
Synchronization Guide
/ ForgeRock Identity Management 7.1

Latest update: 7.1.6

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide to configuring synchronization between ForgeRock® Identity Management and
other resources.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© Copyright 2010–2020 ForgeRock, Inc. All rights reserved. ForgeRock is a registered trademark of ForgeRock, Inc. Other marks appearing herein may be trademarks of their respective owners.

This product or document is protected by copyright and distributed under licenses restricting its use, copying, and distribution. No part of this product or document may be reproduced in any form by any means without prior
written authorization of ForgeRock and its licensors, if any.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESSED OR IMPLIED CONDITIONS, REPRESENTATIONS, AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... v
1. Synchronization Overview ... 1

Types of Synchronization .. 1
Overview of the Synchronization Configuration ... 2
Defining Your Data Mapping Model .. 3

2. Configuring Connections Between Resources .. 4
Configure Connectors in the UI ... 4
Edit Connector Configuration Files ... 4
Configure Connectors Over REST ... 5

3. Mapping Data Between Resources .. 6
Configure a Resource Mapping ... 7
Remove a Mapping .. 9
Transform Attributes in a Mapping ... 10
Use Scriptable Conditions in a Mapping .. 11
Create Default Attributes in a Mapping ... 12
Map a Single Source Object to Multiple Target Objects 13
Prevent the Accidental Deletion of a Target System .. 19
Use Scripts in Mappings ... 20
Reuse Links Between Mappings .. 25
Reconcile With Case-Insensitive Data Stores ... 26

4. Synchronization Situations and Actions ... 28
How Synchronization Situations Are Assessed ... 29
Synchronization Actions .. 35

5. Correlating Source Objects With Existing Target Objects .. 39
Writing Correlation Queries .. 39
Writing Correlation Scripts ... 42

6. Synchronization Operations Over REST ... 46
Manage Reconciliation Over REST .. 46
Managing LiveSync Over REST ... 58

7. Filter Synchronization Data ... 60
Filter Source and Target Objects With Scripts .. 60
Restrict Reconciliation By Using Queries ... 61
Restrict Reconciliation to a Specific ID ... 63
Restrict Implicit Synchronization to Specific Property Changes 64

8. Implicit Synchronization and LiveSync .. 65
Disable Automatic Synchronization Operations .. 65
Configure the LiveSync Retry Policy .. 66
Improve Reliability With Queued Synchronization ... 69
Synchronization Failure Compensation .. 76

9. Schedule Synchronization .. 78
Configure Scheduled Synchronization ... 78
Scheduling LiveSync Through the UI .. 79

10. Distributing Reconciliation Operations Across a Cluster .. 81
Configuring Clustered Reconciliation for a Mapping .. 82

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

Viewing Clustered Reconciliation Progress .. 83
Canceling a Clustered Reconciliation Operation .. 84

11. Tuning Reconciliation Performance ... 86
Correlate Empty Target Sets ... 86
Prefetch Links ... 86
Run Parallel Reconciliation Threads .. 87
Improve Reconciliation Query Performance ... 87
Paging Reconciliation Query Results ... 89

12. Asynchronous Reconciliation ... 91
A. Synchronization Reference .. 93

Object-Mapping Objects .. 93
Links .. 103
Queries .. 104
Reconciliation .. 104
REST API ... 105
Reconciliation Duration Metrics ... 106

IDM Glossary ... 112

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. v

Overview
Synchronizing identity data between resources is one of the core services of ForgeRock Identity
Management (IDM). In this guide, you will learn about the different types of synchronization,
and how to configure the flexible synchronization mechanism. This guide is written for systems
integrators building solutions based on ForgeRock Identity Management services.

Quick Start

Synchronization Overview

Learn about the different
synchronization mechanisms,

high-level synchronization
configuration, and about

data mapping models.

Mappings

Map data between resources.

Situations and Actions

Learn how synchronization
situations are assessed for each

object, and how to configure
actions to be taken in each case.

Filtering Synchronization Data

Limit the data that is
synchronized, based on a

variety of filtering mechanisms.

Implicit Sync and LiveSync

Configure automatic
synchronization

between resources.

Tuning Reconciliation Performance

Limit the data that is
synchronized, based on a

variety of filtering mechanisms.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

https://www.forgerock.com

Synchronization Overview
Types of Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Synchronization Overview
Synchronization keeps data consistent across disparate resources. Within IDM, we refer to two
resource types—managed resources (stored in the IDM repository) and external resources. An
external resource can be any system that holds identity data, such as ForgeRock Directory Services
(DS), Active Directory, a CSV file, a JDBC database, and so on.

IDM connects to external resources through connectors. For information about these connectors,
see the Connectors Guide. Synchronization across resources happens when managed resources
change, or when IDM discovers a change on a system resource. There are various synchronization
mechanisms that ensure data consistency.

Types of Synchronization
• IDM discovers and synchronizes changes from external resources by using reconciliation and

liveSync.

• IDM synchronizes changes made to managed resources by using reconciliation and implicit
synchronization.

Reconciliation

Reconciliation is the process of ensuring that the objects in two different data stores are
consistent. Traditionally, reconciliation applies mainly to user objects, but IDM can reconcile any
objects, such as groups, roles, and devices.

In any reconciliation operation, there is a source system (the system that contains the changes)
and a target system (the system to which the changes will be propagated). The source and target
system are defined in a mapping. The IDM repository can be either the source or the target in a
mapping. You can configure multiple mappings for one IDM instance, depending on the external
resources to which you are connecting.

To perform reconciliation, IDM analyzes both the source system and the target system, to
discover the differences between them. Reconciliation can therefore be a heavyweight process.
When working with large data sets, finding all changes can be more work than processing the
changes.

Reconciliation is, however, thorough. It recognizes system error conditions and catches changes
that might be missed by liveSync, and therefore serves as the basis for compliance and reporting.

Synchronization Overview
Overview of the Synchronization Configuration

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

LiveSync

LiveSync captures the changes that occur on an external system, and pushes those changes to
IDM. IDM uses any defined mappings to replay those changes where they are required—to its
managed objects, to another remote system, or to both. Unlike reconciliation, liveSync uses a
polling system, and is intended to react quickly to changes as they happen.

To perform this polling, liveSync relies on a change detection mechanism on the external
resource to determine which objects have changed. The change detection mechanism is specific
to the external resource, and can be a time stamp, a sequence number, a change vector, or any
other method of recording changes that have occurred on the system. For example, ForgeRock
Directory Services (DS) implements a change log that provides IDM with a list of objects that
have changed since the last request. Active Directory implements a change sequence number,
and certain databases might have a lastChange attribute.

Implicit synchronization

Implicit synchronization automatically pushes changes that are made to IDM managed objects out
to external systems.

For direct changes to managed objects, IDM immediately synchronizes those changes to all
mappings configured to use those objects as their source. A direct change can originate not only
as a write request through the REST interface, but also as an update resulting from reconciliation
with another resource.

Note that implicit synchronization only synchronizes changed objects to external resources. To
synchronize a complete data set, you must run a reconciliation operation. The entire changed
object is synchronized. If you want to synchronize only the attributes that have changed, you can
modify the onUpdate script in your mapping to compare attribute values before pushing changes.

Overview of the Synchronization Configuration
This section describes the high-level steps required to set up synchronization between two resources.
A basic synchronization configuration involves the following steps:

1. Set up a connection between the source and target resource.

A connector configuration (You can create and change connector configurations over REST at the /openidm/config/
provisioner.openicf/<connector-name> endpoint, or in files named conf/provisioner.openicf-<connector-name>.json.)

references a specific connector type and indicates the connection details of the external
resource. You must define a connector configuration for each external resource to which you are
connecting.

For more information, see "Configuring Connections Between Resources".

2. Map source objects to target objects.

The mapping configuration (You can manage the mapping configuration over REST at the config/sync endpoint, directly
in the conf/sync.json file, or in individual conf/mapping-<mappingName>.json files.) your project's conf/sync.json file or

Synchronization Overview
Defining Your Data Mapping Model

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

in individual mapping files. Mappings are synchronized in the order in which they are specified in
the sync.json file. If there are multiple mapping files, the syncAfter property dictates the order in
which they are processed.

For more information, see "Mapping Data Between Resources".

3. Configure any scripts that are required to check source and target objects, and to manipulate
attributes.

4. In addition to these configuration elements, IDM stores a links table in its repository. The links
table maintains a record of relationships established between source and target objects.

The following diagram illustrates the high-level synchronization configuration:

Defining Your Data Mapping Model
IDM uses mappings to determine which data to synchronize, and how that data must be
synchronized.

In general, identity management software implements one of the following data models:

• A meta-directory data model, where all data are mirrored in a central repository.

The meta-directory model offers fast access at the risk of getting outdated data.

• A virtual data model, where only a minimum set of attributes are stored centrally, and most are
loaded on demand from the external resources in which they are stored.

The virtual model guarantees fresh data, but pays for that guarantee in terms of performance.

IDM leaves the data model choice up to you. You determine the right trade offs for a particular
deployment. IDM does not hard code any particular schema or set of attributes stored in the
repository. Instead, you define how external system objects map onto managed objects, and IDM
dynamically updates the repository to store the managed object attributes that you configure.

Configuring Connections Between Resources
Configure Connectors in the UI

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

Chapter 2

Configuring Connections Between Resources
A connector lets you transfer data between different resource systems. The connector configuration
works in conjunction with the synchronization mapping and specifies how target object attributes
map to attributes on external objects.

Connector configuration files are stored in your project's conf directory, and are named
provisioner.resource-name.json, where resource-name reflects the connector technology and the
external resource. For example, openicf-csv. Connector configurations are described in detail in the
Connectors Guide.

You can create and modify connector configurations in the following ways:

• "Configure Connectors in the UI"

• "Edit Connector Configuration Files"

• "Configure Connectors Over REST"

Configure Connectors in the UI
The easiest way to set up and modify connector configurations is to use the UI:

1. Log in to the UI as an administrative user. The default administrative username and password is
openidm-admin and openidm-admin.

2. Select Configure > Connectors.

3. Select the connector that you want to modify (if there is an existing connector configuration) or
click New Connector to set up a new connector configuration.

Edit Connector Configuration Files
A number of sample provisioner files are provided in path/to/openidm/samples/example-configurations/
provisioners. To modify connector configuration files directly, edit one of the sample provisioner files
that corresponds to the resource to which you are connecting.

The following excerpt of an example LDAP connector configuration shows the attributes of an
account object type. In the attribute mapping definitions, the attribute name is mapped from the IDM

Configuring Connections Between Resources
Configure Connectors Over REST

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

managed object to the nativeName (the attribute name used on the external resource). The lastName
attribute in IDM is mapped to the sn attribute in LDAP. The homePhone attribute is defined as an array,
because it can have multiple values:
{
 ...
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

For IDM to access external resource objects and attributes, the object and its attributes must match
the connector configuration. Note that the connector file only maps IDM managed objects and
attributes to their counterparts on the external resource. To construct attributes and to manipulate
their values, you use a synchronization mapping, described in "Mapping Data Between Resources".

Configure Connectors Over REST
Create connector configurations over REST with the createCoreConfig and createFullConfig actions. For
more information, see "Configure Connectors Over REST" in the Connectors Guide.

Mapping Data Between Resources

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

Chapter 3

Mapping Data Between Resources
A synchronization mapping specifies a relationship between objects and their attributes in two data
stores. The following example shows a typical attribute mapping, between objects in an external
LDAP directory and an IDM managed user data store:
"source": "lastName",
"target": "sn"

In this case, the lastName source attribute is mapped to the sn (surname) attribute in the target LDAP
directory.

The core synchronization configuration is defined in the mapping configuration (You can manage the
mapping configuration over REST at the config/sync endpoint, directly in the conf/sync.json file, or in individual conf/mapping-
<mappingName>.json files.).

You can define a single file with all your mappings (conf/sync.json) or a separate file per
mapping. Individual mapping files are named mapping-mappingName.json; for example, mapping-
managedUser_systemCsvfileAccounts.json. Individual mapping files can be useful if your deployment
includes a large number of mappings that are difficult to manage in a single file. You can also use a
combination of individual mapping files and a monolithic sync.json file, particularly if you are adding
mappings to an existing deployment.

If you use a single sync.json file, mappings are processed in the order in which they appear within that
file. If you use multiple mapping files, mappings are processed according to the syncAfter property in
the mapping. The following example indicates that this particular mapping must be processed after
the managedUser_systemCsvfileAccount mapping:

 "source" : "managed/user",
 "target" : "system/csvfile/account",
 "syncAfter" : ["managedUser_systemCsvfileAccount"],

If you use a combination of sync.json and individual mapping files, the synchronization engine
processes the mappings in sync.json first (in order), and then any mappings specified in the individual
mapping files, according to the syncAfter property in each mapping.

For a list of all mappings, regardless of how they are configured, use the following call:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/mappings?_queryFilter=true"

Mapping Data Between Resources
Configure a Resource Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

This call returns the mappings in the order in which they will be processed.

Note

The Admin UI only shows the mappings configured in the sync.json file. Do not use the Admin UI to add or
change mappings in individual mapping files.

Mappings are always defined from a source resource to a target resource. To configure bidirectional
synchronization, you must define two mappings. For example, to configure bidirectional
synchronization between an LDAP server and an IDM repository, you would define the following two
mappings:

• LDAP Server > IDM Repository

• IDM Repository > LDAP Server

Bidirectional mappings can include a links property that lets you reuse the links established between
objects, for both mappings. For more information, see "Reuse Links Between Mappings".

You can update a mapping while the server is running. To avoid inconsistencies between data stores,
do not update a mapping while a reconciliation is in progress for that mapping.

Configure a Resource Mapping
Objects in external resources are specified in a mapping as system/name/object-type, where name
is the name used in the connector configuration (You can create and change connector configurations over REST
at the /openidm/config/provisioner.openicf/<connector-name> endpoint, or in files named conf/provisioner.openicf-<connector-
name>.json.), and object-type is the object defined in the connector configuration (You can create and change
connector configurations over REST at the /openidm/config/provisioner.openicf/<connector-name> endpoint, or in files named conf/
provisioner.openicf-<connector-name>.json.) list of object types. Objects in the repository are specified in the
mapping as managed/object-type, where object-type is defined in the managed object configuration (You
can edit the managed object configuration over REST at the config/managed endpoint, or directly in the conf/managed.json file.).

External resources, and IDM managed objects, can be the source or the target in a mapping.
By convention, the mapping name is a string of the form source_target, as shown in the following
example:

+ Basic LDAP Mapping

{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "lastName",
 "target": "sn"

Mapping Data Between Resources
Configure a Resource Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

 },
 {
 "source": "telephoneNumber",
 "target": "telephoneNumber"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "source": "email",
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
 },
 {
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
 },
 {
 "source" : "uid",
 "target" : "userName",
 "condition" : "/linkQualifier eq \"user\""
 }
 },
]
 }
]
}

In this example, the name of the source is the external resource (ldap), and the target is IDM's user
repository; specifically, managed/user. The properties defined in the mapping correspond to attribute
names that are defined in the IDM configuration. For example, the source attribute uid is defined in
the ldap connector configuration file, rather than on the external resource itself.

Individual mapping files do not include a name property. The mapping name is taken from the file
name. For example, the mapping shown in Basic LDAP Mapping would be in a file named mapping-
systemLdapAccounts_managedUser.json and would start as follows:
{
 "source": "system/ldap/account",
 "target": "managed/user",
 ...
}

Configure Mappings in the UI

To set up a synchronization mapping in the Admin UI:

Mapping Data Between Resources
Remove a Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

1. Select Configure > Mappings.

2. Click New Mapping, then select a source and target resource from the configured resources at
the bottom of the window.

You can filter these resources to display only connector configurations or managed objects.

3. Select Add property on the Attributes Grid to map a target property to its corresponding source
property.

The Property list shows all configured properties on the target resource. If the target resource
is specified in a connector configuration, the Property list shows all properties configured for
this connector. If the target resource is a managed object, the Property list shows the list of
properties (defined in the managed object configuration (You can edit the managed object configuration over
REST at the config/managed endpoint, or directly in the conf/managed.json file.) for that object).

Tip

• Select Add Missing Required Properties to add all the properties that are configured as required on the
target resource. You can then map these required properties individually.

• Select Quick Mapping to show all source and target properties simultaneously. Drag a source property
onto its corresponding target property, or the inverse.

Select Save to complete the quick mapping.

4. To test your mapping configuration on a single source entry, select the Behaviors tab and scroll
down to Single Record Reconciliation. Search for the entry you want to reconcile.

The UI displays a preview of the target entry after a reconciliation. You can then select Reconcile
Selected Record to actually perform the reconciliation on that one source entry.

Remove a Mapping
To remove a mapping, simply delete the corresponding section in your mapping configuration (You
can manage the mapping configuration over REST at the config/sync endpoint, directly in the conf/sync.json file, or in individual conf/
mapping-<mappingName>.json files.). If you have configured mappings in individual mapping files, delete the
file associated with the mapping you want to remove.

To remove a mapping through the Admin UI, select Configure > Mappings, then click Delete under
the mapping you want to remove.

Mapping Data Between Resources
Transform Attributes in a Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

Note

If you delete the mapping in the Admin UI, the UI delete-mapping-links removes all links related to that
mapping from the repository. If you delete the mapping directly in the configuration file, no links are deleted in
the repository.

Transform Attributes in a Mapping
Use a mapping to define attribute transformations during synchronization. In the following sample
mapping excerpt, the value of the displayName attribute on the target is set using a combination of the
lastName and firstName attribute values from the source:
{
 "source": "",
 "target": "displayName",
 "transform": {
 "type": "text/javascript",
 "source": "source.lastName +', ' + source.firstName;"
 }
},

For transformations, the source property is optional. However, a source object is only available if you
specify the source property. Therefore, in order to use source.lastName and source.firstName to calculate
the displayName, the example specifies "source" : "".

If you set "source" : "" (not specifying an attribute), the entire object is regarded as the source, and
you must include the attribute name in the transformation script. For example, to transform the
source username to lowercase, your script would be source.mail.toLowerCase();. If you do specify a
source attribute (for example, "source" : "mail"), just that attribute is regarded as the source. In this
case, the transformation script would be source.toLowerCase();.

Configure Attribute Transformation in the UI

1. Select Configure > Mappings, and select the Mapping.

2. Select the line with the target attribute whose value you want to set.

3. On the Transformation Script tab, select Javascript or Groovy, and enter the transformation as an
Inline Script, or specify the path to the file containing your transformation script.

When you use the UI to map a property whose value is encrypted, you are prompted to set up a
transformation script to decrypt the value when that property is synchronized. The resulting mapping
looks similar to the following, which shows the transformation of a user's password property:

Mapping Data Between Resources
Use Scriptable Conditions in a Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

{
 "target" : "userPassword",
 "source" : "password",
 "transform" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "openidm.decrypt(source);"
 },
 "condition" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "object.password != null"
 }
}

Use Scriptable Conditions in a Mapping
By default, IDM synchronizes all attributes in a mapping. For more complex relationships between
source and target objects, you can define conditions under which IDM maps certain attributes. You
can define two types of mapping conditions:

• Scriptable conditions, in which an attribute is mapped only if the defined script evaluates to true.

• Condition filters, a declarative filter that sets the conditions under which the attribute is mapped.
Condition filters can include a link qualifier, that identifies the type of relationship between the
source object and multiple target objects. For more information, see "Map a Single Source Object
to Multiple Target Objects".

The following list shows examples of condition filters:

• "condition": "/object/country eq 'France'" - only map the attribute if the object's country attribute
equals France.

• "condition": "/object/password pr" - only map the attribute if the object's password attribute is
present.

• "condition": "/linkQualifier eq 'admin'" - only map the attribute if the link between this source and
target object is of type admin.

Configure Mapping Conditions in the UI

1. Select Configure > Mappings and click the mapping for which you want to configure conditions.

2. On the Properties tab, click on the attribute that you want to map, then select the Conditional
Updates tab.

3. Configure a filtered condition on the Condition Filter tab, or a scriptable condition on the Script
tab.

Mapping Data Between Resources
Create Default Attributes in a Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

Scriptable conditions create mapping logic, based on the result of the condition script. If the
script does not return true, IDM does not manipulate the target attribute during a synchronization
operation.

In the following excerpt, the value of the target mail attribute is set to the value of the source email
attribute only if the source attribute is not empty:
{
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(object.email != null)"
 }
...

Tip

You can add comments to JSON files. This example includes a property named comment; however, you can use
any unique property name, as long as it is not used elsewhere in the server. IDM ignores unknown property
names in JSON configuration files.

Create Default Attributes in a Mapping
You can use a mapping to create attributes on the target resource. The following mapping excerpt
creates a phoneExtension attribute with a default value of 0047 on the target object:
{
 "target": "phoneExtension",
 "default": "0047"
},

The default property specifies a value to assign to the attribute on the target object. Before IDM
determines the value of the target attribute, it evaluates any applicable conditions, followed by any
transformation scripts. If the source property and the transform script yield a null value, IDM applies
the default value in the create and update actions. The default value overrides the target value, if one
exists.

Configure Default Attribute Values in the UI

1. Select Configure > Mappings, and click on the Mapping you want to edit.

2. Click on the Target Property that you want to create (phoneExtension in the previous example),
select the Default Values tab, and enter a default value for that property mapping.

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

Map a Single Source Object to Multiple Target Objects
In certain cases, you might have a single object in a resource that maps to more than one object
in another resource. For example, assume that managed user, bjensen, has two distinct accounts
in an LDAP directory: an employee account (under uid=bjensen,ou=employees,dc=example,dc=com) and a
customer account (under uid=bjensen,ou=customers,dc=example,dc=com). You want to map both of these
LDAP accounts to the same managed user account.

IDM uses link qualifiers to manage this one-to-many scenario. A link qualifier is essentially a label
that identifies the type of link (or relationship) between objects.

The following diagram shows two link qualifiers that let you link both of bjensen's LDAP accounts to
her managed user object:

Note from this diagram that the link qualifier is a property of the link between the source and target
object, and not a property of the source or target object itself.

Link qualifiers are defined as part of the mapping. Each link qualifier must be unique within the
mapping. If no link qualifier is specified (when only one possible matching target object exists), IDM
uses a default link qualifier with the value default.

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

Link qualifiers can be defined as a static list, or dynamically, using a script. The following excerpt of
a sample mapping shows the two static link qualifiers, employee and customer, described in the previous
example:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : ["employee", "customer"],
...

The list of static link qualifiers is evaluated for every source record. That is, every reconciliation
processes all synchronization operations, for each link qualifier, in turn.

A dynamic link qualifier script returns a list of link qualifiers that can be applied to each source
record. For example, suppose you have two types of managed users—employees and contractors. For
employees, a single managed user (source) account can correlate with three different LDAP (target)
accounts—employee, customer, and manager. For contractors, a single managed user account can
correlate with only two separate LDAP accounts—contractor, and customer. The possible linking
situations for this scenario are shown in the following diagram:

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

In this scenario, you could write a script to generate a dynamic list of link qualifiers, based on the
managed user type. For employees, the script would return [employee, customer, manager] in its list of
possible link qualifiers. For contractors, the script would return [contractor, customer] in its list of
possible link qualifiers. A reconciliation operation would then process only the list of link qualifiers
applicable to each source object.

If your source resource includes a large number of records, you should use a dynamic link qualifier
script instead of a static list of link qualifiers. Generating the list of applicable link qualifiers
dynamically avoids unnecessary additional processing for those qualifiers that will never apply to
specific source records. Synchronization performance is therefore improved for large source data
sets.

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

You can include a dynamic link qualifier script inline (using the source property), or by referencing a
JavaScript or Groovy script file (using the file property). The following link qualifier script sets up the
dynamic link qualifier lists described in the previous example.

Note

In this example, the source property value has been formatted across multiple lines for clarity. In general, the
script source must be formatted on a single line.

{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (returnAll) {
 ['contractor', 'employee', 'customer', 'manager']
 } else {
 if(object.type === 'employee') {
 ['employee', 'customer', 'manager']
 } else {
 ['contractor', 'customer']
 }
 }"
 }
...

To reference an external link qualifier script, provide a link to the file in the file property:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "linkQualifiers" : {
 "type" : "text/javascript",
 "file" : "script/linkQualifiers.js"
 }
...

Dynamic link qualifier scripts must return all valid link qualifiers when the returnAll global variable is
true. The returnAll variable is used during the target reconciliation phase to check whether there are
any target records that are unassigned, for each known link qualifier.

If you configure dynamic link qualifiers through the UI, the complete list of dynamic link qualifiers
is displayed in the Generated Link Qualifiers item below the script. This list represents the values
returned by the script when the returnAll variable is passed as true. For a list of the variables
available to a dynamic link qualifier script, see "Script Triggers Defined in Mappings" in the Scripting
Guide.

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

Link qualifiers have no functionality on their own, but they can be referenced in reconciliation
operations to manage situations where a single source object maps to multiple target objects. The
following examples show how link qualifiers can be used in reconciliation operations:

• Use link qualifiers during object creation, to create multiple target objects per source object.

The following mapping excerpt defines a transformation script that generates the value of the
dn attribute on an LDAP system. If the link qualifier is employee, the value of the target dn is set to
"uid=userName,ou=employees,dc=example,dc=com". If the link qualifier is customer, the value of the target dn
is set to "uid=userName,ou=customers,dc=example,dc=com". The reconciliation operation iterates through
the link qualifiers for each source record. In this case, two LDAP objects, with different dns are
created for each managed user object:
{
 "target" : "dn",
 "transform" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (linkQualifier === 'employee')
 { 'uid=' + source.userName + ',ou=employees,dc=example,dc=com'; }
 else
 if (linkQualifier === 'customer')
 { 'uid=' + source.userName + ',ou=customers,dc=example,dc=com'; }"
 },
 "source" : ""
}

• Use link qualifiers with correlation queries. The correlation query assigns a link qualifier based on
the values of an existing target object.

During source synchronization, IDM queries the target system for every source record and link
qualifier, to check if there are any matching target records. If a match is found, the sourceId,
targetId, and linkQualifier are all saved as the link.

The following excerpt of a sample mapping shows the two link qualifiers described previously
(employee and customer). The correlation query first searches the target system for the employee link
qualifier. If a target object matches the query, based on the value of its dn attribute, IDM creates
a link between the source object and that target object, and assigns the employee link qualifier to
that link. This process is repeated for all source records. Then, the correlation query searches the
target system for the customer link qualifier. If a target object matches that query, IDM creates a link
between the source object and that target object and assigns the customer link qualifier to that link:

Mapping Data Between Resources
Map a Single Source Object to Multiple Target Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

"linkQualifiers" : ["employee", "customer"],
 "correlationQuery" : [
 {
 "linkQualifier" : "employee",
 "type" : "text/javascript",
 "source" : "var query = {'_queryFilter': 'dn co \"' + uid=source.userName + 'ou=employees\"'};
 query;"
 },
 {
 "linkQualifier" : "customer",
 "type" : "text/javascript",
 "source" : "var query = {'_queryFilter': 'dn co \"' + uid=source.userName + 'ou=customers\"'};
 query;"
 }
]
...

For more information about correlation queries, see "Writing Correlation Queries".

• Use link qualifiers during policy validation to apply different policies based on the link type.

The following excerpt of a sample mapping shows two link qualifiers, user and test. Depending on
the link qualifier, different actions are taken when the target record is ABSENT:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "linkQualifiers" : [
 "user",
 "test"
],
 "properties" : [
 ...
 "policies" : [
 {
 "situation" : "CONFIRMED",
 "action" : "IGNORE"
 },
 {
 "situation" : "FOUND",
 "action" : "UPDATE
 }
 {
 "condition" : "/linkQualifier eq \"user\"",
 "situation" : "ABSENT",
 "action" : "CREATE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Created user: \');"
 }
 },
 {
 "condition" : "/linkQualifier eq \"test\"",
 "situation" : "ABSENT",

Mapping Data Between Resources
Prevent the Accidental Deletion of a Target System

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

 "action" : "IGNORE",
 "postAction" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('Ignored user: ');"
 }
 },
 ...

With this sample mapping, the synchronization operation creates an object in the target system
only if the potential match is assigned a user link qualifier. If the match is assigned a test qualifier,
no target object is created. In this way, the process avoids creating duplicate test-related accounts
in the target system.

Configure Link Qualifiers in the UI

1. Select Configure > Mappings.

2. Select a mapping, and click Properties > Link Qualifiers.

For an example that uses link qualifiers in conjunction with roles, see "Link Multiple Accounts to a
Single Identity" in the Samples Guide.

Prevent the Accidental Deletion of a Target System
If a source resource is empty, the default behavior is to exit without failure and to log a warning
similar to the following:
[318] Feb 19, 2020 1:51:56.455 PM org.forgerock.openidm.sync.NonClusteredRecon dispatchRecon
WARNING: Cannot reconcile from an empty data source, unless allowEmptySourceSet is true.

The reconciliation summary is also logged in the reconciliation audit log.

This behavior prevents reconciliation operations from accidentally deleting everything in a target
resource. In the event that a source system is unavailable but erroneously reports its status as up, the
absence of source objects should not result in objects being removed on the target resource.

If you do want reconciliations of an empty source resource to proceed, override the default behavior
by setting the allowEmptySourceSet property to true in the mapping. For example:
{
 "mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "allowEmptySourceSet" : true,
 ...

When an empty source is reconciled, the data in the target is wiped out.

Mapping Data Between Resources
Use Scripts in Mappings

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

Prevent Accidental Target Deletion in the Admin UI

1. Select Configure > Mappings and select the mapping that you want to change.

2. On the Advanced tab, enable Allow Reconciliations From an Empty Source.

Use Scripts in Mappings
You can use a number of script hooks to manipulate objects and attributes during synchronization.
Scripts can be triggered during various stages of the synchronization process, and are defined as part
of the mapping.

You can trigger a script when a managed or system object is created (onCreate), updated (onUpdate), or
deleted (onDelete). You can also trigger a script when a link is created (onLink) or removed (onUnlink).

In the default synchronization mapping, changes are always written to target objects, not to source
objects. However, you can explicitly include a call to an action that should be taken on the source
object within the script.

Construct and Manipulate Attributes With Scripts

The most common use of synchronization scripts is when a target object is created or updated.

The onUpdate script is always called for an UPDATE situation, even if the synchronization process
determines that there is no difference between the source and target objects, and that the target
object will not be updated.

If the onUpdate script has run and the synchronization process then determines that the target value to
set is the same as its existing value, the change is prevented from synchronizing to the target.

The following excerpt of a sample mapping derives a DN for an LDAP entry when the corresponding
managed entry is created:
{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

Perform Other Actions With Scripts

"Construct and Manipulate Attributes With Scripts" shows how to manipulate attributes with
scripts when objects are created and updated. You can also trigger scripts in response to other
synchronization actions. For example, you might not want to delete a managed user directly

Mapping Data Between Resources
Perform Other Actions With Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

when an external account is deleted, but instead unlink the objects and deactivate the user in
another resource. Alternatively, you might delete the object in IDM and run a script to peform some
subsequent action.

The following example shows a more advanced mapping configuration that exposes the script hooks
available during synchronization:
 1 {
 2 "mappings": [
 3 {
 4 "name": "systemLdapAccount_managedUser",
 5 "source": "system/ldap/account",
 6 "target": "managed/user",
 7 "validSource": {
 8 "type": "text/javascript",
 9 "file": "script/isValid.js"
 10 },
 11 "correlationQuery" : {
 12 "type" : "text/javascript",
 13 "source" : "var map = {'_queryFilter': 'uid eq \"' +
 14 source.userName + '\"'}; map;"
 15 },
 16 "properties": [
 17 {
 18 "source": "uid",
 19 "transform": {
 20 "type": "text/javascript",
 21 "source": "source.toLowerCase()"
 22 },
 23 "target": "userName"
 24 },
 25 {
 26 "source": "",
 27 "transform": {
 28 "type": "text/javascript",
 29 "source": "if (source.myGivenName)
 30 {source.myGivenName;} else {source.givenName;}"
 31 },
 32 "target": "givenName"
 33 },
 34 {
 35 "source": "",
 36 "transform": {
 37 "type": "text/javascript",
 38 "source": "if (source.mySn)
 39 {source.mySn;} else {source.sn;}"
 40 },
 41 "target": "familyName"
 42 },
 43 {
 44 "source": "cn",
 45 "target": "fullname"
 46 },
 47 {
 48 "condition": {
 49 "type": "text/javascript",
 50 "source": "var clearObj = openidm.decrypt(object);
 51 ((clearObj.password != null) &&

Mapping Data Between Resources
Perform Other Actions With Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

 52 (clearObj.ldapPassword != clearObj.password))"
 53 },
 54 "transform": {
 55 "type": "text/javascript",
 56 "source": "source.password"
 57 },
 58 "target": "__PASSWORD__"
 59 }
 60],
 61 "onCreate": {
 62 "type": "text/javascript",
 63 "source": "target.ldapPassword = null;
 64 target.adPassword = null;
 65 target.password = null;
 66 target.ldapStatus = 'New Account'"
 67 },
 68 "onUpdate": {
 69 "type": "text/javascript",
 70 "source": "target.ldapStatus = 'OLD'"
 71 },
 72 "onUnlink": {
 73 "type": "text/javascript",
 74 "file": "script/triggerAdDisable.js"
 75 },
 76 "policies": [
 77 {
 78 "situation": "CONFIRMED",
 79 "action": "UPDATE"
 80 },
 81 {
 82 "situation": "FOUND",
 83 "action": "UPDATE"
 84 },
 85 {
 86 "situation": "ABSENT",
 87 "action": "CREATE"
 88 },
 89 {
 90 "situation": "AMBIGUOUS",
 91 "action": "EXCEPTION"
 92 },
 93 {
 94 "situation": "MISSING",
 95 "action": "EXCEPTION"
 96 },
 97 {
 98 "situation": "UNQUALIFIED",
 99 "action": "UNLINK"
100 },
101 {
102 "situation": "UNASSIGNED",
103 "action": "EXCEPTION"
104 }
105]
106 }
107]
108 }

Mapping Data Between Resources
Perform Other Actions With Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

The following list shows the properties that you can use as hooks in mapping configurations to call
scripts:

Triggered by Situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object Filter

validSource, validTarget

Correlating Objects

correlationQuery

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Scripts can obtain data from any connected system by using the openidm.read(id) function, where id is
the identifier of the object to read.

The following example reads a managed user object from the repository:
repoUser = openidm.read("managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb");

The following example reads an account from an external LDAP resource:
externalAccount = openidm.read("system/ldap/account/uid=bjensen,ou=People,dc=example,dc=com");

Important

For illustration purposes, this query targets a DN rather than a UID as it did in the previous example. The
attribute that is used for the _id is defined in the connector configuration and, in this example, is set to
"uidAttribute" : "dn". Although you can use a DN (or any unique attribute) for the _id, it is a best practice to
use an attribute that is both unique and immutable, such as the entryUUID.

Use Scripts to Generate Log Messages

IDM provides a logger object that you can use from scripts defined in your mapping. These scripts can
log messages to the OSGi console and to log files. The logger object includes the following functions:

• debug()

• error()

• info()

• trace()

Mapping Data Between Resources
Perform Other Actions With Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

• warn()

Consider the following mapping excerpt:
{
 "mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "target" : "managed/user",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var query = {'_queryId' : 'for-userName', 'uid' : source.name};query;"
 },
 "onCreate" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case onCreate: the source object contains: = {} ', source);
 source;"
 },
 "onUpdate" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case onUpdate: the source object contains: = {} ', source);
 source;"
 },
 "result" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case result: the source object contains: = {} ', source);
 source;"
 },
 "properties" : [
 {
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case no Source: the source object contains: = {} ',
 source); source;"
 },
 "target" : "sourceTest1Nosource"
 },
 {
 "source" : "",
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case emptySource: the source object contains: = {} ',
 source); source;"
 },
 "target" : "sourceTestEmptySource"
 },
 {
 "source" : "description",
 "transform" : {
 "type" : "text/javascript",
 "source" : "logger.warn('Case sourceDescription: the source object contains: = {}
 ', source); source"
 },
 "target" : "sourceTestDescription"
 },
 ...
]
 }

Mapping Data Between Resources
Reuse Links Between Mappings

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

]
}

The scripts that are defined for onCreate, onUpdate, and result log a warning message to the console
whenever an object is created or updated, or when a result is returned. The script result includes the
full source object.

The scripts that are defined in the properties section of the mapping log a warning message if the
property in the source object is missing or empty. The last script logs a warning message that
includes the description of the source object.

During a reconciliation operation, these scripts would generate output in the OSGi console, similar to
the following:

 2017-02... WARN Case no Source: the source object contains: = null [9A00348661C6790E7881A7170F747F...]
 2017-02... WARN Case emptySource: the source object contains: = {roles=openidm-..., lastname=Jensen...]
 2017-02... WARN Case no Source: the source object contains: = null [9A00348661C6790E7881A7170F747F...]
 2017-02... WARN Case emptySource: the source object contains: = {roles=openidm..., lastname=Carter,...]
 2017-02... WARN Case sourceDescription: the source object contains: = null [EEE2FF4BCE9748927A1832...]
 2017-02... WARN Case sourceDescription: the source object contains: = null [EEE2FF4BCE9748927A1832...]
 2017-02... WARN Case onCreate: the source object contains: = {roles=openidm-..., lastname=Carter, ...]
 2017-02... WARN Case onCreate: the source object contains: = {roles=openidm-..., lastname=Jensen, ...]
 2017-02... WARN Case result: the source object contains: = {SOURCE_IGNORED={count=0, ids=[]},
 FOUND_ALL...]

You can use similar scripts to inject logging into any aspect of a mapping. You can also call the logger
functions from any configuration file that has scripts hooks. For more information about the logger
functions, see "Log Functions" in the Scripting Guide.

Reuse Links Between Mappings
When two mappings synchronize the same objects bidirectionally, use the links property in one
mapping to have IDM use the same link for both mappings. If you do not specify a links property, IDM
maintains a separate link for each mapping.

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and
another from managed users to MyLDAP accounts. In the second mapping, the link property indicates
that IDM should reuse the links created in the first mapping, rather than create new links:

Mapping Data Between Resources
Reconcile With Case-Insensitive Data Stores

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

Reconcile With Case-Insensitive Data Stores
IDM is case-sensitive, which means that an uppercase ID is considered different from an otherwise
identical lowercase ID during reconciliation. Some data stores, such as ForgeRock Directory Services
(DS), are case-insensitive. This can be problematic during reconciliation, because the ID of the links
created by reconciliation might not match the case of the IDs expected by IDM.

If a mapping inherits links by using the links property, you do not need to worry about case-
sensitivity, because the mapping uses the setting of the referred links.

Alternatively, you can address case-sensitivity issues with target systems in the following ways:

• Specify a case-insensitive data store. To do so, set the sourceIdsCaseSensitive or targetIdsCaseSensitive
properties to false in the mapping for those links. For example, if the source LDAP data store is
case-insensitive, set the mapping from the LDAP store to the managed user repository as follows:
"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "sourceIdsCaseSensitive" : false,
 "target" : "managed/user",
 "properties" : [
 ...

You might also need to modify the connector configuration (You can create and change connector configurations
over REST at the /openidm/config/provisioner.openicf/<connector-name> endpoint, or in files named conf/provisioner.openicf-
<connector-name>.json.), setting the enableFilteredResultsHandler property to false:
"resultsHandlerConfig" :
{
 "enableFilteredResultsHandler":false
},

Mapping Data Between Resources
Reconcile With Case-Insensitive Data Stores

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

Caution

Do not disable the filtered results handler for the CSV file connector. The CSV file connector does not
perform filtering. Therefore, if you disable the filtered results handler for this connector, the full CSV file will
be returned for every request.

• Use a case-insensitive option in your managed repository. For example, for a MySQL repository,
change the collation of managedobjectproperties.propvalue to utf8_general_ci. For more information, see
"Configure Case Insensitivity for a JDBC Repo" in the Installation Guide.

In general, to address case-sensitivity, focus on database-, table-, or column-level collation settings.
Queries performed against repositories configured in this way are subject to the collation, and are
used for comparison.

Synchronization Situations and Actions

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

Chapter 4

Synchronization Situations and Actions
The synchronization process assesses source and target objects, and the links between them, and
then determines the synchronization situation that applies to each object. The process then performs
a specific action, usually on the target object, depending on the assessed situation.

The action that is taken for each situation is defined in the policies section of your synchronization
mapping.

The following excerpt of a sample mapping shows the defined actions in that sample:
{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "LINK"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {
 "situation": "SOURCE_MISSING",
 "action": "DELETE"
 },
 {
 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
}

Synchronization Situations and Actions
How Synchronization Situations Are Assessed

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

You can also define these actions in the UI. Select Configure > Mappings, click on the required
Mapping, then select the Behaviors tab to specify different actions per situation.

If you do not define an action for a particular situation, IDM takes the default action for that
situation.

How Synchronization Situations Are Assessed
Reconciliation is performed in two phases:

1. Source reconciliation accounts for source objects and associated links based on the configured
mapping.

2. Target reconciliation iterates over the target objects that were not processed in the first phase.

For example, if a source object was deleted, the source reconciliation phase will not identify the
target object that was previously linked to that source object. Instead, this orphaned target object
is detected during the second phase.

Source Reconciliation

During source reconciliation and liveSync, IDM iterates through the objects in the source resource.
For reconciliation, the list of objects includes all objects that are available through the connector.
For liveSync, the list contains only changed objects. IDM can filter objects from the list by using the
following:

• Scripts specified in the validSource property

• A query specified in the sourceCondition property

• A query specified in the sourceQuery property

For each object in the list, IDM assesses the following conditions:

1. Is the source object valid?

Valid source objects are categorized qualifies=1. Invalid source objects are categorized qualifies=0.
Invalid objects include objects that were filtered out by a validSource script or sourceCondition. For
more information, see "Filter Source and Target Objects With Scripts".

2. Does the source object have a record in the links table?

Source objects that have a corresponding link in the repository's links table are categorized
link=1. Source objects that do not have a corresponding link are categorized link=0.

3. Does the source object have a corresponding valid target object?

Synchronization Situations and Actions
Source Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

Source objects that have a corresponding object in the target resource are categorized target=1.
Source objects that do not have a corresponding object in the target resource are categorized
target=0.

The following diagram illustrates the categorization of four sample objects during source
reconciliation. In this example, the source is the managed user repository and the target is an LDAP
directory:

Object Categorization During the Source Synchronization Phase

Based on the categorizations of source objects during the source reconciliation phase, the
synchronization process assesses a situation for each source object, and executes the action that is
configured for each situation.

Not all situations are detected during all synchronization types (reconciliation, implicit
synchronization, and liveSync). The following table describes the set of synchronization situations
detected during source reconciliation, the default action taken for each situation, and valid
alternative actions that can be configured for each situation:

Situations Detected During Reconciliation and Source Change Events

Source
Qualifies

Link
Exists

Target
Objects
Found

Situation Default Action Possible Actions

 0 SOURCE_IGNORED IGNORE source object EXCEPTION, REPORT,
NOREPORT, ASYNC

 1 UNQUALIFIED DELETE target object
EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

 > 1 UNQUALIFIED DELETE target
objects

EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

 0 UNQUALIFIED DELETE linked target
object a

EXCEPTION, REPORT,
NOREPORT, ASYNC

Synchronization Situations and Actions
Source Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

Source
Qualifies

Link
Exists

Target
Objects
Found

Situation Default Action Possible Actions

 1 UNQUALIFIED DELETE linked target
object

EXCEPTION, REPORT,
NOREPORT, ASYNC

 > 1 UNQUALIFIED DELETE linked target
object

EXCEPTION, REPORT,
NOREPORT, ASYNC

 0 ABSENT CREATE target object
EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

 1 FOUND UPDATE target object
EXCEPTION, IGNORE,
REPORT, NOREPORT,
ASYNC

 1 FOUND_ALREADY_LINKED
b EXCEPTION IGNORE, REPORT,

NOREPORT, ASYNC

 > 1 AMBIGUOUS c EXCEPTION REPORT, NOREPORT,
ASYNC

 0 MISSING d EXCEPTION
CREATE, UNLINK,
DELETE, IGNORE,
REPORT, NOREPORT,
ASYNC

 1 CONFIRMED UPDATE target object IGNORE, REPORT,
NOREPORT, ASYNC

a In this case (and the two following cases), the DELETE action is applied to the linked target object and not necessarily to
the target object(s) found by the correlation query. If the source is no longer valid and a link existed, the correlation logic is
skipped.
b The source object qualifies for a target object and is not linked to an existing target object. There is a single target object that
correlates with this source object, according to the logic in the correlation, but that target object is already linked to a different
source object.
c The source object qualifies for a target object, is not linked to an existing target object, but there is more than one correlated
target object (that is, more than one possible match on the target system).
d If the action is CREATE for the situation MISSING, the orphaned link associated with the source object is updated to point
to the new target object. When a target object is deleted, the link from the target to the corresponding source object is not
deleted automatically. This allows IDM to detect and report items that might have been removed without permission or might
need review. If you need to remove the corresponding link when a target object is deleted, change the action to UNLINK to
remove the link, or to DELETE to remove the target object and the link.

Based on this table, the following situations would be assigned to the previous diagram:

Synchronization Situations and Actions
Target Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

Situation Assignment During the Source Synchronization Phase

Target Reconciliation

During source reconciliation, the synchronization process cannot detect situations where no source
object exists. In this case, the situation is detected during the second reconciliation phase, target
reconciliation.

Target reconciliation iterates through the target objects that were not accounted for during
source reconciliation. The process checks each object against the validTarget filter, determines the
appropriate situation, and executes the action configured for the situation. Target reconciliation
evaluates the following conditions:

1. Is the target object valid?

Valid target objects are categorized qualifies=1. Invalid target objects are categorized qualifies=0.
Invalid objects include objects that were filtered out by a validTarget script. For more information,
see "Filter Source and Target Objects With Scripts".

2. Does the target object have a record in the links table?

Target objects that have a corresponding link in the links table are categorized link=1. Target
objects that do not have a corresponding link are categorized link=0.

3. Does the target object have a corresponding source object?

Target objects that have a corresponding object in the source resource are categorized source=1.
Target objects that do not have a corresponding object in the source resource are categorized
source=0.

The following diagram illustrates the categorization of three sample objects during target
reconciliation:

Synchronization Situations and Actions
Target Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

Object Categorization During the Target Synchronization Phase

Based on the categorizations of target objects during the target reconciliation phase, a situation
is assessed for each remaining target object. Not all situations are detected in all synchronization
types. The following table describes the set of situations that can be detected during the target
reconciliation phase:

Situations Detected During Target Reconciliation

Target
Qualifies

Link
Exists

Source
Exists

Source
Qualifies

Situation Default Action Possible
Actions

 n/a n/a n/a TARGET_IGNORED a IGNORE

DELETE,
UNLINK,
REPORT,
NOREPORT,
ASYNC

 n/a UNASSIGNED EXCEPTION
IGNORE,
REPORT,
NOREPORT,
ASYNC

 CONFIRMED UPDATE target object
IGNORE,
REPORT,
NOREPORT

 UNQUALIFIED b DELETE

UNLINK,
EXCEPTION,
IGNORE,
REPORT,
NOREPORT,
ASYNC

 n/a SOURCE_MISSING c EXCEPTION

DELETE,
UNLINK,
IGNORE,
REPORT,
NOREPORT,
ASYNC

a During target reconciliation, the target becomes unqualified by the validTarget script.

Synchronization Situations and Actions
Situations Specific to Implicit Synchronization and LiveSync

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

b Detected during reconciliation and target change events
c Detected during reconciliation and target change events

Based on this table, the following situations would be assigned to the previous diagram:

Situation Assignment During the Target Synchronization Phase

Situations Specific to Implicit Synchronization and LiveSync

Certain situations occur only during implicit synchronization (when changes made in the repository
are pushed out to external systems) and liveSync (when IDM polls external system change logs for
changes and updates the repository).

The following table shows the situations that pertain only to implicit sync and liveSync, when records
are deleted from the source or target resource.

Situations Detected During Target Reconciliation

Source
Qualifies

Link
Exists

Targets
Found a

Targets
Qualify

Situation Default Action Possible
Actions

n/a 0 n/a LINK_ONLY EXCEPTION
IGNORE,
REPORT,
NOREPORT,
ASYNC

n/a 1 1 SOURCE_MISSING EXCEPTION
IGNORE,
REPORT,
NOREPORT,
ASYNC

n/a 1 0 TARGET_IGNORED IGNORE

DELETE,
UNLINK,
EXCEPTION,
REPORT,
NOREPORT,
ASYNC

n/a 0 n/a ALL_GONE IGNORE EXCEPTION,
REPORT,

Synchronization Situations and Actions
Synchronization Actions

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

Source
Qualifies

Link
Exists

Targets
Found a

Targets
Qualify

Situation Default Action Possible
Actions
NOREPORT,
ASYNC

 0 n/a ALL_GONE IGNORE
EXCEPTION,
REPORT,
NOREPORT,
ASYNC

 1 1 UNASSIGNED EXCEPTION REPORT,
NOREPORT

 > 1 > 1 AMBIGUOUS EXCEPTION
IGNORE,
REPORT,
NOREPORT,
ASYNC

 0 n/a ALL_GONE IGNORE
EXCEPTION,
REPORT,
NOREPORT,
ASYNC

 1 1 TARGET_IGNORED IGNORE target object

DELETE,
UNLINK,
EXCEPTION,
REPORT,
NOREPORT,
ASYNC

 > 1 > 1 UNQUALIFIED DELETE target
objects

EXCEPTION,
IGNORE,
REPORT,
NOREPORT,
ASYNC

a If no link exists for the source object, IDM executes any included correlation logic. If a link exists, correlation does not apply.

Synchronization Actions
When an object has been assigned a situation, the synchronization process takes the configured
action on that object. If no action is configured, the default action for that situation applies.

The following actions can be taken:

CREATE

Create and link a target object.

UPDATE

Link and update a target object.

Synchronization Situations and Actions
Launching a Script As an Action

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

DELETE

Delete and unlink the target object.

LINK

Link the correlated target object.

UNLINK

Unlink the linked target object.

EXCEPTION

Flag the link situation as an exception.

Do not use this action for liveSync mappings.

In the context of liveSync, the EXCEPTION action triggers the liveSync failure handler, and the
operation is retried in accordance with the configured retry policy. This is not useful because the
operation will never succeed. If the configured number of retries is high, these pointless retries
can continue for a long period of time.

If the maximum number of retries is exceeded, the liveSync operation terminates and does
not continue processing the entry that follows the failed (EXCEPTION) entry. LiveSync is only
resumed at the next liveSync polling interval.

This behavior differs from reconciliation, where a failure to synchronize a single source-target
association does not fail the entire reconciliation.

IGNORE

Do not change the link or target object state.

REPORT

Do not perform any action but report what would happen if the default action were performed.

NOREPORT

Do not perform any action or generate any report.

ASYNC

An asynchronous process has been started, so do not perform any action or generate any report.

Launching a Script As an Action

In addition to the static synchronization actions described in "Synchronization Actions", you can
provide a script that is run in specific synchronization situations. The script can be either JavaScript

Synchronization Situations and Actions
Launching a Script As an Action

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

or Groovy. You can specify the script inline (with the "source" property), or reference it from a file,
(with the "file" property).

The following excerpt of a sample mapping specifies that an inline script should be invoked when a
synchronization operation assesses an entry as ABSENT in the target system. The script checks whether
the employeeType property of the corresponding source entry is contractor. If so, the source entry is
ignored. Otherwise, the entry is created on the target system:
{
 "situation" : "ABSENT",
 "action" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (source.employeeType === 'contractor') {action='IGNORE'}
 else {action='CREATE'};action;"
 },
}

Note that the CREATE action updates the target data set automatically. For other actions, you must
call openidm.update explicitly, in the script. For example, if you simply want to update the value of
the description attribute on the target object, and then ignore the object, your script might look as
follows:
"var action = 'IGNORE';
target.description='This entry has been deleted';
openidm.update('system/ldap/account/' + target._id, null, target);
action"

The following variables are available to a script that is called as an action:

source
target
linkQualifier
recon (where recon.actionParam contains information about the current reconciliation operation).

For more information about the variables available to scripts, see "Script Variables" in the Scripting
Guide.

The result obtained from evaluating this script must be a string whose value is one of the
synchronization actions listed in "Synchronization Actions". This resulting action is shown in the
reconciliation log.

To launch a script as a synchronization action in the Admin UI:

1. Select Configure > Mappings.

2. Select the mapping that you want to change.

3. On the Behaviors tab, click the pencil icon next to the situation whose action you want to change.

4. On the Perform this Action tab, click Script, then enter the script that corresponds to the action.

Synchronization Situations and Actions
Launching a Workflow As an Action

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

Launching a Workflow As an Action

The triggerWorkflowFromSync.js script launches a predefined workflow when a synchronization
operation assesses a particular situation. The mechanism for triggering this script is the same as
for any other script. The script is provided in the openidm/bin/defaults/script/workflow directory. If you
customize the script, copy it to the script directory of your project to ensure that your customizations
are preserved during an upgrade.

The parameters for the workflow are passed as properties of the action parameter.

The following extract of a sample mapping specifies that, when a synchronization operation assesses
an entry as ABSENT, the workflow named managedUserApproval is invoked:
{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

To launch a workflow as a synchronization action in the Admin UI:

1. Select Configure > Mappings.

2. Select the mapping that you want to change.

3. On the Behaviors tab, click the pencil icon next to the situation whose action you want to change.

4. On the Perform this Action tab, click Workflow, then enter the details of the workflow you want to
launch.

Correlating Source Objects With Existing Target Objects
Writing Correlation Queries

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

Chapter 5

Correlating Source Objects With Existing
Target Objects
When a synchronization operation creates an object on a target system, it also creates a link between
the source and target object. IDM then uses that link to determine the object's synchronization
situation during later synchronization operations. For a list of synchronization situations, see "How
Synchronization Situations Are Assessed".

Every synchronization operation can correlate existing source and target objects. Correlation
matches source and target objects, based on the results of a query or script, and creates links
between matched objects.

Correlation queries and correlation scripts are configured as part of the mapping. Each query or
script is specific to the mapping for which it is configured.

Configure Correlation Using the Admin UI

1. From the navigation bar, click Configure > Mappings.

2. From the Mappings page, select the mapping to correlate.

3. From the Mapping Detail page, select the Association tab, and expand Association Rules.

4. Expand the Association Rules area, click the drop-down menu, and select one of the following:

• Correlation Queries

• Correlation Script

5. Build and/or write your script or query, and click Save.

Writing Correlation Queries
IDM processes a correlation query by constructing a query map. The content of the query is
generated dynamically, using values from the source object. For each source object, a new query
is sent to the target system, using (possibly transformed) values from the source object for its
execution.

Correlating Source Objects With Existing Target Objects
Using Filtered Queries to Correlate Objects

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

Queries are run against target resources, either managed or system objects, depending on the
mapping. Correlation queries on system objects access the connector, which executes the query on
the external resource.

You express a correlation query using a query filter (_queryFilter). For more information about query
filters, see "Define and Call Data Queries" in the Object Modeling Guide. The synchronization process
executes the correlation query to search through the target system for objects that match the current
source object.

To configure a correlation query, define a script whose source returns a query that uses the _
queryFilter, for example:
{ "_queryFilter" : "uid eq \"" + source.userName + "\"" }

Using Filtered Queries to Correlate Objects

For filtered queries, the script that is defined or referenced in the correlationQuery property must
return an object with the following elements:

• The element that is being compared on the target object; for example, uid.

The element on the target object is not necessarily a single attribute. Your query filter can be
simple or complex; valid query filters range from a single operator to an entire boolean expression
tree.

If the target object is a system object, this attribute must be referred to by its IDM name rather
than its ICF nativeName. For example, with the following provisioner configuration, the attribute to
use in the correlation query would be uid and not __NAME__:
...
 "uid" : {
 "type" : "string",
 "nativeName" : "__NAME__",
 "required" : true,
 "nativeType" : "string"
 }
...

• The value to search for in the query.

This value is generally based on one or more values from the source object. However, it does not
have to match the value of a single source object property. You can define how your script uses the
values from the source object to find a matching record in the target system.

You might use a transformation of a source object property, such as toUpperCase(). You can
concatenate that output with other strings or properties. You can also use this value to call an
external REST endpoint, and redirect the response to the final "value" portion of the query.

The following correlation query matches source and target objects if the value of the uid attribute on
the target is the same as the userName attribute on the source:

Correlating Source Objects With Existing Target Objects
Create Correlation Queries Using the Expression Builder

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

"correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var qry = {'_queryFilter': 'uid eq \"' + source.userName + '\"'}; qry"
},

The query can return zero or more objects. The situation assigned to the source object depends
on the number of target objects that are returned, and on the presence of any link qualifiers in the
query. For information about synchronization situations, see "How Synchronization Situations Are
Assessed". For information about link qualifiers, see "Map a Single Source Object to Multiple Target
Objects".

Create Correlation Queries Using the Expression Builder

The Expression Builder is a wizard that lets you quickly build expressions using drop-down menu
options:

1. From the navigation bar, click Configure > Mappings.

2. On the Mappings page, select the mapping to correlate.

3. From the Mapping Detail page, select the Association tab, and expand Association Rules.

4. Expand the Association Rules area, click the drop-down menu, and select Correlation Queries.

5. Click Add Correlation Query.

6. In the Correlation Query window, click the Link Qualifier drop-down menu, and select a link
qualifier.

If you do not need to correlate multiple potential target objects per source object, select the
default link qualifier. For more information about linking to multiple target objects, see "Map a
Single Source Object to Multiple Target Objects".

7. Select Expression Builder.

8. To create an expression, use the drop-down menus to add and remove items, as necessary. List
the fields to use for matching existing items in your source to items in your target.

The following example displays an Expression Builder correlation query for a mapping from
managed/user to system/ldap/accounts objects. The query creates a match between the source
(managed) object and the target (LDAP) object if the value of the givenName or the telephoneNumber of
those objects is the same.

Correlating Source Objects With Existing Target Objects
Writing Correlation Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

9. After you finish building the expression, click Submit.

10. On the Mapping Detail page, under the Association Rules area, click Save.

The correlation query created in the previous steps displays as follows in the mapping:
"correlationQuery" : [
 {
 "linkQualifier" : "default",
 "expressionTree" : {
 "any" : [
 "givenName",
 "telephoneNumber"
]
 },
 "mapping" : "managedUser_systemLdapAccounts",
 "type" : "text/javascript",
 "file" : "ui/correlateTreeToQueryFilter.js"
 }
]

Writing Correlation Scripts
In general, a correlation query should meet the requirements of most deployments. However, if
you need a more powerful correlation mechanism than a simple query can provide, you can write a
correlation script with additional logic. Correlation scripts can be useful if your query needs extra
processing, such as fuzzy-logic matching or out-of-band verification with a third-party service over
REST. Correlation scripts are generally more complex than correlation queries, and impose no
restrictions on the methods used to find matching objects.

Correlating Source Objects With Existing Target Objects
Writing Correlation Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

A correlation script must execute a query and return the result of that query. The result of a
correlation script is a list of maps, each of which contains a candidate _id value. If no match is found,
the script returns a zero-length list. If exactly one match is found, the script returns a single-element
list. If there are multiple ambiguous matches, the script returns a list with multiple elements. There
is no assumption that the matching target record or records can be found by a simple query on the
target system. All of the work required to find matching records is left to the script.

To invoke a correlation script, use one of the following properties:

correlationQuery

Returns a Map whose values specify the QueryFilter for the sync engine to execute.

correlationScript

Returns a List<Map> whose value is a list of correlated objects from the target.

You can invoke a correlation script inline, or using a script file. For example:
"correlationScript" : {
 "type": "text/javascript",
 "file": "myCustomCorrelationScript.js"
}

"correlationScript" : {
 "type": "text/javascript",
 "source": " var resultData = openidm.query("system/ldap/account", myQuery); return
 resultData.result;"
}

The following example shows a correlation script that uses link qualifiers. The script returns
resultData.result—a list of maps, each of which has an _id entry. These entries will be the values that
are used for correlation.

Correlating Source Objects With Existing Target Objects
Writing Correlation Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

Correlation Script Using Link Qualifiers

(function () {
 var query, resultData;
 switch (linkQualifier) {
 case "test":
 logger.info("linkQualifier = test");
 query = {'_queryFilter': 'uid eq \"' + source.userName + '-test\"'};
 break;
 case "user":
 logger.info("linkQualifier = user");
 query = {'_queryFilter': 'uid eq \"' + source.userName + '\"'};
 break;
 case "default":
 logger.info("linkQualifier = default");
 query = {'_queryFilter': 'uid eq \"' + source.userName + '\"'};
 break;
 default:
 logger.info("No linkQualifier provided.");
 break;
 }
 var resultData = openidm.query("system/ldap/account", query);
 logger.info("found " + resultData.result.length + " results for link qualifier " + linkQualifier)
 for (i=0;i<resultData.result.length;i++) {
 logger.info("found target: " + resultData.result[i]._id);
 }
 return resultData.result;
} ());

Configure a Correlation Script Using the Admin UI

1. From the navigation bar, click Configure > Mappings.

2. On the Mappings page, select the mapping to correlate.

3. From the Mapping Detail page, select the Association tab, and expand Association Rules.

4. Expand the Association Rules area, click the drop-down menu, and select Correlation Script.

5. From the Type drop-down menu, select JavaScript or Groovy.

6. Enter the correlation script:

To use an inline script, select Inline Script, and type the script source.

To use a script file, select File Path, and enter the path to the script.

Tip

To create a correlation script, use the details from the source object to find the matching record in the
target system. If you are using link qualifiers to match a single source record to multiple target records,

Correlating Source Objects With Existing Target Objects
Writing Correlation Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

you must also use the value of the linkQualifier variable within your correlation script to find the target ID
that applies for that qualifier.

7. To save the script as part of the mapping, click Save.

Synchronization Operations Over REST
Manage Reconciliation Over REST

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

Chapter 6

Synchronization Operations Over REST
All synchronization operations can be performed over the REST interface.

Manage Reconciliation Over REST
To trigger, cancel, and monitor reconciliation operations over REST, use the openidm/recon REST
endpoint. Note that you can perform most of these actions through the Admin UI.

Triggering a Reconciliation

The following example triggers a reconciliation operation over REST based on the systemLdapAccounts_
managedUser mapping:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=recon&mapping=systemLdapAccounts_managedUser"

By default, a reconciliation run ID is returned immediately when the reconciliation operation is
initiated. Clients can make subsequent calls to the reconciliation service, using this reconciliation
run ID to query its state, and to call operations on it. For an example, see "Obtaining the Details of a
Reconciliation".

The reconciliation run initiated previously would return something similar to the following:
{
 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "state": "ACTIVE"
}

To complete the reconciliation operation before the reconciliation run ID is returned, set the
waitForCompletion property to true when the reconciliation is initiated:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?
_action=recon&mapping=systemLdapAccounts_managedUser&waitForCompletion=true"

Synchronization Operations Over REST
Canceling a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

Tip

To trigger this reconciliation through the Admin UI, select Configure > Mappings, select a mapping, then select
Reconcile.

If you select Cancel Reconciliation before it is complete, you will need to start the reconciliation again.

Canceling a Reconciliation
You can cancel a reconciliation in progress by specifying the reconciliation run ID. The following
REST call cancels the reconciliation run initiated in the previous section:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon/0890ad62-4738-4a3f-8b8e-f3c83bbf212e?_action=cancel"

The output for a reconciliation cancellation request is similar to the following:
{
 "status":"INITIATED",
 "action":"cancel",
 "_id":"0890ad62-4738-4a3f-8b8e-f3c83bbf212e"
}

If the reconciliation run is waiting for completion before its ID is returned, obtain the reconciliation
run ID from the list of active reconciliations, as described in the following section.

Tip

To cancel a reconciliation run in progress through the UI, select Configure > Mappings, click on the mapping
whose reconciliation you want to cancel, and click Cancel Reconciliation.

Listing a History of Reconciliations
Display a list of reconciliation processes that have completed, and those that are in progress, by
running a RESTful GET on "http://localhost:8080/openidm/recon".

The following example displays all reconciliation runs:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon"

The output is similar to the following, with one item for each reconciliation run:
"reconciliations": [
 {

Synchronization Operations Over REST
Listing a History of Reconciliations

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {
 "source": {
 "existing": {
 "processed": 2,
 "total": "2"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 2,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 2,
 "FAILURE": 0
 },
 "durationSummary": {
 "sourceQuery": {
 "min": 42,
 "max": 42,
 "mean": 42,
 "count": 1,
 "sum": 42,
 "stdDev": 0
 },
 "auditLog": {

Synchronization Operations Over REST
Listing a History of Reconciliations

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 24,
 "sum": 15,
 "stdDev": 0
 },
 "linkQuery": {
 "min": 5,
 "max": 5,
 "mean": 5,
 "count": 1,
 "sum": 5,
 "stdDev": 0
 },
 "targetQuery": {
 "min": 3,
 "max": 3,
 "mean": 3,
 "count": 1,
 "sum": 3,
 "stdDev": 0
 },
 "targetPhase": {
 "min": 0,
 "max": 0,
 "mean": 0,
 "count": 1,
 "sum": 0,
 "stdDev": 0
 },
 "sourceObjectQuery": {
 "min": 6,
 "max": 34,
 "mean": 21,
 "count": 22,
 "sum": 474,
 "stdDev": 9
 },
 "postMappingScript": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 22,
 "sum": 17,
 "stdDev": 0
 },
 "defaultMappingScript": {
 "min": 0,
 "max": 4,
 "mean": 2,
 "count": 22,
 "sum": 48,
 "stdDev": 2
 },
 "sourcePhase": {
 "min": 490,
 "max": 490,
 "mean": 490,

Synchronization Operations Over REST
Listing a History of Reconciliations

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

 "count": 1,
 "sum": 490,
 "stdDev": 0
 }
 },
 "parameters": {
 "sourceQuery": {
 "resourceName": "system/ldap/account",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "managed/user",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2020-05-07T09:14:57.740Z",
 "ended": "2020-05-07T09:14:58.325Z",
 "duration": 585,
 "sourceProcessedByNode": {}
 }
]

In contrast, the Admin UI displays the results of only the most recent reconciliation. For more
information, see "Obtaining the Details of a Reconciliation in the Admin UI".

Each reconciliation run includes the following properties:

_id

The ID of the reconciliation run.

mapping

The name of the mapping.

state

The high-level state of the reconciliation run. Values can be as follows:

• ACTIVE

The reconciliation run is in progress.

• CANCELED

The reconciliation run was successfully canceled.

• FAILED

The reconciliation run was terminated because of failure.

• SUCCESS

The reconciliation run completed successfully.

Synchronization Operations Over REST
Listing a History of Reconciliations

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

stage

The current stage of the reconciliation run. Values can be as follows:

• ACTIVE_INITIALIZED

The initial stage, when a reconciliation run is first created.

• ACTIVE_QUERY_ENTRIES

Querying the source, target, and possibly link sets to reconcile.

• ACTIVE_RECONCILING_SOURCE

Reconciling the set of IDs retrieved from the mapping source.

• ACTIVE_RECONCILING_TARGET

Reconciling any remaining entries from the set of IDs retrieved from the mapping target, that
were not matched or processed during the source phase.

• ACTIVE_LINK_CLEANUP

Checking whether any links are now unused and should be cleaned up.

• ACTIVE_PROCESSING_RESULTS

Post-processing of reconciliation results.

• ACTIVE_CANCELING

Attempting to abort a reconciliation run in progress.

• COMPLETED_SUCCESS

Successfully completed processing the reconciliation run.

• COMPLETED_CANCELED

Completed processing because the reconciliation run was aborted.

• COMPLETED_FAILED

Completed processing because of a failure.

stageDescription

A description of the stages described previously.

progress

The progress object has the following structure (annotated here with comments):

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

"progress":{
 "source":{ // Progress on set of existing entries in the mapping source
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in source set, if known, "?" otherwise
 }
 },
 "target":{ // Progress on set of existing entries in the mapping target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of entries in target set, if known, "?" otherwise
 },
 "created":0 // New entries that were created
 },
 "links":{ // Progress on set of existing links between source and target
 "existing":{
 "processed":1001,
 "total":"1001" // Total number of existing links, if known, "?" otherwise
 },
 "created":0 // Denotes new links that were created
 }
},

You can adjust the number of reconciliation runs that are stored in IDM by adding the
maxAnalysisRunsPerMapping and maxNonAnalysisRunsPerMapping properties to your mapping:
"reconAssociation" : {
 "maxAnalysisRunsPerMapping" : 1,
 "maxNonAnalysisRunsPerMapping" : 3
}

In this context, analysis refers to reconciliation runs that are triggered with the analyze=true
parameter. These runs don't perform any actions, but determine which actions would be performed
in a real reconciliation. Non-analysis refers to a normal reconciliation. The default value for both
properties is 1.

Obtaining the Details of a Reconciliation

Display the details of a specific reconciliation over REST, by including the reconciliation run ID
in the URL. The following call shows the details of the reconciliation run initiated in "Triggering a
Reconciliation".
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144"
{
 "_id": "05f63bce-4aaa-492e-9e86-a702d5c9d6c0-1144",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "SUCCESS",
 "stage": "COMPLETED_SUCCESS",
 "stageDescription": "reconciliation completed.",
 "progress": {

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

 "source": {
 "existing": {
 "processed": 2,
 "total": "2"
 }
 },
 "target": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2,
 "unchanged": 0,
 "updated": 0,
 "deleted": 0
 },
 "links": {
 "existing": {
 "processed": 0,
 "total": "0"
 },
 "created": 2
 }
 },
 "situationSummary": {
 "SOURCE_IGNORED": 0,
 "FOUND_ALREADY_LINKED": 0,
 "UNQUALIFIED": 0,
 "ABSENT": 2,
 "TARGET_IGNORED": 0,
 "MISSING": 0,
 "ALL_GONE": 0,
 "UNASSIGNED": 0,
 "AMBIGUOUS": 0,
 "CONFIRMED": 0,
 "LINK_ONLY": 0,
 "SOURCE_MISSING": 0,
 "FOUND": 0
 },
 "statusSummary": {
 "SUCCESS": 2,
 "FAILURE": 0
 },
 "durationSummary": {
 "sourceQuery": {
 "min": 42,
 "max": 42,
 "mean": 42,
 "count": 1,
 "sum": 42,
 "stdDev": 0
 },
 "auditLog": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 24,
 "sum": 15,
 "stdDev": 0

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

 },
 "linkQuery": {
 "min": 5,
 "max": 5,
 "mean": 5,
 "count": 1,
 "sum": 5,
 "stdDev": 0
 },
 "targetQuery": {
 "min": 3,
 "max": 3,
 "mean": 3,
 "count": 1,
 "sum": 3,
 "stdDev": 0
 },
 "targetPhase": {
 "min": 0,
 "max": 0,
 "mean": 0,
 "count": 1,
 "sum": 0,
 "stdDev": 0
 },
 "sourceObjectQuery": {
 "min": 6,
 "max": 34,
 "mean": 21,
 "count": 22,
 "sum": 474,
 "stdDev": 9
 },
 "postMappingScript": {
 "min": 0,
 "max": 1,
 "mean": 0,
 "count": 22,
 "sum": 17,
 "stdDev": 0
 },
 "defaultMappingScript": {
 "min": 0,
 "max": 4,
 "mean": 2,
 "count": 22,
 "sum": 48,
 "stdDev": 2
 },
 "sourcePhase": {
 "min": 490,
 "max": 490,
 "mean": 490,
 "count": 1,
 "sum": 490,
 "stdDev": 0
 }
 },
 "parameters": {

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

 "sourceQuery": {
 "resourceName": "system/ldap/account",
 "queryFilter": "true",
 "_fields": "_id"
 },
 "targetQuery": {
 "resourceName": "managed/user",
 "queryFilter": "true",
 "_fields": "_id"
 }
 },
 "started": "2020-05-07T09:14:57.740Z",
 "ended": "2020-05-07T09:14:58.325Z",
 "duration": 585,
 "sourceProcessedByNode": {}
}

Obtaining the Details of a Reconciliation in the Admin UI
You can display the details of the most recent reconciliation in the Admin UI. Select the mapping. In
the page that appears, you'll see a message similar to:
Completed: Last reconciled November 20, 2019 15:28

Clicking on the reconciliation run date displays the details of the reconciliation run. Click
Reconciliation Results for additional information.

If a reconciliation fails, select the Failure Summary tab to obtain information about the reasons for
the failure.

To view reconciliation audit logs in the UI, add an Audit widget to your dashboard. The reconciliation
Audit widget shows the same information that you get over REST.

Viewing Reconciliation Association Details
When performing a reconciliation run, information is reconciled between the source object and the
target object. This creates an association between the two objects, which can be recorded in IDM by
including the persistAssociations=true parameter when triggering a reconciliation. This information
can then be retrieved by querying the recon/assoc endpoint.

To get a list of currently stored recon associations, run the following query:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc?_queryFilter=true"
 {
 "result": [
 {
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "_rev": "1",
 "mapping": "managedUser_systemLdapAccounts",

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "isAnalysis": "false",
 "finishTime": "2019-05-01T23:36:24.434153Z"
 },
 {
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-99638",
 "_rev": "1",
 "mapping": "systemLdapAccounts_managedUser",
 "sourceResourceCollection": "system/ldap/account",
 "targetResourceCollection": "managed/user",
 "isAnalysis": "true",
 "finishTime": "2019-05-06T21:31:42.140066Z"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

You can also get information for a specific reconciliation by querying the recon ID:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230"
 {
 "_id": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "_rev": "1",
 "mapping": "managedUser_systemLdapAccounts",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "isAnalysis": "false",
 "finishTime": "2019-05-01T23:36:24.434153Z"
}

It is possible to also get the specific association details of each entry in the reconciliation run by
appending /entry to your query:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/recon/assoc/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230/entry?
_queryFilter=true"
 {
 "result": [
 {
 "_id": "400d40fd-da58-41f5-857b-71855eb97bd9",
 "_rev": "0",
 "mapping": "managedUser_systemLdapAccounts",
 "reconId": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "situation": "CONFIRMED",

Synchronization Operations Over REST
Obtaining the Details of a Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

 "action": "UPDATE",
 "linkQualifier": "default",
 "sourceObjectId": "07978ba5-b31d-4f8b-9f60-506c07f68495",
 "targetObjectId": "ca8abc7f-7b97-3e96-94fb-6b27b0ec5aed",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "status": "SUCCESS",
 "exception": null,
 "message": null,
 "messageDetail": "null",
 "ambiguousTargetObjectIds": null
 },
 ...
 {
 "_id": "08ec633c-744f-4092-b88d-fe253b1d8e52",
 "_rev": "0",
 "mapping": "managedUser_systemLdapAccounts",
 "reconId": "da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230",
 "situation": "CONFIRMED",
 "action": "UPDATE",
 "linkQualifier": "default",
 "sourceObjectId": "ee2449a8-01e6-4c0b-84d3-e65e25c3e38c",
 "targetObjectId": "67a6596e-ebfc-3542-a664-1ab1610e082a",
 "sourceResourceCollection": "managed/user",
 "targetResourceCollection": "system/ldap/account",
 "status": "SUCCESS",
 "exception": null,
 "message": null,
 "messageDetail": "null",
 "ambiguousTargetObjectIds": null
 }
],
 "resultCount": 50,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Note

For particularly large reconciliations, the results returned can be quite substantial, since it includes the details
of every object reconciled. We encourage using query filters to tune your queries to only return the subset of
results you're looking for.

Purging Reconciliation Statistics From the Repository

When the number of completed reconciliation runs for a given mapping reaches the number specified
by maxAnalysisRunsPerMapping or maxNonAnalysisRunsPerMapping, statistics are purged automatically.
Statistics and reconciliation run information (such as recon associations) are purged chronologically
by mapping, with the oldest reconciliation run for that mapping purged first.

You can also manually remove reconciliation statistics. To purge reconciliation statistics from the
repository manually, run a DELETE command on the reconciliation run ID. For example:

Synchronization Operations Over REST
Managing LiveSync Over REST

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/recon/da88b9a5-1fe5-4f8d-a6a8-7e0a2b4e136b-9230"

Managing LiveSync Over REST
Because you can trigger liveSync operations over REST (or by using the resource API) you can use an
external scheduler to trigger liveSync operations, rather than using the IDM scheduling mechanism.

There are two ways to trigger liveSync over REST:

• Use the _action=liveSync parameter directly on the resource. This is the recommended method. The
following example calls liveSync on the user accounts in an external LDAP system:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=liveSync"

• Target the system endpoint and supply a source parameter to identify the object that should be
synchronized. This method matches the scheduler configuration and can therefore be used to test
schedules before they are implemented.

The following example calls the same liveSync operation as the previous example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system?_action=liveSync&source=system/ldap/account"

A successful liveSync operation returns the following response:
{
 "_rev": "000000001ade755f",
 "_id": "SYSTEMLDAPACCOUNT",
 "connectorData": {
 "nativeType": "JAVA_TYPE_LONG",
 "syncToken": 1
 }
}

Do not run two identical liveSync operations simultaneously. Rather, ensure that the first operation
has completed before a second similar operation is launched.

Synchronization Operations Over REST
Troubleshooting LiveSync Failures

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

Troubleshooting LiveSync Failures

To troubleshoot a liveSync operation that has not succeeded, include the detailedFailure parameter to
return additional information. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/system/ldap/account?_action=liveSync&detailedFailure=true"

The first time liveSync is called, it does not have a synchronization token in the database to establish
which changes have already been processed. The default liveSync behavior is to locate the last
existing entry in the change log, and to store that entry in the database as the current starting
position from which changes should be applied. This behavior prevents liveSync from processing
changes that might already have been processed during an initial data load. Subsequent liveSync
operations will pick up and process any new changes.

Typically, in setting up liveSync on a new system, you would load the data initially (by using
reconciliation, for example) and then enable liveSync, starting from that base point.

In the case of DS, the change log (cn=changelog) can be read only by uid=admin by default. If you are
configuring liveSync with DS, the principal that is defined in the LDAP connector configuration must
have access to the change log. For information about allowing a regular user to read the change log,
see Allow a User or Application to Read the Change Log in the DS Configuration Guide.

If you see the following error message, you might have forgotten to set changelog-read access for a
regular user:
Unable to locate the DS replication change log suffix. Please make
sure it's enabled, and changelog-read access is granted.

Triggering LiveSync Through the UI

LiveSync operations are specific to a system object type (such as system/ldap/account). Apart from
scheduling liveSync, as described in "Scheduling LiveSync Through the UI", you can launch a
liveSync operation on demand for a particular system object type as follows:

1. Select Configure > Connectors > connector-name and select the Object Types tab.

2. Select the Edit icon () next to the object type that you want to synchronize.

3. Select the Sync tab and select Sync Now.

The Sync Token field displays the current synchronization token for that object type.

https://backstage.forgerock.com/docs/ds/7.1/config-guide/replication.html#read-ecl-as-regular-user

Filter Synchronization Data
Filter Source and Target Objects With Scripts

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

Chapter 7

Filter Synchronization Data
By default, IDM synchronizes all objects that match those defined in the connector configuration for
the resource. Many connectors let you limit the scope of objects that the connector accesses. For
example, the LDAP connector lets you specify base DNs and LDAP filters so that you do not need to
access every entry in the directory.

The following sections describe other ways to filter out objects or attributes to restrict the
synchronization load.

Filter Source and Target Objects With Scripts
You can filter the source or target objects that are included in a synchronization operation using the
validSource, validTarget, or sourceCondition properties in your mapping:

validSource

A script that determines if a source object is valid to be mapped.

The script yields a boolean value: true indicates that the source object is valid; false can be used
to defer mapping until some condition is met. In the root scope, the source object is provided in
the "source" property. If the script is not specified, then all source objects are considered valid:
{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

validTarget

A script used during the second phase of reconciliation that determines if a target object is valid
to be mapped.

The script yields a boolean value: true indicates that the target object is valid; false indicates that
the target object should not be included in reconciliation. In the root scope, the source object is
provided in the "target" property. If a validTarget the script is not specified, then all target objects
are considered valid for mapping:

Filter Synchronization Data
Restrict Reconciliation By Using Queries

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

sourceCondition

An additional filter that must be met for a source object to be included in a mapping.

This condition works like a validSource script. Its value can be either a queryFilter string, or a
script configuration. sourceCondition is used mainly to specify that a mapping applies only to a
particular role or entitlement.

The following sourceCondition restricts synchronization to those user objects whose account status
is active:
{
 "mappings": [
 {
 "name": "managedUser_systemLdapAccounts",
 "source": "managed/user",
 "sourceCondition": "/source/accountStatus eq \"active\"",
 ...
 }
]
}

During synchronization, scripts and filters have access to a source object and a target object. Examples
already shown in this section use source.attributeName to retrieve attributes from the source objects.
Scripts can also write to target attributes using target.attributeName syntax, for example:
{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if (source.email != null) {target.mail = source.email;}"
 }
}

The sourceCondition filter also has the linkQualifier variable in its scope.

For more information about scripting, see "Scripting Function Reference" in the Scripting Guide.

Restrict Reconciliation By Using Queries
Every reconciliation operation performs a query on the source and on the target resource, to
determine which records should be reconciled. The default source and target queries are _
queryFilter=true&_fields=_id, which means that all records in both the source and the target are
considered candidates for that reconciliation operation.

Filter Synchronization Data
Restrict Reconciliation By Using Queries

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

You can restrict reconciliation to specific entries by defining an explicit sourceQuery or targetQuery in
the mapping configuration.

Note

The sourceQuery filter is ignored during the target phase, and the targetQuery filter is ignored during the source
phase.

For example, to restrict reconciliation to those records whose employeeType on the source resource is
Permanent, you might specify a source query as follows:
"mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
...

The format of the query can be any query type that is supported by the resource, and can include
additional parameters, if applicable. Use the _queryFilter parameter, in common filter notation.

The source and target queries send the query to the resource that is defined for that source or target,
by default. You can override the resource the query is sent to by specifying a resourceName in the
query. For example, to query a specific endpoint instead of the source resource, you might modify the
preceding source query as follows:
{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "sourceQuery" : {
 "resourceName" : "endpoint/scriptedQuery"
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
 ...
}

To override a source or target query that is defined in the mapping, you can specify the query when
you call the reconciliation operation. For example, to reconcile all employee entries, and not just the
permanent employees, you would run the reconciliation operation as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{"sourceQuery": {"_queryFilter" : "true"}}' \
"http://localhost:8080/openidm/recon?_action=recon&mapping=managedUser_systemLdapAccounts"

Filter Synchronization Data
Restrict Reconciliation to a Specific ID

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 63

By default, a reconciliation operation runs both the source and target phase. To avoid queries on
the target resource, set runTargetPhase to false in the mapping configuration. To prevent the target
resource from being queried during the reconciliation operation configured in the previous example,
amend the mapping configuration as follows:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "employeeType eq \"Permanent\""
 },
 "runTargetPhase" : false,
 ...

Use the UI to Create a Query That Restricts Reconciliation

1. Select Configure > Mappings and select the you want to restrict.

2. Select Association > Reconciliation Query Filters.

3. Create a source query or target query and click Save.

Restrict Reconciliation to a Specific ID
You can restrict reconciliation to a specific record in much the same way as you restrict reconciliation
by using queries.

To restrict reconciliation to a specific ID, use the reconById action, instead of the recon action when you
call the reconciliation operation. Specify the ID with the id parameter. Reconciling more than one ID
with the reconById action is not supported.

The following command reconciles only the user with ID b3c2f414-e7b3-46aa-8ce6-f4ab1e89288c, for
the mapping managedUser_systemLdapAccounts. The command synchronizes this particular user account
in LDAP with the data from the managed user repository. The example assumes that implicit
synchronization has been disabled, and that a reconciliation operation is required to copy changes
made in the repository to the LDAP system:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon?_action=reconById&mapping=managedUser_systemLdapAccounts&id=b3c2f414-
e7b3-46aa-8ce6-f4ab1e89288c"

Reconciliation by ID takes the default reconciliation options that are specified in the mapping, so the
source and target queries, and source and target phases apply equally to reconciliation by ID.

Filter Synchronization Data
Restrict Implicit Synchronization to Specific Property Changes

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 64

Restrict Implicit Synchronization to Specific Property Changes
For a mapping that has managed objects as the source, an implicit synchronization is triggered if any
source property changes, regardless of whether the modified property is explicitly defined as a source
property in the mapping.

This default behavior is helpful in situations where no source properties are explicitly defined—any
property within the object is included as part of the mapping.

However, this behavior adds a processing overhead, because every mapping from the managed object
is invoked when any managed object property changes. If several mappings are configured from the
managed object, this default behavior can cause performance issues.

In these situations, you can restrict the properties that should trigger an implicit synchronization per
mapping, using the triggerSyncProperties attribute. This attribute contains an array of JSON pointers to
the properties that must change before an implicit synchronization to the target is triggered. If none
of these properties changes, no synchronization is triggered, even if other properties in the object
change.

In the following example, implicit synchronization is triggered only if the mail, telephoneNumber, or
userName of an object changes:
{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableLinking" : false,
 "triggerSyncProperties" : [
 "/mail",
 "/telephoneNumber",
 "/userName"
],
 "properties" : [],
 "policies" : []
 }
]
}

If any other property changes on the managed object, no implicit synchronization is triggered.

Implicit Synchronization and LiveSync
Disable Automatic Synchronization Operations

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 65

Chapter 8

Implicit Synchronization and LiveSync
Implicit synchronization and liveSync refer to the automatic synchronization of changes from and to
the managed object repository.

These topics describe the mechanisms for configuring these automatic synchronization mechanisms.

• "Disable Automatic Synchronization Operations"

• "Configure the LiveSync Retry Policy"

• "Improve Reliability With Queued Synchronization"

• "Synchronization Failure Compensation"

Disable Automatic Synchronization Operations
By default, all mappings are automatically synchronized. A change to a managed object is
automatically synchronized to all resources for which the managed object is configured as a source. If
liveSync is enabled for a system, changes to an object on that system are automatically propagated to
the managed object repository.

To prevent automatic synchronization for a specific mapping, set the enableSync property of that
mapping to false. In the following example, implicit synchronization is disabled. This means that
changes to objects in the internal repository are not automatically propagated to the LDAP directory.
To propagate changes to the LDAP directory, reconciliation must be launched manually:
{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "enableSync" : false,
 ...
}

If enableSync is set to false for a mapping from a system resource to managed/user (for example
"systemLdapAccounts_managedUser"), liveSync is disabled for that mapping.

Implicit Synchronization and LiveSync
Configure the LiveSync Retry Policy

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 66

Configure the LiveSync Retry Policy
If a liveSync operation fails, IDM reattempts the change an infinite number of times until the change
is successful. This behavior can increase data consistency in the case of transient failures (for
example, when the connection to the database is temporarily lost). However, in situations where
the cause of the failure is permanent (for example, if the change does not meet certain policy
requirements) the change will never succeed, regardless of the number of attempts. In this case, the
infinite retry behavior can effectively block subsequent liveSync operations from starting.

To avoid this, you can configure a liveSync retry policy to specify the number of times a failed
modification should be reattempted, and what should happen if the modification is unsuccessful after
the specified number of attempts.

Generally, a scheduled reconciliation operation will eventually force consistency. However, to prevent
repeated retries that block liveSync, restrict the number of times that the same modification is
attempted. You can then specify what happens to failed liveSync changes. The failed modification
can be stored in a dead letter queue, discarded, or reapplied. Alternatively, an administrator can be
notified of the failure by email or by some other means. This behavior can be scripted. The default
configuration in the samples provided with IDM is to retry a failed modification five times, and then
to log and ignore the failure.

You configure the liveSync retry policy in the connector configuration in the Connectors Guide. The
sample connector configurations have a retry policy defined as follows:
"syncFailureHandler" : {
 "maxRetries" : 5,
 "postRetryAction" : "logged-ignore"
},

maxRetries

Specifies the number of attempts that IDM should make to process the failed modification.

The value of this property must be a positive integer, or -1. A value of zero indicates that
failed modifications should not be reattempted. In this case, the post-retry action is executed
immediately when a liveSync operation fails. A value of -1 (or omitting the maxRetries property, or
the entire syncFailureHandler from the configuration) indicates that failed modifications should be
retried an infinite number of times. In this case, no post retry action is executed.

The default retry policy relies on the scheduler, or whatever invokes liveSync. Therefore, if retries
are enabled and a liveSync modification fails, IDM will retry the modification the next time that
liveSync is invoked.

postRetryAction

Indicates what should happen if the maximum number of retries has been reached (or if maxRetries
has been set to zero). The post-retry action can be one of the following:

• logged-ignore

IDM should ignore the failed modification, and log its occurrence.

Implicit Synchronization and LiveSync
Configure the LiveSync Retry Policy

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 67

• dead-letter-queue

IDM should save the details of the failed modification in a table in the repository (accessible
over REST at repo/synchronisation/deadLetterQueue/provisioner-name).

• script

Specifies a custom script that should be executed when the maximum number of retries has
been reached. For information about using custom scripts in the configuration, see "Scripting
Function Reference" in the Scripting Guide. In addition to the regular objects described in that
section, the following objects are available in the script scope:

syncFailure

Provides details about the failed record. The structure of the syncFailure object is as follows:
"syncFailure" :
 {
 "token" : the ID of the token,
 "systemIdentifier" : a string identifier that matches the "name" property in the connector
 configuration (You can create and change connector configurations over REST at the /openidm/config/provisioner.openicf/
<connector-name> endpoint, or in files named conf/provisioner.openicf-<connector-name>.json.),
 "objectType" : the object type being synced, one of the keys in the "objectTypes" property
 in the connector configuration (You can create and change connector configurations over REST at the /openidm/config/
provisioner.openicf/<connector-name> endpoint, or in files named conf/provisioner.openicf-<connector-name>.json.),
 "uid" : the UID of the object (for example uid=joe,ou=People,dc=example,dc=com),
 "failedRecord", the record that failed to synchronize
 },

To access these fields, include syncFailure.fieldname in your script.

failureCause

Provides the exception that caused the original liveSync failure.

failureHandlers

Two synchronization failure handlers are provided by default:

• loggedIgnore indicates that the failure should be logged, after which no further action
should be taken.

• deadLetterQueue indicates that the failed record should be written to a specific table in the
repository, where further action can be taken.

To invoke one of the internal failure handlers from your script, use a call similar to the
following (shown here for JavaScript):
failureHandlers.deadLetterQueue.invoke(syncFailure, failureCause);

The following liveSync retry policy configuration specifies a maximum of four retries before the failed
modification is sent to the dead letter queue:

Implicit Synchronization and LiveSync
Configure the LiveSync Retry Policy

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 68

...
 "syncFailureHandler" : {
 "maxRetries" : 4,
 "postRetryAction" : dead-letter-queue
 },
...

In the case of a failed modification, a message similar to the following is output to the logs:
INFO: sync retries = 1/4, retrying

IDM reattempts the modification the specified number of times. If the modification is still
unsuccessful, a message similar to the following is logged:
INFO: sync retries = 4/4, retries exhausted
Jul 19, 2013 11:59:30 AM
 org.forgerock.openidm.provisioner.openicf.syncfailure.DeadLetterQueueHandler invoke
INFO: uid=jdoe,ou=people,dc=example,dc=com saved to dead letter queue

The log message indicates the entry for which the modification failed (uid=jdoe, in this example).

You can view the failed modification in the dead letter queue, over the REST interface, as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/repo/synchronisation/deadLetterQueue/ldap?_queryFilter=true&_fields=_id"
{
 "result":
 [
 {
 "_id": "4",
 "_rev": "000000001298f6a6"
 }
],
 ...
}

To view the details of a specific failed modification, include its ID in the URL:

Implicit Synchronization and LiveSync
Improve Reliability With Queued Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 69

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/repo/synchronisation/deadLetterQueue/ldap/4"
{
 "objectType": "account",
 "systemIdentifier": "ldap",
 "failureCause": "org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ConflictException:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.script.ScriptException:
 ReferenceError: \"bad\" is not defined.
 (PropertyMapping/mappings/0/properties/3/condition#1)",
 "token": 4,
 "failedRecord": "complete record, in xml format"
 "uid": "uid=jdoe,ou=people,dc=example,dc=com",
 "_rev": "000000001298f6a6",
 "_id": "4"
}

Note

The repo endpoint is an internal interface. Although it is used in the preceding example for the purposes of
demonstration, you should not rely on this endpoint in production.

Improve Reliability With Queued Synchronization
By default, IDM implicitly synchronizes managed object changes out to all resources for which the
managed object is configured as a source. If there are several targets that must be synchronized,
these targets are synchronized one at a time, one after the other. If any of the targets is remote
or has a high latency, the implicit synchronization operations can take some time, delaying the
successful return of the managed object change.

To decouple the managed object changes from the corresponding synchronizations, you can
configure queued synchronization, which persists implicit synchronization events to the IDM
repository. Queued events are then read from the repository and executed according to the queued
synchronization configuration.

Because synchronization operations are performed in parallel, queued synchronization can improve
performance if you have several fast, reliable targets. However, queued synchronization is also useful
when your targets are slow or unreliable, because the managed object changes can complete before
all targets have been synchronized.

The following illustration shows how synchronization operations are added to a local, in-memory
queue. Note that this queue is distinct from the repository queue for synchronization events:

Implicit Synchronization and LiveSync
Configure Queued Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 70

Queued Synchronization

Configure Queued Synchronization

Queued synchronization is disabled by default. To enable it, add a queuedSync object to your mapping,
as follows:
{
 "mappings" : [
 {
 "name" : "managedUser_systemLdapAccounts",
 "source" : "managed/user",
 "target" : "system/ldap/account",
 "links" : "systemLdapAccounts_managedUser",
 "queuedSync" : {
 "enabled" : true,
 "pageSize" : 100,
 "pollingInterval" : 1000,
 "maxQueueSize" : 20000,
 "maxRetries" : 5,
 "retryDelay" : 1000,
 "postRetryAction" : "logged-ignore"
 },
 ...
 }
]
 }

Note

These settings apply only to the implicit synchronization operations for that mapping. Reconciliation
is unaffected by queued synchronization settings. Events associated with mappings where queued
synchronization is enabled are submitted to the synchronization queue for asynchronous processing. Events

Implicit Synchronization and LiveSync
Configure Queued Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 71

associated with mappings where queued synchronization is not enabled are processed immediately, and block
further event processing until they are complete.

During implicit synchronization, mappings are processed in the order in which they are defined, regardless
of whether queued synchronization is enabled for those mappings. If you want all queued synchronization
mappings to be processed first, you must explicitly order your mappings accordingly.

The queuedSync object has the following configuration:

enabled

Specifies whether queued synchronization is enabled for that mapping. Boolean, true, or false.

pageSize (integer)

Specifies the maximum number of events to retrieve from the repository queue within a single
polling interval. The default is 100 events.

pollingInterval (integer)

Specifies the repository queue polling interval, in milliseconds. The default is 1000 ms.

maxQueueSize (integer)

Specifies the maximum number of synchronization events that can be accepted into the in-
memory queue. The default is 20000 events.

maxRetries (integer)

The number of retries to perform before invoking the postRetry action. Most sample configurations
set the maximum number of retries to 5. To set an infinite number of retries, either omit the
maxRetries property, or set it to a negative value, such as -1.

retryDelay (integer)

In the event of a failed queued synchronization operation, this parameter specifies the number of
milliseconds to delay before attempting the operation again. The default is 1000 ms.

postRetryAction

The action to perform after the retries have been exhausted. Possible options are logged-ignore,
dead-letter-queue, and script. These options are described in "Configure the LiveSync Retry
Policy". The default action is logged-ignore.

Note

Retries occur synchronously to the failure. For example, if the maxRetries is set to 10, at least 10 seconds
will pass between the failing sync event and the next sync. (There are 10 retries, and the retryDelay is 1
second by default.) These 10 seconds do not take into account the latency of the ten sync requests. Retries are

Implicit Synchronization and LiveSync
Tune Queued Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 72

configured per-mapping and block processing of all subsequent sync events until the configured retries have
been exhausted.

Tune Queued Synchronization

Queued synchronization employs a single worker thread. While implicit synchronization operations
are being generated, that worker thread should always be occupied. The occupation of the worker
thread is a function of the pageSize, the pollingInterval, the latency of the poll request, and the latency
of each synchronization operation for the mapping.

For example, assume that a poll takes 500 milliseconds to complete. Your system must provide
operations to the worker thread at approximately the same rate at which the thread can consume
events (based on the page size, poll frequency, and poll latency). Operation consumption is a function
of the notifyaction.execution for that particular mapping. If the system does not provide operations
fast enough, implicit synchronization will not occur as optimally as it could. If the system provides
operations too quickly, the operations in the queue could exceed the default maximum of 20000. If the
maxQueueSize is reached, additional synchronization events will result in a RejectedExecutionException.

Depending on your hardware and workload, you might need to adjust the default pageSize,
pollingInterval, and maxQueueSize.

Monitor the queued synchronization metrics; specifically, the rejected-executions, and adjust the
maxQueueSize accordingly. Set a large enough maxQueueSize to prevent slow mappings and heavy loads
from causing newly-submitted synchronization events to be rejected.

Monitor the synchronization latency using the sync.queue.mapping-name.poll-pending-events metric.

For more information on monitoring metrics, see "Metrics Reference" in the Monitoring Guide.

Manage the Synchronization Queue

You can manage queued synchronization events over the REST interface, at the openidm/sync/queue
endpoint. The following examples show the operations that are supported on this endpoint:

List all events in the synchronization queue:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=true"
{
 "result": [
 {
 "_id": "03e6ab3b-9e5f-43ac-a7a7-a889c5556955",
 "_rev": "0000000034dba395",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "e6533cfe-81ad-4fe8-8104-55e17bd9a1a9",

Implicit Synchronization and LiveSync
Manage the Synchronization Queue

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 73

 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.072Z"
 },
 {
 "_id": "ed940f4b-ce80-4a7f-9690-1ad33ad309e6",
 "_rev": "000000007878a376",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "28b1bd90-f647-4ba9-8722-b51319f68613",
 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.150Z"
 },
 {
 "_id": "f5af2eed-d83f-4b70-8001-8bc86075134f",
 "_rev": "00000000099aa321",
 "mapping": "managedUser_systemLdapAccounts",
 "resourceId": "d2691a45-0a10-4f51-aa2a-b6854b2f8086",
 "syncAction": "notifyCreate",
 "state": "PENDING",
 "resourceCollection": "managed/user",
 "nodeId": null,
 "createDate": "2018-11-12T07:45:00.276Z"
 },
 ...
],
 "resultCount": 8,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Query the queued synchronization events based on the following properties:

• mapping—the mapping associated with this event. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=mapping+eq+'managedUser_systemLdapAccount'"

• nodeId—the ID of the node that has acquired this event.

• resourceId—the source object resource ID.

• resourceCollection—the source object resource collection.

• _id—the ID of this sync event.

• state—the state of the synchronization event. For example:

Implicit Synchronization and LiveSync
Recover Mappings When Nodes Are Down

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 74

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=state+eq+'PENDING'"

The state of a queued synchronization event is one of the following:

PENDING—the event is waiting to be processed.
ACQUIRED—the event is being processed by a node.

• remainingRetries—the number of retries available for this synchronization event before it is
abandoned. For more information about how synchronization events are retried, see "Configure the
LiveSync Retry Policy". For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=remainingRetries+lt+2"

• syncAction—the synchronization action that initiated this event. Possible synchronization actions are
notifyCreate, notifyUpdate, and notifyDelete. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/sync/queue?_queryFilter=syncAction+eq+'notifyCreate'"

• createDate—the date that the event was created.

Recover Mappings When Nodes Are Down

Synchronization events for mappings with queued synchronization enabled are processed by a single
cluster node. While a node is present in the cluster, that node holds a lock on the specific mapping.
The node can release or reacquire the mapping lock if a balancing event occurs (see "Balance
Mapping Locks Across Nodes"). However, the mapping lock is held across all events on that mapping.
In a stable running cluster, a single node will hold the lock for a mapping indefinitely.

It is possible that a node goes down, or is removed from the cluster, while holding a mapping lock
on operations in the synchronization queue. To prevent these operations from being lost, the queued
synchronization facility includes a recovery monitor that checks for any orphaned mappings in the
cluster.

A mapping is considered orphaned in the following cases:

• No active node holds a lock on the mapping.

Implicit Synchronization and LiveSync
Balance Mapping Locks Across Nodes

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 75

• The node that holds a lock on the mapping has an instance state of STATE_DOWN.

• The node that holds a lock on the mapping does not exist in the cluster.

The recovery monitor periodically checks for orphaned mappings. When all orphaned mappings have
been recovered, it attempts to initialize new queue consumers.

The recovery monitor is enabled by default and executes every 300 seconds. To change the default
behavior for a mapping, add the following to the mapping configuration and change the parameters
as required:
{
 "mappings" : [...],
 "queueRecovery" : {
 "enabled" : true,
 "recoveryInterval" : 300
 }
}

Important

If a queued synchronization job has already been claimed by a node, and that node is shut down, IDM notifies
the entire cluster of the shutdown. This lets a different node pick up the job in progress. The recovery monitor
takes over jobs in a synchronization queue that have not been fully processed by an available cluster node, so
no job should be lost. If you have configured queued synchronization for one or more mappings, do not use the
enabled flag in the cluster configuration to remove a node from the cluster. Instead, shut down the node so that
the remaining nodes in the cluster can take over the queued synchronization jobs.

Balance Mapping Locks Across Nodes

Queued synchronization mapping locks are balanced equitably across cluster nodes. At a specified
interval, each node attempts to release and acquire mapping locks, based on the number of running
cluster nodes. When new cluster nodes come online, existing nodes release sufficient mapping locks
for new nodes to pick them up, resulting in an equitable distribution of locks.

Lock balancing is enabled by default, and the interval at which nodes attempt to balance locks in the
queue is 5 seconds. To change the default configuration, add a queueBalancing object to your mapping
and set the following parameters:
{
 "mappings" : [...],
 "queueBalancing" : {
 "enabled" : true,
 "balanceInterval" : 5
 }
}

Implicit Synchronization and LiveSync
Synchronization Failure Compensation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 76

Synchronization Failure Compensation
If implicit synchronization fails for a target resource (for example, due to a policy validation failure on
the target, or the target being unavailable), the synchronization operation stops at that point. In this
scenario, a record might be changed in the repository, and in the targets on which synchronization
was successful, but not on the failed target, or on any targets that would have been synchronized
after the failure. This can result in disparate data sets across resources. Although a reconciliation
operation would eventually bring all targets back in sync, reconciliation can be an expensive
operation with large data sets.

You can configure synchronization failure compensation to prevent data sets from becoming out of
sync. This mechanism involves reverting an implicit synchronization operation if it is not completely
successful across all configured mappings.

Failure compensation ensures that either all resources are synchronized successfully, or that the
original change is rolled back. This mechanism uses an onSync script hook in the managed object
configuration (You can edit the managed object configuration over REST at the config/managed endpoint, or directly in the conf/
managed.json file.). The onSync hook calls a script that prevents partial synchronization by "reverting" a
partial change in the event that all resources are not synchronized.

The following sample managed object configuration (You can edit the managed object configuration over REST at the
config/managed endpoint, or directly in the conf/managed.json file.) shows the addition of the onSync hook:
...
"onDelete" : {
 "type" : "text/javascript",
 "file" : "onDelete-user-cleanup.js"
},
"onSync" : {
 "type" : "text/javascript",
 "file" : "compensate.js"
},
"properties" : [
 ...

With this configuration, a change to a managed object triggers an implicit synchronization for each
configured mapping, in the order in which the mappings are defined. If synchronization is successful
for all configured mappings, IDM exits from the script. If synchronization fails for a particular
resource, the onSync hook invokes the compensate.js script, which attempts to revert the original change
by performing another update to the managed object. This change, in turn, triggers another implicit
synchronization operation to all external resources for which mappings are configured.

If the synchronization operation fails again, the compensate.js script is triggered a second time.
This time, however, the script recognizes that the change was originally called as a result of a
compensation and aborts. IDM logs warning messages related to the sync action (notifyCreate,
notifyUpdate, notifyDelete), along with the error that caused the sync failure.

If failure compensation is not configured, any issues with connections to an external resource can
result in out of sync data stores.

Implicit Synchronization and LiveSync
Synchronization Failure Compensation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 77

With the compensate.js script, any such errors will result in each data store retaining the information
it had before implicit synchronization started. That information is stored, temporarily, in the oldObject
variable.

Schedule Synchronization
Configure Scheduled Synchronization

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 78

Chapter 9

Schedule Synchronization
You can schedule synchronization operations, such as liveSync and reconciliation, using Quartz
triggers. IDM supports simple triggers and cron triggers.

Use the trigger type that suits your scheduling requirements. Because simple triggers are not bound
to the local timezone, they are better suited to scenarios such as liveSync, where the requirement is
to trigger the schedule at regular intervals, regardless of the local time. For more information, see
the Quartz documentation on SimpleTriggers and CronTriggers.

This section describes scheduling specifically for reconciliation and liveSync, and shows simple
triggers in all the examples. You can use the scheduler service to schedule any other event by
supplying a script in which that event is defined. For information about scheduling other events, see
"Schedule Tasks and Events" in the Schedules Guide.

Configure Scheduled Synchronization
Each scheduled reconciliation and liveSync task requires a schedule configuration (You can create and
change schedule configurations over REST at the openidm/scheduler/job endpoint, or directly in conf/schedule-schedule-name.json
files.), with the following format:
{
 "enabled" : boolean, true/false
 "type" : "string",
 "repeatInterval" : long integer,
 "repeatCount" : integer,
 "persisted" : boolean, true/false
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "misfirePolicy" : "optional, string",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

These properties are specific to the scheduler service, and are explained in "Schedule Tasks and
Events" in the Schedules Guide.

To schedule a reconciliation or liveSync task, set the invokeService property to either sync (for
reconciliation) or provisioner for liveSync.

The value of the invokeContext property depends on the type of scheduled event. For reconciliation, the
properties are set as follows:

http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-05.html
http://www.quartz-scheduler.org/documentation/quartz-2.3.0/tutorials/tutorial-lesson-06.html

Schedule Synchronization
Scheduling LiveSync Through the UI

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 79

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

The mapping is referenced by its name in the mapping configuration (You can manage the mapping configuration
over REST at the config/sync endpoint, directly in the conf/sync.json file, or in individual conf/mapping-<mappingName>.json files.).

For liveSync, the properties are set as follows:
{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

The source property follows the convention for a pointer to an external resource object, and takes the
form system/resource-name/object-type.

Important

When you schedule a reconciliation operation to run at regular intervals, do not set "concurrentExecution" :
 true. This parameter enables multiple scheduled operations to run concurrently. You cannot launch multiple
reconciliation operations for a single mapping concurrently.

Scheduling LiveSync Through the UI
To configure liveSync through the UI, set up a liveSync schedule as follows:

1. Select Configure > Schedules > Add Schedule.

2. Complete the schedule configuration. For more information about these fields, see "Configure
Scheduled Synchronization".

Note

The scheduler configuration assumes a simple trigger type by default, so the Cron-like Trigger field is
disabled. You should use simple triggers for liveSync schedules to avoid problems related to daylight
savings time. For more information, see "Schedules and Daylight Savings Time" in the Schedules Guide.

3. By default, the UI creates schedules using the scheduler service, rather than the configuration
service. To create this schedule in the configuration service, select the Save as Config Object
option. If your deployment enables writes to configuration files, this option also creates a
corresponding schedule-schedule-name.json file in your project's conf directory.

Schedule Synchronization
Scheduling LiveSync Through the UI

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 80

For more information on the distinction between the scheduler service and the configuration
service, see "Configure the Scheduler Service" in the Schedules Guide.

Distributing Reconciliation Operations Across a Cluster

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 81

Chapter 10

Distributing Reconciliation Operations Across
a Cluster
In a clustered deployment, you can configure reconciliation jobs to be distributed across multiple
nodes in the cluster. Clustered reconciliation is configured per mapping and can improve
reconciliation performance, particularly for very large data sets.

Clustered reconciliation uses the paged reconciliation mechanism and the scheduler service to divide
the source data set into pages, and then to schedule reconciliation "sub-jobs" per page, distributing
these sub-jobs across the nodes in the cluster.

Regular (non-clustered) reconciliation has two phases—a source phase and a target phase. Clustered
reconciliation effectively has three phases:

Source page phase

During this phase, reconciliation sub-jobs are scheduled in succession, page by page. Each source
page job does the following:

• Executes a source query using the paging cookie from the invocation context.

• Schedules the next source page job.

• Performs the reconciliation of the source IDs returned by the query.

• Writes statistics summary information which is aggregated so that you can obtain the status of
the complete reconciliation run by performing a GET on the recon endpoint.

• On completion, writes the repo_id, source_id, and target_id to the repository.

Source phase completion check

This phase is scheduled when the source query returns null. This check runs, and continues
to reschedule itself, as long as source page jobs are running. When the completion check
determines that all the source page jobs are complete, it schedules the target phase.

Target phase

This phase queries the target IDs, then removes all of the IDs that correspond to the repo_id,
source_id, and target_id written by the source pages. The remaining target IDs are used to run the

Distributing Reconciliation Operations Across a Cluster
Configuring Clustered Reconciliation for a Mapping

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 82

target phase, taking into account all records on the target system that were not correlated to a
source ID during the source phase sub-jobs.

Configuring Clustered Reconciliation for a Mapping
To specify that the reconciliation for a specific mapping should be distributed across a cluster, add
the clusteredSourceReconEnabled property to the mapping and set it to true. For example:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "clusteredSourceReconEnabled" : true,
 ...
}

Note

When clustered reconciliation is enabled, source query paging is enabled automatically, regardless of the value
that you set for the reconSourceQueryPaging property in the mapping.

By default, the number of records per page is 1000. Increase the page size for large data sets. For
example, a reconciliation of data set of 1,000,000 entries would perform better with a page size of
10,000. To change the page size, set the reconSourceQueryPageSize property, for example:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "clusteredSourceReconEnabled" : true,
 "reconSourceQueryPageSize" : 10000
 ...
 }

To set these properties in the Admin UI, select Configure > Mappings, click on the mapping that you
want to change, and select the Advanced tab.

Clustered reconciliation has the following limitations:

• A complete non-clustered reconciliation run is synchronous with the single reconciliation
invocation.

By contrast, a clustered reconciliation is asynchronous. In a clustered reconciliation, the first
execution is synchronous only with the reconciliation of the first page. This job also schedules the
subsequent pages of the clustered reconciliation to run on other cluster nodes. When you schedule
a clustered reconciliation or call the operation over REST, do not set waitForCompletion to true,
because you cannot wait for the operation to complete before the next operation starts.

Distributing Reconciliation Operations Across a Cluster
Viewing Clustered Reconciliation Progress

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 83

Because this first execution does not encompass the entire reconciliation operation for that
mapping, you cannot rely on the Quartz concurrentExecution property to prevent two reconciliation
operations from running concurrently. If you use Quartz to schedule clustered reconciliations
(as described in "Configure Scheduled Synchronization"), make sure that the interval between
scheduled operations exceeds the known run of the entire clustered reconciliation. The run-length
of a specific clustered reconciliation can vary. You must therefore build in appropriate buffer times
between schedules, or use a scheduled script that performs a GET on the recon/ endpoint, and
dispatches the next reconciliation on a mapping only when the previous reconciliation run has
completed.

• If one node in the cluster is down or goes offline during a clustered reconciliation run, the
reconciliation is canceled.

Viewing Clustered Reconciliation Progress
The sourceProcessedByNode property indicates how many records are processed by each node. You can
verify the load distribution per node by running a GET on the recon endpoint, for example:
curl \
 --header "X-OpenIDM-Username: openidm-admin" \
 --header "X-OpenIDM-Password: openidm-admin" \
 --header "Accept-API-Version: resource=1.0" \
 --request GET \
 "http://localhost:8080/openidm/recon"
 ...
 "started": "2017-05-11T10:04:59.563Z",
 "ended": "",
 "duration": 342237,
 "sourceProcessedByNode": {
 "node2": 21500,
 "node1": 22000
 }
 }

You can also display the nodes responsible for each source page in the Admin UI. Click on the
relevant mapping and expand the In Progress or Reconciliation Results item. The following image
shows a clustered reconciliation in progress. The details include the number of records that have
been processed, the current duration of the reconciliation, and the load distribution, per node:

Distributing Reconciliation Operations Across a Cluster
Canceling a Clustered Reconciliation Operation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 84

Clustered Reconciliation Results

Canceling a Clustered Reconciliation Operation
You cancel a clustered reconciliation in the same way as a non-clustered reconciliation, for example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/recon/90892122-5ceb-4bbe-86f7-94272df834ad-406025?_action=cancel"
{
 "_id": "90892122-5ceb-4bbe-86f7-94272df834ad-406025",
 "action": "cancel",
 "status": "INITIATED"
}

Distributing Reconciliation Operations Across a Cluster
Canceling a Clustered Reconciliation Operation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 85

When the cancellation has completed, a query on that reconciliation ID will show the state and stage
of the reconciliation as follows:
{
 "_id": "90892122-5ceb-4bbe-86f7-94272df834ad-406025",
 "mapping": "systemLdapAccounts_managedUser",
 "state": "CANCELED",
 "stage": "COMPLETED_CANCELED",
 "stageDescription": "reconciliation aborted.",
 "progress": {
 "source": {
 "existing": {
 "processed": 23500,
 "total": "23500"
 }
 },
 "target": {
 "existing": {
 "processed": 23498,
 "total": "?"
 },
 ...
}

In a clustered environment, all reconciliation operations are considered to be "cluster-friendly". This
means that even if a mapping is configured as "clusteredSourceReconEnabled" : false, you can view the
in progress operation on any node in the cluster, even if that node is not currently processing the
reconciliation. You can also cancel a reconciliation in progress from any node in the cluster.

Tuning Reconciliation Performance
Correlate Empty Target Sets

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 86

Chapter 11

Tuning Reconciliation Performance
By default, reconciliation is configured to perform optimally. In some cases, the default optimizations
might not be suitable for your deployment. The following sections describe these default
optimizations, how they can be configured, and additional methods you can use to improve
reconciliation performance.

Correlate Empty Target Sets
To optimize performance, reconciliation does not correlate source objects to target objects if the set
of target objects is empty when the correlation is started. This considerably speeds up the process
the first time reconciliation is run. You can change this behavior for a specific mapping by adding the
correlateEmptyTargetSet property to the mapping definition and setting it to true. For example:
{
 "mappings": [
 {
 "name" : "systemMyLDAPAccounts_managedUser",
 "source" : "system/MyLDAP/account",
 "target" : "managed/user",
 "correlateEmptyTargetSet" : true
 },
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

Prefetch Links
All links are queried at the start of reconciliation and the results of that query are used. You can
disable the link prefetching so that the reconciliation process looks up each link in the database as it
processes each source or target object. To disable link prefetching, add the prefetchLinks property to
your mapping, and set it to false:

Tuning Reconciliation Performance
Run Parallel Reconciliation Threads

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 87

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 "prefetchLinks" : false
 }
]
}

Be aware that this setting will have a performance impact on the reconciliation process.

Run Parallel Reconciliation Threads
By default, reconciliation is multithreaded; numerous threads are dedicated to the same
reconciliation run. Multithreading generally improves reconciliation performance. The default
number of threads for a single reconciliation run is 10 (plus the main reconciliation thread). Under
normal circumstances, you should not need to change this number. However the default might not be
appropriate in the following situations:

• The hardware has many cores and supports more concurrent threads. As a rule of thumb for
performance tuning, start with setting the thread number to twice the number of cores.

• The source or target is an external system with high latency or slow response times. Threads may
then spend considerable time waiting for a response from the external system. Increasing the
available threads enables the system to prepare or continue with additional objects.

To change the number of threads, set the taskThreads property in your mapping:
"mappings" : [
 {
 "name" : "systemCsvfileAccounts_managedUser",
 "source" : "system/csvfile/account",
 "target" : "managed/user",
 "taskThreads" : 20
 ...
 }
]

A zero value runs reconciliation as a serialized process, on the main reconciliation thread.

Improve Reconciliation Query Performance
Reconciliation operations are processed in two phases; a source phase and a target phase. In most
reconciliation configurations, source and target queries make a read call to every record on the
source and target systems to determine candidates for reconciliation. On slow source or target
systems, these frequent calls can incur a substantial performance cost.

Tuning Reconciliation Performance
Improve Reconciliation Query Performance

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 88

To improve query performance in these situations, you can preload the entire result set into memory
on the source or target system, or on both systems. Subsequent read queries on known IDs are made
against the data in memory, rather than the data on the remote system. For this optimization to
be effective, the entire result set must fit into the available memory on the system for which it is
enabled.

The optimization works by defining a sourceQuery or targetQuery in the synchronization mapping that
returns not just the ID, but the complete object.

The following example query loads the full result set into memory during the source phase of the
reconciliation. The example uses a common filter expression, called with the _queryFilter keyword.
The query returns the complete object:
"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "true"
 },
 ...

IDM attempts to detect what data has been returned. The autodetection mechanism assumes that a
result set that includes three or more fields per object (apart from the _id and rev fields) contains the
complete object.

You can explicitly state whether a query is configured to return complete objects by setting the value
of sourceQueryFullEntry or targetQueryFullEntry in the mapping. The setting of these properties overrides
the autodetection mechanism.

Setting these properties to false indicates that the returned object is not the complete object. This
might be required if a query returns more than three fields of an object, but not the complete object.
Without this setting, the autodetect logic would assume that the complete object was being returned.
IDM uses only the IDs from this query result. If the complete object is required, the object is queried
on demand.

Setting these properties to true indicates that the complete object is returned. This setting is typically
required only for very small objects, for which the number of returned fields does not reach the
threshold required for the auto-detection mechanism to assume that it is a full object. In this case, the
query result includes all the details required to pre-load the full object.

The following excerpt indicates that the full objects are returned and that IDM should not autodetect
the result set:

Tuning Reconciliation Performance
Paging Reconciliation Query Results

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 89

"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQueryFullEntry" : true,
 "sourceQuery" : {
 "_queryFilter" : "true"
 },
 ...

By default, all the attributes defined in the connector configuration (You can create and change connector
configurations over REST at the /openidm/config/provisioner.openicf/<connector-name> endpoint, or in files named conf/
provisioner.openicf-<connector-name>.json.) are loaded into memory. If your mapping uses only a small subset
of the attributes in the connector configuration, you can restrict your query to return only those
attributes required for synchronization by using the _fields parameter with the query filter.

The following excerpt loads only a subset of attributes into memory, for all users in an LDAP
directory.
"mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "sourceQuery" : {
 "_queryFilter" : "true",
 "_fields" : "cn,sn,dn,uid,employeeType,mail"
 },
 ...

Note

The default source query for clustered reconciliations and for paged reconciliations is a queryFilter that
returns the full source objects, not just their IDs. So, source queries for clustered and paged reconciliations are
optimized for performance by default.

Paging Reconciliation Query Results
"Improve Reconciliation Query Performance" describes how to improve reconciliation performance by
loading all entries into memory to avoid making individual requests to the external system for every
ID. However, this optimization depends on the entire result set fitting into the available memory on
the system for which it is enabled. For particularly large data sets (for example, data sets of hundreds
of millions of users), having the entire data set in memory might not be feasible.

To alleviate this constraint, you can use reconciliation paging, which breaks down extremely large
data sets into chunks. It also lets you specify the number of entries that should be reconciled in each
chunk or page.

Tuning Reconciliation Performance
Paging Reconciliation Query Results

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 90

Reconciliation paging is disabled by default, and can be enabled per mapping. To configure
reconciliation paging, set the reconSourceQueryPaging property to true and set the reconSourceQueryPageSize
in the synchronization mapping:
{
 "mappings" : [
 {
 "name" : "systemLdapAccounts_managedUser",
 "source" : "system/ldap/account",
 "target" : "managed/user",
 "reconSourceQueryPaging" : true,
 "reconSourceQueryPageSize" : 100,
 ...
 }

The value of reconSourceQueryPageSize must be a positive integer, and specifies the number of entries
that will be processed in each page. If reconciliation paging is enabled but no page size is set, a
default page size of 1000 is used.

Important

If you are reconciling from a JDBC database using the Database Table connector, you must set the _sortkeys
property in the source query and ensure that the corresponding column is indexed in the database.

The following excerpt of a mapping configures paged reconciliation queries using the Database Table
connector:
{
 "mappings" : [
 {
 "name" : "systemHrdb_managedUser",
 "source" : "system/db/users",
 "target" : "managed/user",
 "reconSourceQueryPaging" : true,
 "reconSourceQueryPageSize" : 1000,
 "sourceQueryFullEntry" : true,
 "sourceQuery" : {
 "_queryFilter" : "true",
 "_sortKeys" : "email"
 },
 ...
]
}

Asynchronous Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 91

Chapter 12

Asynchronous Reconciliation
Reconciliation can work in tandem with workflows to provide additional business logic to the
reconciliation process. You can define scripts to determine the action that should be taken for
a particular reconciliation situation. A reconciliation process can launch a workflow after it has
assessed a situation, and then perform the reconciliation or some other action.

For example, you might want a reconciliation process to assess new user accounts that need to
be created on a target resource. However, new user account creation might require some kind of
approval from a manager before the accounts are actually created. The initial reconciliation process
can assess the accounts that need to be created, then launch a workflow to request management
approval for those accounts. The workflow performs the sync action, based upon the situation
assessed during reconciliation (and provided to the workflow through the ASYNC action). The workflow
then calls the sync endpoint with the performAction action and triggers a synchronization operation for
the specified object.

In this scenario, the defined script returns ASYNC for new accounts, and the reconciliation engine does
not continue processing the given object. The script then initiates an asynchronous process which, on
completion, performs an explicit sync of the source object.

A sample configuration for this scenario is available in openidm/samples/sync-asynchronous, and described
in "Asynchronous Reconciliation Using a Workflow" in the Samples Guide.

To Configure Asynchronous Reconciliation Using a Workflow

1. Create the workflow definition file (.xml or .bar file) and place it in the openidm/workflow directory.
For more information about creating workflows, see "Create Workflows" in the Workflow Guide.

2. Modify the mapping for the situation or situations that should call the workflow. Reference the
workflow name in the configuration for that situation.

For example, the following mapping excerpt calls the managedUserApproval workflow if the situation
is assessed as ABSENT:
{
 "situation" : "ABSENT",
 "action" : {
 "workflowName" : "managedUserApproval",
 "type" : "text/javascript",
 "file" : "workflow/triggerWorkflowFromSync.js"
 }
}

Asynchronous Reconciliation

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 92

3. In the sample configuration, the workflow makes an explicit call to the sync endpoint with the
performAction action (openidm.action('sync', 'performAction', content, params)).

You can also use this kind of explicit synchronization to perform a specific action on a source or
target record, regardless of the assessed situation.

To call such an operation over the REST interface, specify the source, and/or target IDs, the mapping,
and the action to be taken. The action can be any one of the supported reconciliation actions: CREATE,
 UPDATE, DELETE, LINK, UNLINK, EXCEPTION, REPORT, NOREPORT, ASYNC, IGNORE.

The following example calls the DELETE action on user bjensen, whose _id in the LDAP directory is
uid=bjensen,ou=People,dc=example,dc=com. The user is deleted in the target resource; in this case, the
repository.

Note that the _id must be URL-encoded in the REST call:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/sync?_action=performAction&sourceId=uid%3Dbjensen%2Cou%3DPeople%2Cdc
%3Dexample%2Cdc%3Dcom&mapping=
 systemLdapAccounts_ManagedUser&action=DELETE"
{
 "status": "OK"
}

The following example creates a link between a managed object and its corresponding system object.
Such a call is useful in the context of manual data association, when correlation logic has linked an
incorrect object, or when IDM has been unable to determine the correct target object.

In this example, there are two separate target accounts (scarter.user and scarter.admin) that should
be mapped to the managed object. This call creates a link to the user account and specifies a link
qualifier that indicates the type of link that will be created:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/sync?_action=performAction&action=LINK
 &sourceId=4b39f74d-92c1-4346-9322-d86cb2d828a8&targetId=scarter.user
 &mapping=managedUser_systemCsvfileAccounts&linkQualifier=user"
{
 "status": "OK"
}

For more information about linking to multiple accounts, see "Map a Single Source Object to Multiple
Target Objects".

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 93

Appendix A. Synchronization Reference

The synchronization engine is one of the core IDM services. You configure the synchronization
service through a mappings property that specifies mappings between objects that are managed by the
synchronization engine.
{
 "mappings": [object-mapping object, ...]
}

Object-Mapping Objects
An object-mapping object specifies the configuration for a mapping of source objects to target
objects. The name, source, and target properties are mandatory. Other properties are optional or
implicit (that is, they have a default value if not set).
{
 "correlationQuery" : script object,
 "correlationScript" : script object,
 "displayName" : string,
 "enableSync" : boolean,
 "linkQualifiers" : [list of strings] or script object,
 "links" : string,
 "name" : string,
 "onCreate" : script object,
 "onDelete" : script object,
 "onLink" : script object,
 "onUnlink" : script object,
 "onUpdate" : script object,
 "policies" : [policy object, ...],
 "properties" : [property object, ...],
 "queuedSync" : { property object },
 "reconAssociation" : { property object },
 "reconProgressStateUpdateInterval" : integer,

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 94

 "reconSourceQueryPageSize" : integer,
 "reconSourceQueryPaging" : boolean,
 "result" : script object,
 "runTargetPhase" : boolean,
 "source" : string,
 "sourceCondition" : script object or queryFilter string,
 "sourceIdsCaseSensitive" : boolean,
 "sourceQueryFullEntry" : boolean,
 "syncAfter" : [list of strings],
 "target" : string,
 "targetIdsCaseSensitive" : boolean,
 "targetQueryFullEntry" : boolean,
 "taskThreads" : integer,
 "triggerSyncProperties" : [list of JSON pointers],
 "validSource" : script object,
 "validTarget" : script object
}

Mapping Object Properties

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a source object has no
linked target. The syntax for writing the query depends on the target system of the correlation.
For examples of correlation queries, see "Writing Correlation Queries". The source object is
provided in the source property in the script scope.

correlationScript

script object, optional

A script that goes beyond a correlationQuery of a target system. Used when you need another
method to determine which records in the target system relate to the given source record. The
syntax depends on the target of the correlation. For information about defining correlation
scripts, see "Writing Correlation Scripts".

displayName

string, optional

The mapping name displayed in the UI.

enableSync

boolean, true or false

Specifies whether automatic synchronization (liveSync and implicit synchronization) should be
enabled for a specific mapping. For more information, see "Disable Automatic Synchronization
Operations".

Default : true

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 95

linkQualifiers

list of strings or script object, optional

Enables mapping of a single source object to multiple target objects.

Example: "linkQualifiers" : ["employee", "customer"] or

"linkQualifiers" : {
 "type" : "text/javascript",
 "globals" : { },
 "source" : "if (returnAll) {
 ['contractor', 'employee', 'customer', 'manager']
 } else {
 if(object.type === 'employee') {
 ['employee', 'customer', 'manager']
 } else {
 ['contractor', 'customer']
 }
 }"
 }

If a script object, the script must return a list of strings.

links

string, optional

Enables reuse of the links created in another mapping. Example: "systemLdapAccounts_managedUser"
reuses the links created by a previous mapping whose name is "systemLdapAccounts_managedUser".

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been
applied. In the root scope, the source object is provided in the source property, the projected
target object in the target property, and the link situation that led to the create operation in the
situation property. Properties on the target object can be modified by the script. If a property
value is not set by the script, IDM falls back on the default property mapping configuration. If the
script throws an exception, the target object creation is aborted.

onDelete

script object, optional

A script to execute when a target object is to be deleted, after property mappings have been
applied. In the root scope, the source object is provided in the source property, the target object

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 96

in the target property, and the link situation that led to the delete operation in the situation
property. If the script throws an exception, the target object deletion is aborted.

onLink

script object, optional

A script to execute when a source object is to be linked to a target object, after property
mappings have been applied. In the root scope, the source object is provided in the source
property, and the projected target object in the target property.

Note that, although an onLink script has access to a copy of the target object, changes made to
that copy will not be saved to the target system automatically. If you want to persist changes
made to target objects by an onLink script, you must explicitly include a call to the action that
should be taken on the target object (for example openidm.create, openidm.update or openidm.delete)
within the script.

In the following example, when an LDAP target object is linked, the "description" attribute of that
object is updated with the value "Active Account". A call to openidm.update is made within the onLink
script, to set the value.
"onLink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Active Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

If the script throws an exception, target object linking is aborted.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings
have been applied. In the root scope, the source object is provided in the source property, and the
target object in the target property.

Note that, although an onUnlink script has access to a copy of the target object, changes made
to that copy will not be saved to the target system automatically. If you want to persist changes
made to target objects by an onUnlink script, you must explicitly include a call to the action that
should be taken on the target object (for example openidm.create, openidm.update or openidm.delete)
within the script.

In the following example, when an LDAP target object is unlinked, the description attribute of that
object is updated with the value Inactive Account. A call to openidm.update is made within the onUnlink
script, to set the value.
"onUnlink" : {
 "type" : "text/javascript",
 "source" : "target.description = 'Inactive Account';
 openidm.update('system/ldap/account/' + target._id, null, target);"
}

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 97

If the script throws an exception, target object unlinking is aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property mappings have been
applied. In the root scope, the source object is provided in the source property, the projected
target object in the target property, and the link situation that led to the update operation in the
situation property. Any changes that the script makes to the target object will be persisted when
the object is finally saved to the target resource. If the script throws an exception, the target
object update is aborted.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

properties

array of property-mapping objects, optional

Specifies mappings between source object properties and target object properties, with optional
transformation scripts. See Property Object Properties.

queuedSync

list of properties, optional

Specifies the queued synchronization configuration.

reconAssociation

list of properties, optional

Specifies the recon association configuration.

reconProgressStateUpdateInterval

integer, optional

Overrides the number of reconciliation operations required before the reconciliation progress
state statistics are persisted to the repository. A value of 50 will write statistics to the repository
every 50 operations.

Default : 1024, minimum : 1.

reconSourceQueryPageSize

integer

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 98

Sets the page size for reconciliation source queries, if paging is configured.

Default : 0 (no paging)

reconSourceQueryPaging

boolean, true or false

Specifies whether paging should be used for reconciliation source queries.

Default : false

result

script object, optional

A script for each mapping event, executed only after a successful reconciliation.

The variables available to a result script are as follows:

• source - provides statistics about the source phase of the reconciliation

• target - provides statistics about the target phase of the reconciliation

• global - provides statistics about the entire reconciliation operation

runTargetPhase

boolean, true or false

Specifies whether reconciliation operations should run both the source and target phase. To avoid
queries on the target resource, set to false.

Default : true

source

string, required

Specifies the path of the source object set. Example: "managed/user".

sourceCondition

script object or queryFilter string, optional

A script or query filter that determines if a source object should be included in the mapping. If
no sourceCondition element (or validSource script) is specified, all source objects are included in the
mapping.

sourceIdsCaseSensitive

boolean, true or false

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 99

Consider case sensitivity when linking source IDs. Only effective if this mapping defines links,
ignored if the mapping re-uses another mapping's links.

Default : true

sourceQueryFullEntry

boolean, true or false, optional

Specifies whether the defined source query returns full object data (true) or IDs only (false).

No default. If not set in the configuration, IDM will attempt to auto-detect the setting, based on
the query results.

syncAfter

list of strings, optional

The specified mapping must be synchronized after all mappings in this list.

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".

targetIdsCaseSensitive

boolean, true or false

Consider case sensitivity when linking target IDs. Only effective if this mapping defines links,
ignored if the mapping re-uses another mapping's links.

Default : true

targetQueryFullEntry

Boolean true or false, optional

Specifies whether the defined target query returns full object data (true) or IDs only (false).

No default. If not set in the configuration, IDM will attempt to auto-detect the setting, based on
the query results.

taskThreads

integer, optional

Sets the number of threads dedicated to the same reconciliation run.

Default : 10

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 100

triggerSyncProperties

list, optional

A list of JsonPointers to fields in the source object whose changes should trigger a
synchronization operation.

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the source property. If the
script is not specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates that the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
target object is provided in the target property. If the script is not specified, then all target objects
are considered valid for mapping.

Property Objects

A property object specifies how the value of a target property is determined.
{
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property Object Properties

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 101

Specifies the path of the property in the source object to map from. If not specified, then the
target property value is derived from the script or default value.

transform

script object, optional

A script to determine the target property value. The root scope contains the value of the source in
the source property, if specified. If the source property has a value of "", the entire source object of
the mapping is contained in the root scope. The resulting value yielded by the script is stored in
the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not. The condition has an
"object" property available in root scope, which (if specified) contains the full source object. For
example "source": "(object.email != null)". The script is considered to return a boolean value.

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not established by source
or transform. If not specified, the default value is null.

Policy Objects

A policy object specifies a link condition and the associated actions to take in response.
{
 "condition" : optional, script object,
 "situation" : string,
 "action" : string or script object
 "postAction" : optional, script object
}

Policy Object Properties

condition

script object or queryFilter condition, optional

Applies a policy, based on the link type, for example "condition" : "/linkQualifier eq \"user\"".

A queryFilter condition can be expressed in two ways—as a string ("condition" : "/linkQualifier eq
 \"user\"") or a map, for example:

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 102

"condition" : {
 "type" : "queryFilter",
 "filter" : "/linkQualifier eq \"user\""
}

It is generally preferable to express a queryFilter condition as a map.

A condition script has the following variables available in its scope: object, and linkQualifier.

situation

string, required

Specifies the situation for which an associated action is to be defined.

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to
yield a string containing the action to perform.

The action script has the following variables available in its scope: source, target, sourceAction,
linkQualifier, and recon.

postAction

script object, optional

Specifies the action to perform after the previously specified action has completed.

The postAction script has the following variables available in its scope: source, target, action,
sourceAction, linkQualifier, and reconID. sourceAction is true if the action was performed during the
source reconciliation phase, and false if the action was performed during the target reconciliation
phase. For more information, see "How Synchronization Situations Are Assessed".

Note

No postAction script is triggered if the action is either IGNORE or ASYNC.

Script Object

Script objects take the following form.
{
 "type" : "text/javascript",
 "source": string
}

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 103

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source

string, required

Specifies the source code of the script to be executed.

Links
To maintain links between source and target objects in mappings, IDM stores an object set in the
repository. The object set identifier follows this scheme:
links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure:
{
 "_id":string,
 "_rev":string,
 "linkType":string,
 "firstId":string
 "secondId":string,
}

_id

string

The identifier of the link object.

_rev

string, required

The value of link object's revision.

linkType

string, required

The type of the link. Usually the name of the mapping which created the link.

firstId

string, required

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 104

The identifier of the first of the two linked objects.

secondId

string

The identifier of the second of the two linked objects.

Queries
IDM performs the following queries on a link object set:

1. Find link(s) for a given firstId object identifier.
SELECT * FROM links WHERE linkType
 = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.
SELECT * FROM links WHERE linkType
 = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

Reconciliation
IDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given
mapping includes these stages:

1. Iterate through all objects for the object set specified as source. For each source object, carry out
the following steps.

a. Look for a link to a target object in the link object set, and perform a correlation query (if
defined).

b. Determine the link condition, as well as whether a target object can be found.

c. Determine the action to perform based on the policy defined for the condition.

d. Perform the action.

e. Keep track of the target objects for which a condition and action has already been determined.

f. Write the results.

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 105

2. Iterate through all object identifiers for the object set specified as target. For each identifier, carry
out the following steps:

a. Find the target in the link object set.

Determine if the target object was handled in the first phase.

b. Determine the action to perform based on the policy defined for the condition.

c. Perform the action.

d. Write the results.

3. Iterate through all link objects, carrying out the following steps.

a. If the reconId is "my", then skip the object.

If the reconId is not recognized, then the source or the target is missing.

b. Determine the action to perform based on the policy.

c. Perform the action.

d. Store the reconId identifer in the mapping to indicate that it was processed in this run.

Note

To optimize a reconciliation operation, the reconciliation process does not attempt to correlate source objects
to target objects if the set of target objects is empty when the correlation is started. For information on
changing this default behaviour, see "Correlate Empty Target Sets".

REST API
External synchronized objects expose an API to request immediate synchronization. This API includes
the following requests and responses.

Request

Example:
POST /openidm/system/csvfile/account/jsmith?_action=liveSync HTTP/1.1

Response (success)

Example:
HTTP/1.1 204 No Content
...

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 106

Response (synchronization failure)

Example:
HTTP/1.1 409 Conflict
...
[JSON representation of error]

Reconciliation Duration Metrics
"Obtaining the Details of a Reconciliation" describes how to obtain the details of a reconciliation
run over REST. This section provides more information on the metrics returned when you query the
recon endpoint. Reconciliation is processed as a series of distinct tasks. The durationSummary property
indicates the period of time spent on each task. You can use this information to address reconciliation
performance bottlenecks.

The following sample output shows the kind of information returned for each reconciliation run:
{
 "_id": "3bc72717-a4bb-4871-b936-3a5a560c1a7c-37",
 "duration": 781561,
 "durationSummary": {
 "auditLog": {
 ...
 },
 ...
 "sourceObjectQuery": {
 "count": 100,
 "max": 96,
 "mean": 14,
 "min": 6,
 "stdDev": 16,
 "sum": 1450
 },
 "sourcePagePhase": {
 "count": 1,
 "max": 20944,
 "mean": 20944,
 "min": 20944,
 "stdDev": 0,
 "sum": 20944
 },
 "sourceQuery": {
 "count": 1,
 "max": 120,
 "mean": 120,
 "min": 120,
 "stdDev": 0,
 "sum": 120
 },
 "targetPhase": {
 "count": 1,
 "max": 0,
 "mean": 0,
 "min": 0,

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 107

 "stdDev": 0,
 "sum": 0
 },
 "targetQuery": {
 "count": 1,
 "max": 19657,
 "mean": 19657,
 "min": 19657,
 "stdDev": 0,
 "sum": 19657
 }
 },
 ...
}

The specific reconciliation tasks that are run depend on the configuration for that mapping. For
example, the sourcePagePhase is run only if paging is enabled. The linkQuery is run only for non-clustered
reconciliation operations, because an initial query of all links does not make sense if a single source
page query is being run.

The following list describes all the possible tasks that can be run for a single reconciliation:

sourcePhase

This phase runs only for non-clustered, non-paged reconciliations. The total duration (sum) is the
time spent processing all records on the source system.

sourcePagePhase

Queries and processes individual objects in a page, based on their IDs. This phase is run only for
clustered reconciliations or for non-clustered reconciliations that have source paging configured.
The total duration (sum) is the total time spent processing source pages across all cluster nodes.
This processing occurs in parallel across all cluster nodes, so it is normal for the sourcePagePhase
duration to exceed the total reconciliation duration.

sourceQuery

Obtains all IDs on the source system, or in a specific source page.

Note

When the sourceQuery returns a null paging cookie, indicating that there are no more source
IDs to reconcile, the clustered reconciliation process dispatches a scheduled job named
sourcePageCompletionCheck.

This job checks for remaining source page jobs on the scheduler. If there are no remaining source page
jobs, the sourcePageCompletionCheck schedules the target phase. If there are still source page jobs to
process, the sourcePageCompletionCheck schedules another instance of itself to perform these checks again
after a few seconds.

Because the target phase reconciles all IDs that were not reconciled during the source phase, it cannot
start until all of the source pages are complete. Final reconciliation statistics cannot be generated and

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 108

logged until all source page jobs have completed, so the sourcePageCompletionCheck runs even if the target
phase is not enabled.

sourceObjectQuery

Queries the individual objects on the source system or page, based on their IDs.

validSourceScript

Processes any scripts that should be run to determine if a source object is valid to be mapped.

linkQuery

Queries any existing links between source and target objects.

This phase includes the following tasks:

sourceLinkQuery

Queries any existing links from source objects to target objects.

targetLinkQuery

Queries any existing links from target objects that were not processed during the
sourceLinkQuery phase.

linkQualifiersScript

Runs any link qualifier scripts. For more information, see "Map a Single Source Object to
Multiple Target Objects".

onLinkScript

Processes any scripts that should be run when source and target objects are linked.

onUnlinkScript

Processes any scripts that should be run when source and target objects are unlinked.

deleteLinkObject

Deletes any links that are no longer relevant between source and target objects.

correlationQuery

Processes any configured correlation queries. For more information, see "Writing Correlation
Queries".

correlationScript

Processes any configured correlation scripts. For more information, see "Writing Correlation
Scripts".

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 109

defaultMappingScript

For roles, processes the script that applies the effective assignments as part of the mapping.

activePolicyScript

Sets the action and active policy based on the current situation.

activePolicyPostActionScript

Processes any scripts configured to run after policy validation.

targetPhase

The aggregated result for time spent processing records on the target system.

targetQuery

Queries all IDs on the target system. The list of IDs is restricted to IDs that have not already been
linked to a source ID during the source phase. The target query generates a list of orphan IDs
that must be reconciled if the target phase is not disabled.

targetObjectQuery

Queries the individual objects on the target system, based on their IDs.

validTargetScript

Processes any scripts that should be run to determine if a target object is valid to be mapped.

onCreateScript

Processes any scripts that should be run when a new target object is created.

updateTargetObject

Updates existing linked target objects, based on the configured situations and actions.

onUpdateScript

Processes any scripts that should be run when a target object is updated.

deleteTargetObject

Deletes any objects on the target resource that must be removed in accordance with the defined
synchronization actions.

onDeleteScript

Processes any scripts that should be run when a target object is deleted.

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 110

resultScript

Processes the script that is executed for every mapping event, regardless of the operation.

propertyMappingScript

Runs any scripts configured for when source and target properties are mapped.

postMappingScript

Processes any scripts that should be run when synchronization has been performed on the
managed/user object.

onReconScript

Processes any scripts that should be run after source and target systems are reconciled.

auditLog

Writes reconciliation results to the audit log.

For each phase, the following metrics are collected:

count

The number of objects or records processed during that phase. For the sourcePageQuery phase, the
count parameter refers to the page size.

When the count statistic of a particular task refers to the number of records being reconciled, the
sum statistic of that task represents the total time across the total number of threads running in all
nodes in the cluster. For example:
"updateTargetObject": {
 "count": 1000000,
 "max": 1193,
 "mean": 35,
 "min": 11,
 "stdDev": 0,
 "sum": 35065991
}

max

The maximum time, in milliseconds, spent processing a record during that phase.

mean

The average time, in milliseconds, spent processing a record during that phase.

min

The minimum time, in milliseconds, spent processing a record during that phase.

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 111

stdDev

The standard deviation, which measures the variance of the individual values from the mean.

sum

The total amount of time, in milliseconds, spent during that phase.

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 112

IDM Glossary

correlation query A correlation query specifies an expression that matches existing
entries in a source repository to one or more entries in a target
repository. A correlation query might be built with a script, but it
is not the same as a correlation script. For more information, see
"Correlating Source Objects With Existing Target Objects".

correlation script A correlation script matches existing entries in a source repository,
and returns the IDs of one or more matching entries on a target
repository. While it skips the intermediate step associated with a
correlation query, a correlation script can be relatively complex, based
on the operations of the script.

entitlement An entitlement is a collection of attributes that can be added to a user
entry via roles. As such, it is a specialized type of assignment. A user or
device with an entitlement gets access rights to specified resources.
An entitlement is a property of a managed object.

JCE Java Cryptographic Extension, which is part of the Java Cryptography
Architecture, provides a framework for encryption, key generation,
and digital signatures.

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JSON Pointer A JSON Pointer defines a string syntax for identifying a specific value
within a JSON document. For information about JSON Pointer syntax,
see the JSON Pointer RFC.

http://www.json.org
https://tools.ietf.org/html/rfc6901

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 113

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For IDM, the JWT is
associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by IDM.
Managed objects are configurable, JSON-based data structures that
IDM stores in its pluggable repository. The default configuration of
a managed object is that of a user, but you can define any kind of
managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For more information, see What is OSGi? Currently, only the Apache
Felix container is supported.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

role IDM distinguishes between two distinct role types - provisioning roles
and authorization roles. For more information, see "Managed Roles"
in the Object Modeling Guide.

source object In the context of reconciliation, a source object is a data object
on the source system, that IDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, IDM then adjusts the object on the target system (target
object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.osgi.org/resources/what-is-osgi/
http://felix.apache.org/
http://felix.apache.org/

Synchronization Guide ForgeRock Identity Management 7.1 (2023-12-20)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 114

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory is
represented as a system object in IDM for the period during which
IDM requires access to that entry. System objects follow the same
RESTful resource-based design principles as managed objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that IDM scans after locating its corresponding object
on the source system. Depending on the defined mapping, IDM then
adjusts the target object to match the corresponding source object.

	Synchronization Guide
	Table of Contents
	Overview
	Chapter 1. Synchronization Overview
	Types of Synchronization
	Overview of the Synchronization Configuration
	Defining Your Data Mapping Model

	Chapter 2. Configuring Connections Between Resources
	Configure Connectors in the UI
	Edit Connector Configuration Files
	Configure Connectors Over REST

	Chapter 3. Mapping Data Between Resources
	Configure a Resource Mapping
	Remove a Mapping
	Transform Attributes in a Mapping
	Use Scriptable Conditions in a Mapping
	Create Default Attributes in a Mapping
	Map a Single Source Object to Multiple Target Objects
	Prevent the Accidental Deletion of a Target System
	Use Scripts in Mappings
	Construct and Manipulate Attributes With Scripts
	Perform Other Actions With Scripts

	Reuse Links Between Mappings
	Reconcile With Case-Insensitive Data Stores

	Chapter 4. Synchronization Situations and Actions
	How Synchronization Situations Are Assessed
	Source Reconciliation
	Target Reconciliation
	Situations Specific to Implicit Synchronization and LiveSync

	Synchronization Actions
	Launching a Script As an Action
	Launching a Workflow As an Action

	Chapter 5. Correlating Source Objects With Existing Target Objects
	Writing Correlation Queries
	Using Filtered Queries to Correlate Objects
	Create Correlation Queries Using the Expression Builder

	Writing Correlation Scripts

	Chapter 6. Synchronization Operations Over REST
	Manage Reconciliation Over REST
	Triggering a Reconciliation
	Canceling a Reconciliation
	Listing a History of Reconciliations
	Obtaining the Details of a Reconciliation
	Obtaining the Details of a Reconciliation in the Admin UI
	Viewing Reconciliation Association Details
	Purging Reconciliation Statistics From the Repository

	Managing LiveSync Over REST
	Troubleshooting LiveSync Failures
	Triggering LiveSync Through the UI

	Chapter 7. Filter Synchronization Data
	Filter Source and Target Objects With Scripts
	Restrict Reconciliation By Using Queries
	Restrict Reconciliation to a Specific ID
	Restrict Implicit Synchronization to Specific Property Changes

	Chapter 8. Implicit Synchronization and LiveSync
	Disable Automatic Synchronization Operations
	Configure the LiveSync Retry Policy
	Improve Reliability With Queued Synchronization
	Configure Queued Synchronization
	Tune Queued Synchronization
	Manage the Synchronization Queue
	Recover Mappings When Nodes Are Down
	Balance Mapping Locks Across Nodes

	Synchronization Failure Compensation

	Chapter 9. Schedule Synchronization
	Configure Scheduled Synchronization
	Scheduling LiveSync Through the UI

	Chapter 10. Distributing Reconciliation Operations Across a Cluster
	Configuring Clustered Reconciliation for a Mapping
	Viewing Clustered Reconciliation Progress
	Canceling a Clustered Reconciliation Operation

	Chapter 11. Tuning Reconciliation Performance
	Correlate Empty Target Sets
	Prefetch Links
	Run Parallel Reconciliation Threads
	Improve Reconciliation Query Performance
	Paging Reconciliation Query Results

	Chapter 12. Asynchronous Reconciliation
	Appendix A. Synchronization Reference
	Object-Mapping Objects
	Property Objects
	Policy Objects
	Script Object

	Links
	Queries
	Reconciliation
	REST API
	Reconciliation Duration Metrics

	IDM Glossary

