube environment, you must use

the single-instance configuration option.

Default: False.

--source my-kust-source

Name of the source Kustomize overlay.

Default: None.

--ssl-secretname my-ssl-secret

Name of the secret containing private SSL data.

Default: None

--am-cpu, --am-mem, --am-rep

Specify the CPU, memory, and the number of AM pod replicas.

--cts-cpu, --cts-disk, --cts-mem, --cts-rep, --cts-snap-enable

Specify CPU, disk size, memory, replicas, and volume snapshots for ds-cts pods.

--idm-cpu --idm-mem --idm-rep

Specify the CPU, memory, and the number of IDM pod replicas.

--idrepo-cpu, --idrepo-disk, --idrepo-mem, --idrepo-rep, --idrepo-

snap-enable

Specify CPU, disk size, memory, replicas, and enable volume snapshots for ds-

idrepo pods.

--pull-policy my-pull-policy

Set policy for all platform images.

--no-helm

Don’t create or manage Helm values files.

Default: False.

--no-kustomize

Don’t create or manage Kustomize overlay.

Default: False.

--small, --medium, or --large

The size of ForgeOps deployment used in the environment.

Default: None.

--issuer my-issuer

221 / 248

The TLS certificate issuer within the namespace where the ForgeOps components are

to be deployed.

Default: None.

--cluster-issuer my-cluster-issuer

The TLS certificate issuer that is available across the Kubernetes cluster where

ForgeOps components are to be deployed. For demo purposes, you can use the

certificate sample certificate issuer provided with ForgeOps, by using the --

cluster-issuer default-issuer .

Default: None.

--skip-issuer

Skip TLS certificate issuer setup. If you use the --skip-issuer option when you set

up a ForgeOps deployment environment, you must set up your TLS certificate issuer

before performing a ForgeOps deployment.

Default: False.

The forgeops image command enables you to maintain ForgeOps deployments with

the latest images available. Also, you can work with multiple versions of ForgeOps-

provided images, providing more flexibility to upgrade the forgeops tool and ForgeOps

deployment.

This feature is supported for ForgeOps version 7.4 and later.

Advantages

You can upgrade forgeops command and ForgeOps deployment separately on

your schedule.

When upgrading, you can create a new release and test it through your different

ForgeOps deployment environments.

Manage a single Git release branch instead of separate branches for each

platform version.

You can use supported container images that are regularly scanned for OS-level

security vulnerabilities.

Command details

forgeops image --env-name my-env my-components

Replace my-components with one or more of platform , apps , ui , am , amster , idm ,

ds , admin-ui , end-user-ui , login-ui , ig .

Options

--kustomize-path my-kustomize-loc

forgeops image

222 / 248

The absolute path or the path relative to the forgeops directory where Kustomize

overlay files are stored.

Default: kustomize

--build-path my-docker-loc

The absolute path or the path relative to the forgeops directory where Docker files

are stored.

Default: docker

--helm-path my-helm-loc

The absolute path or the path relative to the forgeops directory where Helm values

files are stored.

Default: helm

--env-name my-env

Name of ForgeOps deployment environment in which you intend to manage Docker

images.

--source my-src-env

Name of source environment if you are copying images.

--tag my-tag

Set the tag used for images.

--no-helm

Don’t manage Helm values files.

--no-kustomize

Don’t manage Kustomize overlay.

--copy

Copy images from --source to --env-name.

--release platform-release

Specify platform image release to set, for example 7.5.1 .

--release-name my-release

Name of the release file in docker/component/releases. Default: my-release in UTC

format.

--releases-src my-release-source-url

URL or path where release files live (default: http://releases.forgeops.com)

--image-repo my-docker-repo

The URL to the container registry that contains Docker images.



223 / 248

http://releases.forgeops.com/
http://releases.forgeops.com/
http://releases.forgeops.com/

Short form Default URL

base us-docker.pkg.dev/forgeops-

public/images-base

deploy us-docker.pkg.dev/forgeops-

public/images

dev gcr.io/forgerock-io

Learn more about the forgeops image command in Managing Ping Identity Platform

images .

affinity (AM)

AM affinity deployment lets AM spread the LDAP requests load over multiple

directory server instances. Once a CTS token is created and assigned to a session, AM

sends all further token operations to the same token origin directory server from any

AM node. This ensures that the load of CTS token management is spread across

directory servers.

Source: CTS Affinity Deployment in the Core Token Service (CTS) documentation

Amazon EKS

Amazon Elastic Container Service for Kubernetes (Amazon EKS) is a managed service

that makes it easy for you to run Kubernetes on Amazon Web Services without

needing to set up or maintain your own Kubernetes control plane.

Source: What is Amazon EKS in the Amazon EKS documentation

ARN (AWS)

An Amazon Resource Name (ARN) uniquely identifies an Amazon Web Service (AWS)

resource. AWS requires an ARN when you need to specify a resource unambiguously

across all of AWS, such as in IAM policies and API calls.

Source: Amazon Resource Names (ARNs) in the AWS documentation

AWS IAM Authenticator for Kubernetes

The AWS IAM Authenticator for Kubernetes is an authentication tool that lets you use

Amazon Web Services (AWS) credentials for authenticating to a Kubernetes cluster.

Source: AWS IAM Authenticator for Kubernetes README file on GitHub

Azure Kubernetes Service (AKS)

AKS is a managed container orchestration service based on Kubernetes. AKS is

available on the Microsoft Azure public cloud. AKS manages your hosted Kubernetes



Glossary







224 / 248

https://github.com/ForgeRock/forgeops/blob/2025.1.1/how-tos/manage-platform-images.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/how-tos/manage-platform-images.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/how-tos/manage-platform-images.md
https://github.com/ForgeRock/forgeops/blob/2025.1.1/how-tos/manage-platform-images.md
https://backstage.forgerock.com/docs/am/7.5/cts-guide/cts-deployment-architectures.html#cts-affinity
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/eks/latest/userguide/what-is-eks.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://docs.aws.amazon.com/general/latest/gr/aws-arns-and-namespaces.html
https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/README.md
https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/README.md
https://github.com/kubernetes-sigs/aws-iam-authenticator/blob/master/README.md

environment, making it quick and easy to deploy and manage containerized

applications.

Source: Azure Kubernetes Service in the Microsoft Azure documentation

cloud-controller-manager

The cloud-controller-manager daemon runs controllers that interact with the

underlying cloud providers. The cloud-controller-manager daemon runs

provider-specific controller loops only.

Source: cloud-controller-manager in the Kubernetes Concepts documentation

ForgeOps deployment

A ForgeOps deployment is a deployment of the Ping Identity Platform on Kubernetes

based on Docker images, Helm charts, Kustomize bases and overlays, utility

programs, and other artifacts you can find in the forgeops repository on GitHub.

A single-instance ForgeOps deployment is a special ForgeOps deployment that you use

to configure AM and IDM and build custom Docker images for the Ping Identity

Platform. They are called single-instance deployments because unlike small, medium,

and large deployments, they have only single pods that run AM and IDM. They are

only suitable for developing the AM and IDM configurations and must not be used

for testing performance, monitoring, security, and backup requirements in

production environments.

Source: Deployment overview

CloudFormation (AWS)

CloudFormation is a service that helps you model and set up your AWS resources.

You create a template that describes all the AWS resources that you want.

CloudFormation takes care of provisioning and configuring those resources for you.

Source: What is AWS CloudFormation? in the AWS documentation

CloudFormation template (AWS)

An AWS CloudFormation template describes the resources that you want to provision

in your AWS stack. AWS CloudFormation templates are text files formatted in JSON or

YAML.

Source: Working with AWS CloudFormation Templates in the AWS documentation

cluster

A container cluster is the foundation of Kubernetes Engine. A cluster consists of at

least one control plane and multiple worker machines called nodes. The Kubernetes

objects that represent your containerized applications all run on top of a cluster.

Source: Standard cluster architecture in the Google Kubernetes Engine (GKE)

documentation











225 / 248

https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://docs.microsoft.com/en-us/azure/aks/intro-kubernetes
https://kubernetes.io/docs/concepts/overview/components/#cloud-controller-manager
https://kubernetes.io/docs/concepts/overview/components/#cloud-controller-manager
https://kubernetes.io/docs/concepts/overview/components/#cloud-controller-manager
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/overview.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/overview.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/Welcome.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/template-guide.html
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture

ConfigMap

A configuration map, called ConfigMap in Kubernetes manifests, binds the

configuration files, command-line arguments, environment variables, port numbers,

and other configuration artifacts to the assigned containers and system components

at runtime. The configuration maps are useful for storing and sharing non-sensitive,

unencrypted configuration information.

Source: ConfigMap in the Google Kubernetes Engine (GKE) documentation

container

A container is an allocation of resources such as CPU, network I/O, bandwidth, block

I/O, and memory that can be "contained" together and made available to specific

processes without interference from the rest of the system. Containers decouple

applications from underlying host infrastructure.

Source: Containers in the Kubernetes Concepts documentation

control plane

A control plane runs the control plane processes, including the Kubernetes API

server, scheduler, and core resource controllers. GKE manages the lifecycle of the

control plane when you create or delete a cluster.

Source: Control plane in the Google Kubernetes Engine (GKE) documentation

DaemonSet

A set of daemons, called DaemonSet in Kubernetes manifests, manages a group of

replicated pods. Usually, the daemon set follows a one-pod-per-node model. As you

add nodes to a node pool, the daemon set automatically distributes the pod

workload to the new nodes as needed.

Source: DaemonSet in the Google Cloud documentation

deployment

A Kubernetes deployment represents a set of multiple, identical pods. Deployment

runs multiple replicas of your application and automatically replaces any instances

that fail or become unresponsive.

Source: Deployments in the Kubernetes Concepts documentation

deployment controller

A deployment controller provides declarative updates for pods and replica sets. You

describe a desired state in a deployment object, and the deployment controller

changes the actual state to the desired state at a controlled rate. You can define

deployments to create new replica sets, or to remove existing deployments and

adopt all their resources with new deployments.

Source: Deployments in the Google Cloud documentation

Docker container













226 / 248

https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://cloud.google.com/kubernetes-engine/docs/concepts/configmap
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://kubernetes.io/docs/concepts/containers/
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#control_plane
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#control_plane
https://cloud.google.com/kubernetes-engine/docs/concepts/cluster-architecture#control_plane
https://cloud.google.com/kubernetes-engine/docs/concepts/daemonset
https://cloud.google.com/kubernetes-engine/docs/concepts/daemonset
https://cloud.google.com/kubernetes-engine/docs/concepts/daemonset
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/
https://kubernetes.io/docs/concepts/workloads/controllers/deployment/

A Docker container is a runtime instance of a Docker image. The container is isolated

from other containers and its host machine. You can control how isolated your

container’s network, storage, or other underlying subsystems are from other

containers or from the host machine.

Source: Containers in the Docker Getting Started documentation

Docker daemon

The Docker daemon (dockerd) listens for Docker API requests and manages Docker

objects such as images, containers, networks, and volumes. A Docker daemon can

also communicate with other Docker daemons to manage Docker services.

Source: The Docker daemon section in the Docker Overview documentation

Docker Engine

Docker Engine is an open source containerization technology for building and

containerizing applications. Docker Engine acts as a client-server application with:

A server with a long-running daemon process, dockerd .

APIs, which specify interfaces that programs can use to talk to and instruct the

Docker daemon.

A command-line interface (CLI) client, docker . The CLI uses Docker APIs to

control or interact with the Docker daemon through scripting or direct CLI

commands. Many other Docker applications use the underlying API and CLI. The

daemon creates and manages Docker objects, such as images, containers,

networks, and volumes.

Source: Docker Engine overview in the Docker documentation

Dockerfile

A Dockerfile is a text file that contains the instructions for building a Docker image.

Docker uses the Dockerfile to automate the process of building a Docker image.

Source: Dockerfile reference in the Docker documentation

Docker Hub

Docker Hub provides a place for you and your team to build and ship Docker images.

You can create public repositories that can be accessed by any other Docker Hub

user, or you can create private repositories you can control access to.

Source: Docker Hub Quickstart section in the Docker Overview documentation

Docker image

A Docker image is an application you would like to run. A container is a running

instance of an image.

An image is a read-only template with instructions for creating a Docker container.

Often, an image is based on another image, with some additional customization.











227 / 248

https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#the-docker-daemon
https://docs.docker.com/get-started/overview/#the-docker-daemon
https://docs.docker.com/get-started/overview/#the-docker-daemon
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/engine/reference/builder/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/

An image includes the application code, a runtime engine, libraries, environment

variables, and configuration files that are required to run the application.

Source: Docker objects section in the Docker Overview documentation

Docker namespace

Docker namespaces provide a layer of isolation. When you run a container, Docker

creates a set of namespaces for that container. Each aspect of a container runs in a

separate namespace and its access is limited to that namespace.

The PID namespace is the mechanism for remapping process IDs inside the

container. Other namespaces such as net, mnt, ipc, and uts provide the isolated

environments we know as containers. The user namespace is the mechanism for

remapping user IDs inside a container.

Source: The underlying technology section in the Docker Overview documentation

Docker registry

A Docker registry stores Docker images. Docker Hub and Docker Cloud are public

registries that anyone can use, and Docker is configured to look for images on

Docker Hub by default. You can also run your own private registry.

Source: Docker registries section in the Docker Overview documentation

Docker repository

A Docker repository is a public, certified repository from vendors and contributors to

Docker. It contains Docker images that you can use as the foundation to build your

applications and services.

Source: Manage repositories in the Docker documentation

dynamic volume provisioning

The process of creating storage volumes on demand is called dynamic volume

provisioning. Dynamic volume provisioning lets you create storage volumes on

demand. It automatically provisions storage when it is requested by users.

Source: Dynamic Volume Provisioning in the Kubernetes Concepts documentation

egress

An egress controls access to destinations outside the network from within a

Kubernetes network. For an external destination to be accessed from a Kubernetes

environment, the destination should be listed as an allowed destination in the

allowlist configuration.

Source: Network Policies in the Kubernetes Concepts documentation

firewall rule

A firewall rule lets you allow or deny traffic to and from your virtual machine

instances based on a configuration you specify. Each Kubernetes network has a set













228 / 248

https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#docker-objects
https://docs.docker.com/get-started/overview/#the-underlying-technology
https://docs.docker.com/get-started/overview/#the-underlying-technology
https://docs.docker.com/get-started/overview/#the-underlying-technology
https://docs.docker.com/get-started/overview/#docker-registries
https://docs.docker.com/get-started/overview/#docker-registries
https://docs.docker.com/get-started/overview/#docker-registries
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/docker-hub/repos/
https://docs.docker.com/docker-hub/repos/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/storage/dynamic-provisioning/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

of firewall rules controlling access to and from instances in its subnets. Each firewall

rule is defined to apply to either incoming (ingress) or outgoing (egress) traffic, not

both.

Source: VPC firewall rules in the Google Cloud documentation

garbage collection

Garbage collection is the process of deleting unused objects. Kubelets perform

garbage collection for containers every minute, and garbage collection for images

every five minutes. You can adjust the high and low threshold flags and garbage

collection policy to tune image garbage collection.

Source: Garbage Collection in the Kubernetes Concepts documentation

Google Kubernetes Engine (GKE)

The Google Kubernetes Engine (GKE) is an environment for deploying, managing, and

scaling your containerized applications using Google infrastructure. The GKE

environment consists of multiple machine instances grouped together to form a

container cluster.

Source: GKE overview in the Google Cloud documentation

horizontal pod autoscaler

The horizontal pod autoscaler enables the cluster to automatically increase or

decrease the number of pods in a replication controller, deployment, replica set, or

stateful set based on observed CPU utilization. Users can specify the CPU utilization

target to enable the controller to adjust the number of replicas.

Source: Horizontal Pod Autoscaler in the Kubernetes documentation

ingress

An ingress is a collection of rules that allow inbound connections to reach the cluster

services.

Source: Ingress in the Kubernetes Concepts documentation

instance group

An instance group is a collection of virtual machine instances. The instance groups

lets you easily monitor and control the group of virtual machines together.

Source: Instance groups in the Google Cloud documentation

instance template

An instance template is a global API resource to create VM instances and managed

instance groups. Instance templates define instance properties such as machine

type, image, zone, labels, and so on. They are very helpful in replicating the

environments.

Source: Instance templates in the Google Cloud documentation















229 / 248

https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/firewalls
https://cloud.google.com/vpc/docs/firewalls
https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/
https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/
https://kubernetes.io/docs/concepts/workloads/controllers/garbage-collection/
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://cloud.google.com/kubernetes-engine/docs/concepts/kubernetes-engine-overview
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/instance-groups/
https://cloud.google.com/compute/docs/instance-templates/
https://cloud.google.com/compute/docs/instance-templates/
https://cloud.google.com/compute/docs/instance-templates/

kubectl

The kubectl command-line tool supports several different ways to create and

manage Kubernetes objects.

Source: Kubernetes Object Management in the Kubernetes Concepts

documentation

kube-controller-manager

The Kubernetes controller manager embeds core controllers shipped with

Kubernetes. Each controller is a separate process. To reduce complexity, the

controllers are compiled into a single binary and run in a single process.

Source: kube-controller-manager in the Kubernetes Reference documentation

kubelet

A kubelet is an agent that runs on each node in the cluster. It ensures that containers

are running in a pod.

Source: kubelet in the Kubernetes Concepts documentation

kube-scheduler

The kube-scheduler component is on the master node. It watches for newly

created pods that do not have a node assigned to them, and selects a node for them

to run on.

Source: kube-scheduler in the Kubernetes Concepts documentation

Kubernetes

Kubernetes is an open source platform designed to automate deploying, scaling, and

operating application containers.

Source: Overview in the Kubernetes Concepts documentation

Kubernetes DNS

A Kubernetes DNS pod is a pod used by the kubelets and the individual containers to

resolve DNS names in the cluster.

Source: DNS for Services and Pods in the Kubernetes Concepts documentation

Kubernetes namespace

Kubernetes supports multiple virtual clusters backed by the same physical cluster. A

Kubernetes namespace is a virtual cluster that provides a way to divide cluster

resources between multiple users. Kubernetes starts with three initial namespaces:

default : The default namespace for user created objects which don’t have a

namespace.

kube-system : The namespace for objects created by the Kubernetes system.













230 / 248

https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/reference/generated/kube-controller-manager/
https://kubernetes.io/docs/concepts/overview/components/#kubelet
https://kubernetes.io/docs/concepts/overview/components/#kubelet
https://kubernetes.io/docs/concepts/overview/components/#kubelet
https://kubernetes.io/docs/concepts/overview/components/#kube-scheduler
https://kubernetes.io/docs/concepts/overview/components/#kube-scheduler
https://kubernetes.io/docs/concepts/overview/components/#kube-scheduler
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/overview/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/
https://kubernetes.io/docs/concepts/services-networking/dns-pod-service/

kube-public : The automatically created namespace that is readable by all

users.

Source: Namespaces in the Kubernetes Concepts documentation

Let’s Encrypt

Let’s Encrypt is a free, automated, and open certificate authority.

Source: Let’s Encrypt website

Microsoft Azure

Microsoft Azure is the Microsoft cloud platform, including infrastructure as a service

(IaaS) and platform as a service (PaaS) offerings.

Source: What is Azure? in the Microsoft Azure documentation

network policy

A Kubernetes network policy specifies how groups of pods are allowed to

communicate with each other and with other network endpoints.

Source: Network Policies in the Kubernetes Concepts documentation

node (Kubernetes)

A Kubernetes node is a virtual or physical machine in the cluster. Each node is

managed by the master components and includes the services needed to run the

pods.

Source: Nodes in the Kubernetes documentation

node controller (Kubernetes)

A Kubernetes node controller is a Kubernetes master component that manages

various aspects of the nodes, such as lifecycle operations, operational status, and

maintaining an internal list of nodes.

Source: Node Controller in the Kubernetes Concepts documentation

node pool (Kubernetes)

A Kubernetes node pool is a collection of nodes with the same configuration. At the

time of creating a cluster, all the nodes created in the default node pool. You can

create your custom node pools for configuring specific nodes that have different

resource requirements such as memory, CPU, and disk types.

Source: About node pools in the Google Kubernetes Engine (GKE) documentation

persistent volume

A persistent volume (PV) is a piece of storage in the cluster that has been provisioned

by an administrator. It is a resource in the cluster just like a node is a cluster

resource. PVs are volume plugins that have a lifecycle independent of any individual

pod that uses the PV.















231 / 248

https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://letsencrypt.org/
https://letsencrypt.org/
https://letsencrypt.org/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://azure.microsoft.com/en-us/resources/cloud-computing-dictionary/what-is-azure/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://kubernetes.io/docs/concepts/architecture/nodes/#node-controller
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools
https://cloud.google.com/kubernetes-engine/docs/concepts/node-pools

Source: Persistent Volumes in the Kubernetes Concepts documentation

persistent volume claim

A persistent volume claim (PVC) is a request for storage by a user. A PVC specifies

size and access modes such as:

Mounted once for read and write access

Mounted many times for read-only access

Source: Persistent Volumes in the Kubernetes Concepts documentation

pod anti-affinity (Kubernetes)

Kubernetes pod anti-affinity constrains which nodes can run your pod, based on

labels on the pods that are already running on the node, rather than based on labels

on nodes. Pod anti-affinity lets you control the spread of workload across nodes and

also isolate failures to nodes.

Source: Assigning Pods to Nodes in the Kubernetes Concepts documentation

pod (Kubernetes)

A Kubernetes pod is the smallest, most basic deployable object in Kubernetes. A pod

represents a single instance of a running process in a cluster. Containers within a

pod share an IP address and port space.

Source: Pods in the Kubernetes Concepts documentation

region (Azure)

An Azure region, also known as a location, is an area within a geography, containing

one or more data centers.

Source: region in the Microsoft Azure glossary

replication controller (Kubernetes)

A replication controller ensures that a specified number of Kubernetes pod replicas

are running at any one time. The replication controller ensures that a pod or a

homogeneous set of pods is always up and available.

Source: ReplicationController in the Kubernetes Concepts documentation

resource group (Azure)

A resource group is a container that holds related resources for an application. The

resource group can include all the resources for an application, or only those

resources that are logically grouped together.

Source: resource group in the Microsoft Azure glossary

secret (Kubernetes)

A Kubernetes secret is a secure object that stores sensitive data, such as passwords,

OAuth 2.0 tokens, and SSH keys in your clusters.















232 / 248

https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/#inter-pod-affinity-and-anti-affinity-beta-feature
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/#understanding-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/#understanding-pods
https://kubernetes.io/docs/concepts/workloads/pods/pod-overview/#understanding-pods
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#region
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#region
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#region
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://kubernetes.io/docs/concepts/workloads/controllers/replicationcontroller/
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#resource-group
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#resource-group
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#resource-group

Source: Secrets in the Kubernetes Concepts documentation

security group (AWS)

A security group acts as a virtual firewall that controls the traffic for one or more

compute instances.

Source: Amazon EC2 security groups for Linux instances in the AWS

documentation

service (Kubernetes)

A Kubernetes service is an abstraction that defines a logical set of pods and a policy

by which to access them. This is sometimes called a microservice.

Source: Service in the Kubernetes Concepts documentation

service principal (Azure)

An Azure service principal is an identity created for use with applications, hosted

services, and automated tools to access Azure resources. Service principals let

applications access resources with the restrictions imposed by the assigned roles

instead of accessing resources as a fully privileged user.

Source: Create an Azure service principal with Azure PowerShell in the Microsoft

Azure PowerShell documentation

shard

Sharding is a way of partitioning directory data so that the load can be shared by

multiple directory servers. Each data partition, also known as a shard, exposes the

same set of naming contexts, but only a subset of the data. For example, a

distribution might have two shards. The first shard contains all users whose names

begin with A-M, and the second contains all users whose names begin with N-Z. Both

have the same naming context.

Source: Class Partition in the DS Javadoc

single-instance ForgeOps deployment

Refer to ForgeOps deployment.

stack (AWS)

A stack is a collection of AWS resources that you can manage as a single unit. You can

create, update, or delete a collection of resources by using stacks. The AWS template

defines all the resources in a stack.

Source: Working with stacks in the AWS documentation

stack set (AWS)

A stack set is a container for stacks. You can provision stacks across AWS accounts

and regions by using a single AWS template. A single template defines the resources

included in each stack of a stack set.











233 / 248

https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/configuration/secret/
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-security-groups.html
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/services-networking/service/
https://docs.microsoft.com/en-us/powershell/azure/create-azure-service-principal-azureps?view=azps-2.4.0
https://docs.microsoft.com/en-us/powershell/azure/create-azure-service-principal-azureps?view=azps-2.4.0
https://docs.microsoft.com/en-us/powershell/azure/create-azure-service-principal-azureps?view=azps-2.4.0
https://backstage.forgerock.com/docs/ds/7.5/_attachments/javadoc/org/opends/server/discovery/Partition.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacks.html

Source: StackSets concepts in the AWS documentation

subscription (Azure)

An Azure subscription is used for pricing, billing, and payments for Azure cloud

services. Organizations can have multiple Azure subscriptions, and subscriptions can

span multiple regions.

Source: subscription in the Microsoft Azure glossary

volume (Kubernetes)

A Kubernetes volume is a storage volume that has the same lifetime as the pod that

encloses it. Consequently, a volume outlives any containers that run within the pod,

and data is preserved across container restarts. When a pod ceases to exist, the

Kubernetes volume also ceases to exist.

Source: Volumes in the Kubernetes Concepts documentation

volume snapshot (Kubernetes)

In Kubernetes, you can copy the content of a persistent volume at a point in time,

without having to create a new volume. You can efficiently back up your data using

volume snapshots.

Source: Volume Snapshots in the Kubernetes Concepts documentation

VPC (AWS)

A virtual private cloud (VPC) is a virtual network dedicated to your AWS account. It is

logically isolated from other virtual networks in the AWS Cloud.

Source: What Is Amazon VPC? in the AWS documentation

worker node (AWS)

An Amazon Elastic Container Service for Kubernetes (Amazon EKS) worker node is a

standard compute instance provisioned in Amazon EKS.

Source: Self-managed nodes in the AWS documentation

workload (Kubernetes)

A Kubernetes workload is the collection of applications and batch jobs packaged into

a container. Before you deploy a workload on a cluster, you must first package the

workload into a container.

Source: Workloads in the Kubernetes Concepts documentation

Useful links that cover topics beyond the scope of this documentation.















Beyond the docs

Development topics

234 / 248

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-concepts.html
https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/stacksets-concepts.html
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#subscription
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#subscription
https://docs.microsoft.com/en-us/azure/azure-glossary-cloud-terminology#subscription
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volumes/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://kubernetes.io/docs/concepts/storage/volume-snapshots/
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/vpc/latest/userguide/what-is-amazon-vpc.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://docs.aws.amazon.com/eks/latest/userguide/worker.html
https://kubernetes.io/docs/concepts/workloads
https://kubernetes.io/docs/concepts/workloads
https://kubernetes.io/docs/concepts/workloads

Get a full Amster export out of a ForgeOps deployment

Deploy and customize Prometheus, Grafana, and Alertmanager in a ForgeOps

deployment

Deploy the platform in a multi-cluster environment using Google Cloud Multi

Cluster Ingress and Cloud DNS for GKE

Import a certificate into the truststore in a ForgeOps deployment

Enable the IDM workflow in a ForgeOps deployment

ForgeOps deployment to Minikube on M1 or M2 based Mac running Colima

An overview of DS scripts to customize, build and deploy DS Docker images

Enable and modify the AM logging level (applies to ForgeOps 2025.1.1)

Enable and modify the IDM logging level (applies to ForgeOps 2025.1.1)

Enable and modify the audit logging level (applies to ForgeOps 2025.1.1)

Get an email when there’s an update to ForgeOps 2025.1 documentation. Go to the

Notifications page in your Backstage profile and select ForgeOps 2025.1 Changes in

the Documentation Digests section.

Or subscribe to the  ForgeOps 2025.1 RSS feed.

Important information for this ForgeOps release:

Validated Kubernetes, Ingress-NGINX Controller, HAProxy Ingress,

cert-manager, and operator versions for deploying Ping Identity

Platform 2025.1.1

Link



Deployment topics











DS script guide



Troubleshooting







ForgeOps 2025.1 release notes



Learn about how to configure GitHub notifications here so you can get notified

on ForgeOps releases.

NOTE



235 / 248

https://backstage.forgerock.com/knowledge/kb/article/a36831783
https://backstage.forgerock.com/knowledge/kb/article/a36831783
https://backstage.forgerock.com/knowledge/kb/article/a36831783
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus#prometheus-and-grafana-deployment
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus#prometheus-and-grafana-deployment
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus#prometheus-and-grafana-deployment
https://github.com/ForgeRock/forgeops/blob/2025.1.1/cluster/addons/prometheus#prometheus-and-grafana-deployment
https://github.com/ForgeRock/forgeops-extras/tree/master/samples/multi-cluster/google-cloud/multi-cluster-ingress
https://github.com/ForgeRock/forgeops-extras/tree/master/samples/multi-cluster/google-cloud/multi-cluster-ingress
https://github.com/ForgeRock/forgeops-extras/tree/master/samples/multi-cluster/google-cloud/multi-cluster-ingress
https://github.com/ForgeRock/forgeops-extras/tree/master/samples/multi-cluster/google-cloud/multi-cluster-ingress
https://backstage.forgerock.com/knowledge/kb/article/a46349648
https://backstage.forgerock.com/knowledge/kb/article/a46349648
https://backstage.forgerock.com/knowledge/kb/article/a46349648
https://community.forgerock.com/t/enabling-the-idm-workflow-with-forgeops-v7-x/3949
https://community.forgerock.com/t/enabling-the-idm-workflow-with-forgeops-v7-x/3949
https://community.forgerock.com/t/enabling-the-idm-workflow-with-forgeops-v7-x/3949
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305
https://community.forgerock.com/t/deploying-forgeops-to-minikube-on-an-m1-mac-with-colima/3305
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522
https://community.forgerock.com/t/forgeops-ds-script-guide-7-4-7-5/5522
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-for-am/3133
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-for-am/3133
https://community.forgerock.com/t/how-to-enabling-and-modifying-logging-level-in-forgeops-for-am/3133
https://community.forgerock.com/t/how-to-enable-and-modify-logging-level-in-forgeops-for-idm/3152
https://community.forgerock.com/t/how-to-enable-and-modify-logging-level-in-forgeops-for-idm/3152
https://community.forgerock.com/t/how-to-enable-and-modify-logging-level-in-forgeops-for-idm/3152
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops/3263
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops/3263
https://community.forgerock.com/t/how-to-enable-and-modify-audit-logging-in-am-and-idm-for-forgeops/3263
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/account/notifications/settings
https://backstage.forgerock.com/docs/forgeops/2025.1/rn/rn.xml
file:///home/pptruser/Downloads/build/site/forgeops/rn/versions.html
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications
https://docs.github.com/en/account-and-profile/managing-subscriptions-and-notifications-on-github/setting-up-notifications/configuring-notifications

Limitations when deploying Ping Identity Platform 2025.1.1 on

Kubernetes

Link

More information about the rapidly evolving nature of the

forgeops repository, including technology previews, legacy

features, and feature deprecation and removal

Link

Legal notices Link

Archive of release notes in 2024 and before are available from

ForgeOps release 7.5 documentation

Link

Archive of release notes in 2023 and before are available from

ForgeOps release 7.4 documentation

Link

Removed the disaster subcommand from the ds-debug command

The DS team has removed the disaster subcommand from the ds-debug

command. Accordingly, that subcommand description is removed from the

Troubleshooting section.

Fixed the name of the ingress controller used

The name of the ingress controller used by default in ForgeOps deployment is

corrected to Ingress-NGINX controller.

Corrected steps to install PingGateway

Procedures to install PingGateway are corrected. Learn more at Deploy PingGateway

and Custom PingGateway image.

Revise steps to enable volume snapshots

The steps to enable volume snapshots have been simplified with the use of the

forgeops env command. Learn more in Backup and restore using volume

snapshots.

Command reference for forgeops image

2025

April 4, 2025

Documentation updates

March 19, 2025

Documentation updates

236 / 248

file:///home/pptruser/Downloads/build/site/forgeops/rn/limitations.html
file:///home/pptruser/Downloads/build/site/forgeops/rn/evolution.html
file:///home/pptruser/Downloads/build/site/forgeops/rn/legal.html
https://backstage.forgerock.com/docs/forgeops/7.5/rn/rn.html#2024
https://backstage.forgerock.com/docs/forgeops/7.4/rn/rn.html#2023
file:///home/pptruser/Downloads/build/site/forgeops/prepare/ig/deploy-default-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/prepare/ig/deploy-custom-ig.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/snapshots.html
file:///home/pptruser/Downloads/build/site/forgeops/backup/snapshots.html

Added the command reference for the forgeops image command. Learn more at

the forgeops image command reference page.

Revamp the Upgrade section

The Upgrade document section is updated to cover the new format of the forgeops

command and the ForgeOps deployment environment. Learn more in the Upgrade

Overview section.

Update the Troubleshooting amster section

The amster command has been subsumed in the forgeops amster command.

Learn more in the Troubleshooting amster pod section.

New ForgeOps 2025.1.1 released

Ability to set FORGEOPS_ROOT

You can set FORGEOPS_ROOT parameter to specify the local folder that contains the

Docker, Helm, and Kustomize configurations. This allows you to keep your changes in

a separate Git repository. You can create a ~/.forgeops.conf file with your

overrides. Your development team can place a forgeops.conf file in their

FORGEOPS_ROOT location which contains team-wide settings.

You can clone the forgeops repository and check out only the version tag you need.

This makes it easier to keep track of the ForgeOps version you’re using and upgrade

to a newer version consistently.

forgeops info command can provide release information

You can now get a list of supported platform releases and their latest flags using the

forgeops info --list-releases command.

You can get details for any release on releases.forgeops.com using the

forgeops info --release xyz command.

forgeops env command supports PingGateway

March 05, 2025

Documentation updates

February 19, 2025

New features and updated functionality

Don’t create or modify the forgeops.conf file in the /path/to/forgeops_repo/

directory.

IMPORTANT

237 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#forgeops-image
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#forgeops-image
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/upgrade-overview.html
file:///home/pptruser/Downloads/build/site/forgeops/upgrade/upgrade-overview.html
file:///home/pptruser/Downloads/build/site/forgeops/troubleshoot/amster.html

You can now define and update PingGateway node configuration parameters, such

as CPU, memory, replicas, and pull policy in a ForgeOps deployment environment.

This lets you install PingGateway quickly in a ForgeOps deployment.

Version of pyyaml is updated

The version of pyyaml is updated. Run the [.command]forgeops configure#

command to update your libraries.

forgeops info --env-name command has been fixed

The timestamp issue in the forgeops info --env-name has been fixed.

DS certificates are now deployed in Helm pre-install

Helm pre-install hooks are now used to deploy DS certificates. These certificates are

no longer deleted when the Helm chart is uninstalled.

AM service target ports are updated

Updated the AM service in the Helm chart to use HTTPS target port.

Prometheus ports are updated

Prometheus default ports and labels have been updated to match the new Helm

chart.

Upgrade procedures revised

The procedures to upgrade ForgeOps artifacts and component images are revised.

Learn more in Upgrade Overview.

Added sample storage class definition files

We’ve added sample storage class definition files required for ForgeOps deployment.

This helps users who are setting up Kubernetes clusters without using the ForgeOps-

provided Terraform manifests.

Updated the procedure to set up Minikube cluster

Because we’ve removed the forgeops-minikube script, we’ve revised the steps to

create a Minikube cluster to use the generic minikube command. Learn more about

creating a Minikube cluster here.

Bugfixes

Documentation updates

February 10, 2025

New features and updated functionality

Documentation updates

238 / 248

file:///home/pptruser/Downloads/build/site/forgeops/upgrade/upgrade-overview.html
file:///home/pptruser/Downloads/build/site/forgeops/setup/minikube.html

Updated the procedure to perform ForgeOps deployment on Minikube

We’ve added the step to create the fast storage class required for ForgeOps

deployment on Minikube.

Revised instruction for deployment on Minikube

Revised the procedure to perform ForgeOps deployment on Minikube using generic

Kubernetes tools rather than propreitary forgeops-minikube utility.

Learn the revised steps to perform ForgeOps deployment on Minikube:

Using Helm.

Using Kustomize.

The ForgeOps releases are based on the main branch

The master branch of forgeops repository is no longer used. The ForgeOps

artifacts are released from the main branch. The latest Docker images are tagged as

dev images. You can view the available Docker images using the forgeops image

command.

New forgeops command

The forgeops-ng command has been renamed forgeops. The new forgeops

command subsumes all the functionality provided by the previous version of

forgeops command. The previous version of the forgeops-ng command has

been removed.

The process of deploying and managing ForgeOps deployments has been

improved with the use of provisioning environments with the forgeops env

command for both Kustomize and Helm user environments. Learn more about

the forgeops env command in the forgeops env command].

Provided an option to select the Docker image as appropriate for a user

deployment with the forgeops image command.

You can view configured environments and product versions using the

forgeops info command.

Learn more in forgeops command reference

ForgeOps-provided Docker images are now supported

January 27, 2025

Documentation updates

January 13, 2025

New features and updated functionality

239 / 248

file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-helm-local.html
file:///home/pptruser/Downloads/build/site/forgeops/deploy/deploy-scenario-kustomize-local.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#env-ref
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html#env-ref
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html

Ping Identity now supports ForgeOps-provided Docker images. We’ve revised the

documentation and removed the "unsupported" admonition.

New supported product versions

Platform UI 7.5.1

PingAM 7.4.1, 7.5.1

PingDS 7.4.3, 7.5.1

PingGateway 2024.6.0, 2024.9.0, 2024.11.0

PingIDM 7.5.0

Removed legacy DS docker directories

Removed the legacy docker/ds/idrepo and docker/ds/cts directories. The

content that was in docker/ds/ds-new is now in docker/ds.

Removed the requirement to build ldif-importer

The ldif-importer component uses the DS Docker image, you don’t need to build

a separate Docker image. The required ldif-importer scripts are mounted to the

ldif-importer pod using a configmap.

New forgeops command reference

The new forgeops command reference contains more information on the new

forgeops command.

Description of the release process

Learn more about the new ForgeOps release process here

New section on customizing DS image

Learn more about customizing DS image in the new section on Customizing DS

image.

Added description of the release process

Learn more about the new ForgeOps release process

Documentation updates

2024

December 05, 2024

Documentation updates

240 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops-cmd-ref.html
file:///home/pptruser/Downloads/build/site/forgeops/start/release-process.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/customize/ds.html
file:///home/pptruser/Downloads/build/site/forgeops/start/release-process.html

Moved the forgeops command description and reference to the Reference section

The new forgeops command is supported, so we’ve moved the corresponding

documentation pages to the Reference section. Learn more in the forgeops

command reference.

Moved Base Docker Image page to the Reference section

Considering the ForgeOps-provided docker images are supported, you need to build

base Docker images only in special cases. Accordingly, we’ve moved the Base Docker

Images section to the Reference section.

The following Kubernetes versions have been validated for use with Ping Identity

Platform 2025.1.1:

Cloud provider Kubernetes version

Google Kubernetes Engine (GKE) 1.30

Amazon Elastic Kubernetes Service (EKS) 1.30

Azure Kubernetes Service (AKS) 1.30

Minikube The stable Kubernetes version for

Minikube .

Earlier and later Kubernetes versions might also work. If you want to try using other

Kubernetes versions, it is your responsibility to validate them.

The Ingress-NGINX Controller has been validated for use with Ping Identity Platform

2025.1.1 validated version 1.9.0 .

The ingress controller deployment script installs this version. If you install NGINX

Ingress Controller using a technique other than running the script, be sure to install this

version. Earlier versions of Ingress-NGINX Controller might not work with Ping Identity

Platform 2025.1.1 deployments on Kubernetes.

The previous version of the forgeops utility is not supported in this ForgeOps

release. It continues to be supported in ForgeOps 7.5 and 7.4, as long as the

corresponding Ping Identity Platform components are supported.

NOTE

Validated software versions

Kubernetes



Ingress-NGINX Controller



[21]



241 / 248

file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/forgeops.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html
file:///home/pptruser/Downloads/build/site/forgeops/reference/base-docker-images.html
https://minikube.sigs.k8s.io/docs/commands/start
https://minikube.sigs.k8s.io/docs/commands/start
https://minikube.sigs.k8s.io/docs/commands/start
https://minikube.sigs.k8s.io/docs/commands/start
https://kubernetes.github.io/ingress-nginx
https://kubernetes.github.io/ingress-nginx
https://kubernetes.github.io/ingress-nginx
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh

Newer versions might work but have not been tested with Ping Identity Platform

2025.1.1.

The following HAProxy has been validated HAProxy Ingress version 0.14.5 for use with

Ping Identity Platform 2025.1.1.

The ingress controller deployment script installs this version. If you install the HAProxy

Ingress using a technique other than running the script, be sure to install this version.

Earlier versions of the HAProxy Ingress might not work with Ping Identity Platform

2025.1.1 deployments on Kubernetes.

Newer versions might work but have not been tested with Ping Identity Platform

2025.1.1.

The version 1.13.0 of cert-manager has been validated for use with Ping Identity

Platform 2025.1.1.

The cert-manager deployment script installs this version. If you install cert-manager

using a technique other than running the script, be sure to install this version. Earlier

versions of cert-manager might not work with Ping Identity Platform 2025.1.1

deployments on Kubernetes.

Newer versions might work but have not been tested with Ping Identity Platform

2025.1.1.

ForgeRock has validated the following operator versions for use with Ping Identity

Platform 2025.1.1:

Secret Agent operator  — version 1.2.3

DS operator  — version 0.3.0

This page documents limitations on the Ping Identity Platform when deployed on a

Kubernetes cluster in the cloud.

The bin/config export command doesn’t handle object deletion correctly.

HAProxy Ingress





cert-manager





ForgeRock operators





Limitations

On all Ping Identity Platform components

242 / 248

https://haproxy-ingress.github.io/
https://haproxy-ingress.github.io/
https://haproxy-ingress.github.io/
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/ingress-controller-deploy.sh
https://cert-manager.io/
https://cert-manager.io/
https://cert-manager.io/
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/certmanager-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/certmanager-deploy.sh
https://github.com/ForgeRock/forgeops/blob/2025.1.1/bin/certmanager-deploy.sh
https://github.com/ForgeRock/secret-agent
https://github.com/ForgeRock/secret-agent
https://github.com/ForgeRock/secret-agent
https://github.com/ForgeRock/ds-operator
https://github.com/ForgeRock/ds-operator
https://github.com/ForgeRock/ds-operator

Deletion of configuration objects, such as AM authentication trees and service

definitions, is not handled correctly by the bin/config export command. If you

have deleted one or more objects from your Ping Identity Platform configuration in

the CDK, and then you export the configuration from the CDK, the deleted objects

will be still present in your configuration profile.

To work around this problem, locate the deleted objects in your configuration profile

after you’ve run the bin/config export command. Then, delete the objects that

should have been deleted from the JSON configuration files. After deleting the

objects, if you build a new Docker image based on your configuration profile, the

image will not contain the deleted objects.

DS live data and logs should reside on fast disks.

DS data requires high performance, low latency disks. Use external volumes on solid-

state drives (SSDs) for directory data when running in production. Do not use

network file systems such as NFS.

Adding DS pods to a cluster should be done in advance of anticipated additional load.

When you increase the number of DS pods in a cluster, they’re automatically

provisioned with the same directory data in existing pods. You must allow time for

the data provisioning to complete and new pods to become available.

Database encryption is not supported.

The ds-empty Docker image—the image deployed by the DS operator—doesn’t

support database encryption. DS fails to start if it detects that any data was

encrypted during the Docker build process.

DS starts successfully even when it cannot decrypt a backend.

When the DS master key is not available, DS starts up successfully even though is

unable to decrypt a backend.

Root file system write access is required to run the DS Docker image.

The DS Docker image will not run without root file system write access.

AM must be reconfigured and restarted if the number of DS pods changes.

In DS 7.5.1, you can elastically scale the number of DS pods in Kubernetes. However,

the AM configuration doesn’t automatically respond to changes in the number of DS

pods.

On DS

On AM

243 / 248

Because of this, you must modify the AM configuration after you scale the number of

idrepo or cts pods in a running AM deployment.

Using subrealms in CDM and CDK deployments requires additional considerations.

If you decide to deploy AM with subrealms, you’ll need to configure the subrealms in

the DS repository before starting AM. For more information, refer to the comments

in the DS Dockerfile .

Session stickiness is recommended for all deployments.

ForgeOps recommends that you configure your load balancer to use sticky sessions

to achieve better performance.

Session stickiness is required for some deployments.

Two AM features are stateful, and require you to configure your load balancer to use

sticky sessions:

SAML v2.0 single logout.

Browser-based authentication using authentication chains, which is deprecated

in AM 7.5.1. Note that AM authentication trees are not stateful, and do not have

this limitation.

Property value substitution in is not supported for all configuration properties.

AM doesn’t support property value substitution for several types of configuration

properties. Refer to Property value substitution in the AM documentation for more

information.

The SOAP binding is not supported for SAML v2.0 single logout.

When deploying SAML v2.0 single logout, use the HTTP-POST or HTTP-Redirect

bindings. The SOAP binding is not supported when AM runs in a container.

The shared identity repository is not preconfigured for UMA deployments.

The shared identity repository deployed with the CDK and the CDM is not

preconfigured to store UMA objects, such as resources, labels, audit messages, and

pending requests.

In order to use UMA in the CDK or the CDM, you’ll need to customize your

deployment. For more information, refer to the User-Managed Access (UMA) 2.0 Guide.

The IDM repository is deployed in a single master topology.

IDM can actively use only a single instance of DS as its repository. Should the DS

instance fail, IDM can fail over to another DS instance; the limitation that only a single



On IDM

244 / 248

https://github.com/ForgeRock/forgeops/blob/2025.1.1/docker/ds/idrepo/Dockerfile
https://github.com/ForgeRock/forgeops/blob/2025.1.1/docker/ds/idrepo/Dockerfile
https://github.com/ForgeRock/forgeops/blob/2025.1.1/docker/ds/idrepo/Dockerfile
file:///home/pptruser/Downloads/build/site/forgeops/customize/value-substitution.html
https://backstage.forgerock.com/docs/am/7.5/setup-guide/property-value-substitution.html
https://backstage.forgerock.com/docs/am/7.5/uma-guide

instance can be active applies. Using multiple DS replicas at the same time is not

supported.

The CDM and CDK are not preconfigured to support IDM’s workflow engine.

The CDK and the CDM use DS as the IDM repository. Because of this, the CDK and

the CDM do not support IDM’s workflow engine, and workflow features are disabled.

Adding workflow support to the CDK and the CDM requires substantial, complex

configuration changes, including:

Adding a JDBC repository to the CDK or CDM deployment.

Enabling workflow features in IDM.

There are no limitations for this release.

All the features demonstrated in the forgeops repository evolve continuously, and

should be expected to change, potentially in backwards-incompatible ways. Specific

changes are documented in the ForgeOps 2025.1 release notes, and might go through

the following stages:

Stage Definition

Technology

Preview

Technology previews provide access to new technology that is not yet

supported. Technology preview features may be functionally

incomplete, and the function as implemented is subject to change

without notice.

DO NOT DEPLOY FEATURES MARKED AS BEING IN TECHNOLOGY PREVIEW

INTO A PRODUCTION ENVIRONMENT.

You are encouraged to test drive technology preview features in a non-

production environment, and are welcome to make comments and

suggestions about the features.

ForgeOps doesn’t guarantee that a technology preview feature will be

present at a future time. The final complete version of the feature is

liable to change between preview and the final version.

Technology previews are provided on an "as is" basis for evaluation

purposes only, and Ping Identity accepts no liability or obligations for

the use thereof.

On PingGateway

forgeops repository feature evolution

245 / 248

file:///home/pptruser/Downloads/build/site/forgeops/rn/rn.html

Stage Definition

Evolving All features that are not in technology preview, legacy, deprecated, or

removed status are considered to be evolving. Evolving features might

change at any time, even in backwards-incompatible ways.

Evolving features in the forgeops repository might or might not be

supported. Learn more in Support for ForgeOps.

Legacy Features in legacy status have been replaced with improved versions,

and are no longer being developed by ForgeOps.

You should migrate to the newer version; however the existing

functionality will remain.

Legacy features or interfaces are marked as Deprecated if they are

scheduled to be removed.

Legacy features in the forgeops repository might or might not be

supported. Learn more in Support for ForgeOps.

Deprecated Deprecated features are likely to be removed in future versions of the

repository.

Deprecated features in the forgeops repository might or might not

be supported. Learn more in Support for ForgeOps.

Removed Removed features were previously deprecated, and have now been

removed.

Features that have been removed from the forgeops repository are

not supported.

Click here for legal information about product documentation published by Ping

Identity.

The Ping Identity Platform serves as the basis for our simple and comprehensive identity

and access management solution. We help our customers deepen their relationships

with their customers, and improve the productivity and connectivity of their employees

and partners. Learn more about ForgeOps and about the platform in

https://www.pingidentity.com/en/platform.html .

Legal notices



About Ping Identity Platform software



246 / 248

file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
file:///home/pptruser/Downloads/build/site/forgeops/start/support.html
https://backstage.forgerock.com/knowledge/backstagehelp/article/a81642400
https://backstage.forgerock.com/knowledge/backstagehelp/article/a81642400
https://backstage.forgerock.com/knowledge/backstagehelp/article/a81642400
https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html
https://www.pingidentity.com/en/platform.html

The platform includes the following components:

PingAM, previously ForgeRock® Access Management (AM)

PingIDM, previously ForgeRock® Identity Management (IDM)

PingDS, previously ForgeRock® Directory Services (DS)

PingGateway, previously ForgeRock® Identity Gateway (IG)

Copyright © 2017 by Dave Gandy, https://fontawesome.com/ . This Font Software is

licensed under the SIL Open Font License, Version 1.1. Refer to

https://opensource.org/license/openfont-html/ .

1. Not available on single-instance ForgeOps deployments.

2. Not available on ForgeOps deployments on Minikube.

3. The Linux version of Homebrew doesn’t support installing software it maintains as casks. Because of

this, if you’re setting up an environment on Linux, you won’t be able to use Homebrew to install software

in several cases. You’ll need to refer to the software’s documentation for information about how to

install the software on a Linux system.

4. The Terraform configuration contains a set of variables under forgerock that adds labels required for

clusters created by Ping Identity employees. If you’re a Ping Identity employee creating a cluster, set

values for these variables.

5. The Terraform configuration contains a set of variables under forgerock that adds labels required for

clusters created by Ping Identity employees. If you’re a Ping Identity employee creating a cluster, set

values for these variables.

6. The Terraform configuration contains a set of variables under forgerock that adds labels required for

clusters created by Ping Identity employees. If you’re a Ping Identity employee creating a cluster, set

values for these variables.

7. For example, systems based on M1 or M2 chipsets.

8. Installing Prometheus, Grafana, and Alertmanager technology in ForgeOps deployments provides an

example of how you might set up monitoring and alerting in a Ping Identity Platform deployment in the

cloud. Remember, ForgeOps deployments are reference implementations and not for production use.

When you create a project plan, you’ll need to determine how to monitor and send alerts in your

production deployment.

9. Installing Prometheus, Grafana, and Alertmanager technology in ForgeOps deployments provides an

example of how you might set up monitoring and alerting in a Ping Identity Platform deployment in the

cloud. Remember, ForgeOps deployments are reference implementations and not for production use.

When you create a project plan, you’ll need to determine how to monitor and send alerts in your

production deployment.

10. You can automate logging into ECR every 12 hours by using the cron utility.

11. To access DS, refer to DS command-line access.

12. If you prefer to use a different ingress controller, deploy infrastructure in Kubernetes to support it.

FontAwesome copyright





End of the consolidated file

247 / 248

https://fontawesome.com/
https://fontawesome.com/
https://fontawesome.com/
https://opensource.org/license/openfont-html/
https://opensource.org/license/openfont-html/
https://opensource.org/license/openfont-html/
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#cdm-sandbox
file:///home/pptruser/Downloads/build/site/forgeops/start/start-here.html#planning
file:///home/pptruser/Downloads/build/site/forgeops/deploy/access.html#ds_command_line_access

13. The Ingress-NGINX and cert-manager are evolving technologies. Descriptions of these technologies were

accurate at the time of this writing, but might differ when you deploy them.

14. For more information on how to change the default behavior, refer to the steps for creating sslcert.

15. Use similar steps to modify the schedule and purge delay for the cts repository

16. Change the ds-cts parameters to modify the schedule and purge delay for the cts repository

17. To get the access key from the Azure portal, go to your storage account. Under Security + networking on

the left navigation menu, select Access keys

18. The FROM statement originally contained am-cdk as part of the repository name. Be sure to use am, not

am-cdk, in the revised statement.

19. The FROM statement originally contained idm-cdk as part of the repository name. Be sure to use idm,

not idm-cdk, in the revised statement.

20. Except for the deprecated amster component.

21. Ingress-NGINX Controller Helm chart version 4.8.0 installs Ingress-NGINX Controller version 1.9.0.

Was this helpful?

Copyright © 2010-2025 ForgeRock, all rights reserved.

248 / 248

