
Object Modeling Guide
/ ForgeRock Identity Management 7

Latest update: 7.0.4

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2020 ForgeRock AS.

Abstract

Guide to creating and managing objects in ForgeRock® Identity Management.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iii

Table of Contents
Overview ... v
1. Managed Objects .. 1

Define the Schema .. 1
Create and Modify Object Types ... 2
Managed Users ... 5
Managed Groups ... 10
Virtual Properties .. 11
Run Scripts on Managed Objects .. 13
Track User Metadata ... 13

2. Relationships Between Objects .. 17
Define a Relationship Type .. 17
Create a Relationship Between Two Objects .. 19
Configure Relationship Change Notification .. 21
Validate Relationships Between Objects .. 25
Create Bidirectional Relationships ... 26
Grant Relationships Conditionally .. 27
View Relationships Over REST .. 28
View Relationships in Graph Form .. 32
Manage Relationships Through the Admin UI .. 33

3. Roles ... 45
IDM Role Types ... 45
Managed Roles .. 46
Manipulate Roles Over REST and in the UI ... 47
Use Temporal Constraints to Restrict Effective Roles .. 59
Use Assignments to Provision Users .. 63
Effective Roles and Effective Assignments ... 69
Roles and Relationship Change Notification .. 71
Managed Role Script Hooks .. 72
Use Groups to Control Access to IDM ... 73

4. Use Policies to Validate Data .. 75
Default Policy for Managed Objects ... 75
Extend the Policy Service .. 84
Disable Policy Enforcement ... 87
Manage Policies Over REST .. 88

5. Store Managed Objects in the Repository .. 94
Repository Configuration Files .. 94
Generic and Explicit Object Mappings ... 102

6. Access Data Objects .. 119
Access Data Objects By Using Scripts ... 119
Access Data Objects By Using the REST API ... 120
Define and Call Data Queries .. 120
Upload Files to the Server .. 139

7. Import Bulk Data ... 143
A. Data Models and Objects Reference .. 149

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. iv

Managed Objects ... 150
Configuration Objects .. 166
System Objects .. 169
Audit Objects ... 169
Links .. 169

IDM Glossary ... 170

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. v

Overview
IDM provides a default schema for typical managed object types, such as users and roles, but does
not control the structure of objects that you store in the repository. In this guide, you will learn how
to change and add to the managed object schema, how to establish relationships between objects,
and how to use policies to validate objects. You will also learn how to access IDM objects using
queries.

Quick Start

Managed Objects

Learn about the IDM architecture,
component modules, and services.

Relationships

Configure relationships
between object types.

Roles

Learn about the role object
—a specific relationship type.

Policies

Apply validation requirements
to objects and properties.

Store Objects

Configure your IDM
repository and map objects
to tables in the repository.

Access Objects

Access data objects over REST,
with scripts, and using queries.

ForgeRock Identity Platform™ serves as the basis for our simple and comprehensive Identity
and Access Management solution. We help our customers deepen their relationships with their
customers, and improve the productivity and connectivity of their employees and partners. For more
information about ForgeRock and about the platform, see https://www.forgerock.com.

The ForgeRock Common REST API works across the platform to provide common ways to access web
resources and collections of resources.

https://www.forgerock.com

Managed Objects
Define the Schema

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 1

Chapter 1

Managed Objects
IDM provides a default schema for typical managed object types, such as users and roles, but does
not control the structure of objects that you store in the repository. You can modify or extend the
schema for the default object types. You can also create new managed object types for any item
that can be collected in a data set. For example, with the right schema, you can set up any device
associated with the Internet of Things (IoT).

These topics describe how to work with the default managed object types and how to create new
object types. For more information about the IDM object model, see "Data Models and Objects
Reference".

• "Define the Schema"

• "Create and Modify Object Types"

• "Managed Users"

• "Managed Groups"

• "Virtual Properties"

• "Run Scripts on Managed Objects"

• "Track User Metadata"

Define the Schema
Managed objects and their properties are defined in the conf/managed.json file. The schema in this file
is not a comprehensive list of all the properties that can be stored in the IDM repository. If you use
a generic object mapping, you can create a managed object with any arbitrary property, and that
property will be stored in the repository. However, if you create an object with properties that are not
defined in conf/managed.json, those properties are not visible in the UI. In addition, you won't be able to
configure the "sub-properties" that are described in the following section.

For explicit object mappings, the schema must be mapped to tables and columns in the JDBC
database or to organizational units in DS. For more information about explicit and generic object
mappings, see "Generic and Explicit Object Mappings".

Managed Objects
Create and Modify Object Types

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 2

Important

The Admin UI depends on the presence of specific core schema elements, such as users, roles, and assignments
(and the default properties nested within them). If you remove such schema elements, and you use the Admin
UI to configure IDM, you must modify the Admin UI code accordingly. For example, if you remove the entire
assignment object from conf/managed.json, the UI will throw exceptions wherever it queries this schema
element.

Create and Modify Object Types
If the managed object types provided in the default configuration are not sufficient for your
deployment, you can create new managed object types. The easiest way to create a new managed
object type is to use the Admin UI, as follows:

1. Select Configure > Managed Objects > New Managed Object.

2. On the New Managed Object page, enter a name and readable title for the object, make optional
changes, as necessary, and click Save. The readable title specifies what the object will be called in
the UI.

3. On the Properties tab, specify the schema for the object type (the properties that make up the
object).

4. On the Scripts tab, specify any scripts that will be applied on events associated with that object
type. For example, scripts that will be run when an object of that type is created, updated, or
deleted.

You can also create a new managed object type by adding its configuration to the conf/managed.json
file.

+ Example: 'Phone' object created through the UI

{
 "name": "Phone",
 "schema": {
 "$schema": "http://forgerock.org/json-schema#",
 "type": "object",
 "properties": {
 "brand": {
 "description": "The supplier of the mobile phone",
 "title": "Brand",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": [
 "string",
 "null"

Managed Objects
Create and Modify Object Types

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 3

]
 },
 "assetNumber": {
 "description": "The asset tag number of the mobile device",
 "title": "Asset Number",
 "viewable": true,
 "searchable": true,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 },
 "model": {
 "description": "The model number of the mobile device, such as 6 plus, Galaxy S4",
 "title": "Model",
 "viewable": true,
 "searchable": false,
 "userEditable": false,
 "policies": [],
 "returnByDefault": false,
 "pattern": "",
 "isVirtual": false,
 "type": "string"
 }
 },
 "required": [],
 "order": [
 "brand",
 "assetNumber",
 "model"
]
 }
}

Every managed object type has a name and a schema that describes the properties associated with that
object. The name can only include the characters a-z, A-Z, 0-9, and _ (underscore). You can add any
arbitrary properties to the schema.

Tip

Avoid using the dash character in property names (like last-name) because dashes in names make JavaScript
syntax more complex. Rather use "camel case" (lastName). If you cannot avoid dash characters, write
source['last-name'] instead of source.last-name in your JavaScript.

A property definition typically includes the following fields:

title

The name of the property, in human-readable language, used to display the property in the UI.

description

A brief description of the property.

Managed Objects
Create and Modify Object Types

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 4

viewable

Specifies whether this property is viewable in the object's profile in the UI. Boolean, true or false
(true by default).

searchable

Specifies whether this property can be searched in the UI. A searchable property is visible within
the Managed Object data grid in the End User UI. Note that for a property to be searchable in the
UI, it must be indexed in the repository configuration. For information on indexing properties in a
repository, see "Generic and Explicit Object Mappings".

Boolean, true or false (false by default).

userEditable

Specifies whether users can edit the property value in the UI. This property applies in the
context of the End User UI, where users are able to edit certain properties of their own accounts.
Boolean, true or false (false by default).

isProtected

Specifies whether reauthentication is required if the value of this property changes.

For certain properties, such as passwords, changing the value of the property should force an end
user to reauthenticate. These properties are referred to as protected properties. Depending on
how the user authenticates (which authentication module is used), the list of protected properties
is added to the user's security context. For example, if a user logs in with the login and password
of their managed user entry (MANAGED_USER authentication module), their security context will
include this list of protected properties. The list of protected properties is not included in the
security context if the user logs in with a module that does not support reauthentication (such as
through a social identity provider).

pattern

Any specific pattern to which the value of the property must adhere. For example, a property
whose value is a date might require a specific date format.

policies

Any policy validation that must be applied to the property. For more information on managed
object policies, see "Default Policy for Managed Objects".

required

Specifies whether the property must be supplied when an object of this type is created. Boolean,
true or false.

Important

The required policy is assessed only during object creation, not when an object is updated. You can
effectively bypass the policy by updating the object and supplying an empty value for that property.

Managed Objects
Managed Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 5

To prevent this inconsistency, set both required and notEmpty to true for required properties. This
configuration indicates that the property must exist, and must have a value.

type

The data type for the property value; can be string, array, boolean, integer, number, object, Resource
 Collection, or null.

Note

If any user might not have a value for a specific property (such as a telephoneNumber), you must include
null as one of the property types. You can set a null property type in the Admin UI (Configure > Managed
Objects > User, select the property, and under the Details tab, Advanced Options, set Nullable to true).

You can also set a null property type directly in your managed.json file by setting "type" : '["string",
"null"]' for that property (where string can be any other valid property type. This information is
validated by the policy.js script, as described in "Validate Managed Object Data Types".

If you're configuring a data type of array through the Admin UI, you're limited to two values.

isVirtual

Specifies whether the property takes a static value, or whether its value is calculated "on the fly"
as the result of a script. Boolean, true or false.

returnByDefault

For non-core attributes (virtual attributes and relationship fields), specifies whether the property
will be returned in the results of a query on an object of this type if it is not explicitly requested.
Virtual attributes and relationship fields are not returned by default. Boolean, true or false. When
the property is in an array within a relationship, always set to false.

relationshipGrantTemporalConstraintsEnforced

For attributes with relationship fields. Specifies whether this relationship should have temporal
constraints enforced. Boolean, true or false. For more information about temporal constraints, see
"Use Temporal Constraints to Restrict Effective Roles".

Managed Users
User objects that are stored in the repository are referred to as managed users. For a
JDBC repository, IDM stores managed users in the managedobjects table. A second table,
managedobjectproperties, serves as the index table.

IDM provides RESTful access to managed users, at the context path /openidm/managed/user. For more
information, see "REST Interface Introduction" in the Installation Guide.

Managed Objects
Managed Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 6

You can add, change, and delete managed users by using the Admin UI or over the REST interface.
To use the Admin UI, select Manage > User. The UI is intuitive as regards user management.

If you are viewing users through the Admin UI, the User List page supports specialized filtering with
the Advanced Filter option. This lets you build many of the queries shown in "Define and Call Data
Queries".

The following examples show how to add, change, and delete users over the REST interface. For
a reference of all managed user endpoints and actions, see "Managed Users" in the REST API
Reference. You can also use the "REST API Explorer" in the REST API Reference as a reference to the
managed object REST API.

Note

Some of the examples in this documentation use client-assigned IDs (such as bjensen and scarter) when
creating objects because it makes the examples easier to read. If you create objects using the Admin UI, they
are created with server-assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). Generally, immutable
server-assigned UUIDs are used in production environments.

+ Retrieve the IDs of all managed users in the repository

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id"
{
 "result": [
 {
 "_id": "bjensen",
 "_rev": "0000000079b78ace"
 },
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7"
 },
 ...
],
 ...
}

+ Query managed users for a specific user

The _queryFilter requires double quotes, or the URL-encoded equivalent (%22), around the search
term. This example uses the URL-encoded equivalent:

Managed Objects
Managed Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 7

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+%22scarter%22"
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 }
],
 ...
}

This example uses single quotes around the URL to avoid conflicts with the double quotes around
the search term:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"scarter"'
{
 "result": [
 {
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
 }
],
 ...
}

+ Retrieve a managed user by their ID

Managed Objects
Managed Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 8

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "0000000070e587a7",
 "userName": "scarter",
 "givenName": "Sam",
 "sn": "Carter",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "scarter@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

+ Add a user with a specific user ID

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--request PUT \
--data '{
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user/bjackson"
{
 "_id": "bjackson",
 "_rev": "0000000055c185c5",
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

+ Add a user with a system-generated ID

Managed Objects
Managed Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 9

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '{
 "userName": "pjensen",
 "sn": "Jensen",
 "givenName": "Pam",
 "mail": "pjensen@example.com",
 "telephoneNumber": "082082082",
 "password": "Passw0rd"
}' \
"http://localhost:8080/openidm/managed/user?_action=create"
{
 "_id": "9d92cdc8-8b22-4037-a344-df960ea66194",
 "_rev": "00000000a4bf9006",
 "userName": "pjensen",
 "sn": "Jensen",
 "givenName": "Pam",
 "mail": "pjensen@example.com",
 "telephoneNumber": "082082082",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

+ Update a user

This example checks whether user bjensen exists, then replaces her telephone number with the
new data provided in the request body:

Managed Objects
Managed Groups

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 10

curl \
--header "Content-Type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/telephoneNumber",
 "value": "0763483726"
 }
]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryFilter=userName+eq+'bjackson'"
{
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "0763483726",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_rev": "000000008c0f8617",
 "_id": "bjackson"
}

+ Delete a user

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/bjackson"
{
 "_id": "bjackson",
 "_rev": "000000008c0f8617",
 "userName": "bjackson",
 "sn": "Jackson",
 "givenName": "Barbara",
 "mail": "bjackson@example.com",
 "telephoneNumber": "0763483726",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": []
}

Managed Groups
Managed groups are not provided by default. To use managed groups, add an object similar to the
following to your object schema:

Managed Objects
Virtual Properties

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 11

{
 "name" : "group"
}

Alternatively, create a new managed object type in the Admin UI.

When you add a managed group object to the schema, you have REST access to managed groups, at /
openidm/managed/group.

For JDBC repositories, IDM stores managed groups with all other managed objects, in the
managedobjects table, and uses the managedobjectproperties for indexing.

For an example of a deployment that uses managed groups, see "Synchronize LDAP Groups" in the
Samples Guide.

Virtual Properties
Properties can be derived from other properties within an object. This lets computed and composite
values be created in the object. Such derived properties are named virtual properties. The value of a
virtual property can be calculated in two ways:

• Using a script called by the onRetrieve script hook. This script then calculates the current value of
the virtual property based on the related properties.

• Using queryConfig to identify the relationship fields to traverse to reach the managed objects whose
state is included in the virtual property, and the fields in these managed objects to include in the
value of the virtual property.

Virtual Properties Using onRetrieve Scripts

The onRetrieve script hook lets you run a script when the object is retrieved. In the case of virtual
properties, this script gets the data from related properties and uses it to calculate a value for the
virtual property. For more information about running scripts on managed objects, see "Run Scripts on
Managed Objects".

Prior to IDM version 7.0, using onRetrieve scripts was the primary method for calculating virtual
properties. This method will continue to work, but is not as performant as using queryConfig. There
may be some cases involving custom logic where a scripted solution is still the preferred answer. For
more information about customizing scripts for role calculation, see Grant a Role By Using Custom
Scripts.

Virtual Properties Using queryConfig

Virtual properties can be calculated by IDM based on relationships and relationship notifications.
This means that rather than calculating the current state when retrieved, the managed object

Managed Objects
Virtual Properties Using queryConfig

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 12

containing the virtual property is notified of changes in a related object, and the virtual property
recalculated when this notification is received. To configure virtual properties to use relationship
notifications, there are two areas that need to be configured:

• The related managed objects need to be configured to use relationship notifications. This lets
IDM know where to send notifications of changes in related objects. For more information, see
"Configure Relationship Change Notification".

• In order to calculate the value of the virtual property, you need configure what relationships to
check, and in what order, when it receives a notification of a change in a related object. This is
done using the queryConfig property.

The queryConfig property tells IDM the sequence of relationship fields it should traverse in order to
calculate (or recalculate) a virtual property, and what fields it should return from that related object.
This is done using two fields:

• referencedRelationshipFields is an array listing a sequence of relationship fields connecting the
current object with the related objects you want to calculate the value of the virtual property from.
The first field in the array is a relationship field belonging to the same managed object as the
virtual property, the second field is a relationship in the managed object referenced by the first
field, and so on.

For example, the referencedRelationshipFields for effectiveAssignments is ["roles","assignments"]. The
first field refers to the roles relationship field in managed/user, which references the managed/role
object. It then refers to the assignments relationship in managed/role, which references the managed/
assignment object. Changes to either related object (managed/role or managed/assignment) will cause
the virtual property value to be recalculated, due to the notify, notifySelf, and notifyRelationships
configurations on managed user, role, and assignment. These configurations ensure that any
changes in the relationships between a user and their roles, or their roles, and their assignments,
as well as any relevant changes to the roles or assignments themselves, such as the modification of
temporal constraints on roles, or attributes on assignments, will be propagated to connected users,
so their effectiveRoles and effectiveAssignments can be recalculated and potentially synced.

• referencedObjectFields is an array of object fields that should be returned as part of the virtual
property. If this property is not included, the returned properties will be a reference for the related
object. To return the entire related object, use *.

Using queryConfig, the virtual property is recalculated when it receives a notice that changes occurred
in the related objects. This can be significantly more efficient than recalculating whenever an object
is retrieved, while still ensuring the state of the virtual property is correct.

Note

When making changes to what object fields to return using referencedObjectFields, the changes will not be
reflected until there is a change in the related object that would trigger the virtual property to be recalculated
(as specified by the notify, notifySelf, and notifyRelationships configurations). The calculated state of the virtual

Managed Objects
Run Scripts on Managed Objects

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 13

property is still correct, but since a change is necessary for the state to be updated, the returned fields will still
be based on the previous configuration.

Run Scripts on Managed Objects
Important

Before implementing a script, it's highly recommended that you validate the script using REST in the Scripting
Guide or the API Explorer in the REST API Reference. Use scripts in a test environment before deploying them
to a production environment.

A number of script hooks let you manipulate managed objects using scripts. Scripts can be triggered
during various stages of the lifecycle of the managed object, and are defined in the managed object
schema.

You can trigger scripts when a managed object is created (onCreate), updated (onUpdate), retrieved
(onRetrieve), deleted (onDelete), validated (onValidate), or stored in the repository (onStore). You
can also trigger a script when a change to a managed object triggers an implicit synchronization
operation (onSync).

Post-action scripts let you manipulate objects after they are created (postCreate), updated
(postUpdate), and deleted (postDelete).

The following sample schema runs a script to check that a role has no members before attempting to
delete the role:
{
 "name" : "role",
 "onDelete" : {
 "type" : "text/javascript",
 "file" : "roles/onDelete-roles.js"
 },

Track User Metadata
Some self-service features, such as progressive profile completion, privacy and consent, and terms
and conditions acceptance, rely on user metadata that tracks information related to a managed object
state. Such data might include when the object was created, or the date of the most recent change,
for example. This metadata is not stored within the object itself, but in a separate resource location.

Because object metadata is stored outside the managed object, state change situations (such as the
time of an update) are separate from object changes (the update itself). This separation reduces
unnecessary synchronization to targets when the only data that has changed is metadata. Metadata
is not returned in a query unless it is specifically requested. Therefore, the volume of data that is
retrieved when metadata is not required, is reduced.

Managed Objects
Track User Metadata

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 14

To specify which metadata you want to track for an object, add a meta stanza to the object definition
in your schema (in the UI or in conf/managed.json). The following default configuration tracks the
createDate and lastChanged date for managed user objects:
{
 "objects" : [
 {
 "name" : "user",
 ...
 "schema" : {
 ...
 },
 "meta" : {
 "property" : "_meta",
 "resourceCollection" : "internal/usermeta",
 "trackedProperties" : [
 "createDate",
 "lastChanged"
]
 },
 ...
 },
 ...
]
}

Important

If you are not using the self-service features that require metadata, you can remove the meta stanza from your
user object definition in managed.json. Preventing the creation and tracking of metadata where it is not required
will improve performance in that scenario.

The metadata configuration includes the following properties:

property

The property that will be dynamically added to the managed object schema for this object.

resourceCollection

The resource location in which the metadata will be stored.

Adjust your repository to match the location you specify here. It's recommended that you use an
internal object path and define the storage in your repo.jdbc.json or repo.ds.json file.

For a JDBC repository, metadata is stored in the metaobjects table by default. The
metaobjectproperties table is used for indexing.

For a DS repository, metadata is stored under ou=usermeta,ou=internal,dc=openidm,dc=forgerock,dc=com
by default.

User objects stored in a DS repository must include the ou specified in the preceding dnTemplate
attribute. For example:

Managed Objects
Track User Metadata

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 15

dn: ou=usermeta,ou=internal,dc=openidm,dc=forgerock,dc=com
objectclass: organizationalunit
objectclass: top
ou: usermeta

trackedProperties

The properties that will be tracked as metadata for this object. In the previous example, the
createDate (when the object was created) and the lastChanged date (when the object was last
modified) are tracked.

You cannot search on metadata and it is not returned in the results of a query unless it is specifically
requested. To return all metadata for an object, include _fields=,_meta/* in your request. The following
example returns a user entry without requesting the metadata:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen"
{
 "_id": "bjensen",
 "_rev": "000000000444dd1a",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

The following example returns the same user entry, with their metadata:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?_fields=,_meta/*"
{
 "_id": "bjensen",
 "_rev": "000000000444dd1a",
 "mail": "bjensen@example.com",
 "givenName": "Barbara",
 "sn": "Jensen",
 "description": "Created By CSV",
 "userName": "bjensen",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 "_meta": {

Managed Objects
Track User Metadata

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 16

 "_ref": "internal/usermeta/284273ff-5e50-4fa4-9d30-4a3cf4a5f642",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "284273ff-5e50-4fa4-9d30-4a3cf4a5f642",
 "_refProperties": {
 "_id": "30076e2e-8db5-4b4d-ab91-5351d2da4620",
 "_rev": "000000001ad09f00"
 },
 "createDate": "2018-04-12T19:53:19.004Z",
 "lastChanged": {
 "date": "2018-04-12T19:53:19.004Z"
 },
 "loginCount": 0,
 "_rev": "0000000094605ed9",
 "_id": "284273ff-5e50-4fa4-9d30-4a3cf4a5f642"
 }
}

Note

Apart from the createDate and lastChanged shown previously, the request also returns the loginCount. This
property is stored by default for all objects, and increments with each login request based on password or
social authentication. If the object for which metadata is tracked is not an object that "logs in," this field will
remain 0.

The request also returns a _meta property that includes relationship information. IDM uses the
relationship model to store the metadata. When the meta stanza is added to the user object definition,
the attribute specified by the property ("property" : "_meta", in this case) is added to the schema as a
uni-directional relationship to the resource collection specified by resourceCollection. In this example,
the user object's _meta field is stored as an internal/usermeta object. The _meta/_ref property shows the
full resource path to the internal object where the metadata for this user is stored.

Relationships Between Objects
Define a Relationship Type

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 17

Chapter 2

Relationships Between Objects
Relationships are references between managed objects. "Roles" are implemented using relationships,
but you can create relationships between any managed object type.

• "Define a Relationship Type"

• "Create a Relationship Between Two Objects"

• "Configure Relationship Change Notification"

• "Validate Relationships Between Objects"

• "Create Bidirectional Relationships"

• "Grant Relationships Conditionally"

• "View Relationships Over REST"

• "View Relationships in Graph Form"

• "Manage Relationships Through the Admin UI"

Define a Relationship Type
Relationships are defined in your managed object schema (in conf/managed.json if you are using the file-
based configuration). The default configuration includes a relationship named manager that lets you
configure a management relationship between two managed users. The manager relationship is a good
example from which to understand how relationships work.

The default manager relationship is configured as follows:
"manager" : {
 "type" : "relationship",
 "validate" : true,
 "reverseRelationship" : true,
 "reversePropertyName" : "reports",
 "description" : "Manager",
 "title" : "Manager",
 "viewable" : true,
 "searchable" : false,
 "usageDescription" : "",
 "isPersonal" : false,

Relationships Between Objects
Define a Relationship Type

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 18

 "properties" : {
 "_ref" : {
 "description" : "References a relationship from a managed object",
 "type" : "string"
 },
 "_refProperties" : {
 "description" : "Supports metadata within the relationship",
 "type" : "object",
 "title" : "Manager _refProperties",
 "properties" : {
 "_id" : {
 "description" : "_refProperties object ID",
 "type" : "string"
 }
 }
 }
 },
 "resourceCollection" : [
 {
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
],
 "userEditable" : false
},

Most of these properties apply to any managed object type. Relationships have the following specific
configurable properties:

type (string)

The object type. Must be relationship for a relationship object.

returnByDefault (boolean true, false)

Specifies whether the relationship should be returned as part of the response. The returnByDefault
property is not specific to relationships. This flag applies to all managed object types. However,
relationship properties are not returned by default, unless explicitly requested.

reverseRelationship (boolean true, false)

Specifies whether this is a bidirectional relationship.

reversePropertyName (string)

The corresponding property name, in the case of a reverse relationship. For example, the manager
property has a reversePropertyName of reports.

Relationships Between Objects
Create a Relationship Between Two Objects

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 19

_ref (JSON object)

Specifies how the relationship between two managed objects is referenced.

In the relationship definition, the value of this property is { "type" : "string" }. In a managed user
entry, the value of the _ref property is the reference to the other resource. The _ref property is
described in more detail in "Create a Relationship Between Two Objects".

_refProperties (JSON object)

Any required properties from the relationship that should be included in the managed object. The
_refProperties field includes a unique ID (_id) and the revision (_rev) of the object. _refProperties
can also contain arbitrary fields to support metadata within the relationship.

resourceCollection (JSON object)

The collection of resources (objects) on which this relationship is based (for example, managed/user
objects).

Create a Relationship Between Two Objects
When you have defined a relationship type, (such as the manager relationship, described in the
previous section), you can reference one managed user from another, using the _ref* relationship
properties. Three properties make up a relationship reference:

• _refResourceCollection specifies the container of the referenced object (for example, managed/user).

• _refResourceId specifies the ID of the referenced object. This is generally a system-generated UUID,
such as 9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb. For clarity, this section uses client-assigned IDs such as
bjensen and psmith.

• _ref is a derived path that is a combination of _refResourceCollection and a URL-encoded _
refResourceId.

For example, imagine that you are creating a new user, psmith, and that psmith's manager will be
bjensen. You would add psmith's user entry, and reference bjensen's entry with the _ref property, as
follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "If-None-Match: *" \
--header "Content-Type: application/json" \
--request PUT \
--data '{
 "sn":"Smith",
 "userName":"psmith",

Relationships Between Objects
Create a Relationship Between Two Objects

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 20

 "givenName":"Patricia",
 "displayName":"Patti Smith",
 "description" : "psmith - new user",
 "mail" : "psmith@example.com",
 "phoneNumber" : "0831245986",
 "password" : "Passw0rd",
 "manager" : {"_ref" : "managed/user/bjensen"}
}' \
"http://localhost:8080/openidm/managed/user/psmith"
{
 "_id": "psmith",
 "_rev": "00000000ec41097c",
 "sn": "Smith",
 "userName": "psmith",
 "givenName": "Patricia",
 "displayName": "Patti Smith",
 "description": "psmith - new user",
 "mail": "psmith@example.com",
 "phoneNumber": "0831245986",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
}

Note that relationship information is not returned by default. To show the relationship in psmith's
entry, you must explicitly request her manager entry, as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager"
{
 "_id": "psmith",
 "_rev": "00000000ec41097c",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "ffc6f0f3-93db-4939-b9eb-1f8389a59a52",
 "_rev": "0000000081aa991a"
 }
 }
}

If a relationship changes, you can query the updated relationship state when any referenced managed
objects are queried. So, after creating user psmith with manager bjensen, a query on bjensen's user
entry will show a reference to psmith's entry in her reports property (because the reports property is
configured as the reversePropertyName of the manager property). The following query shows the updated
relationship state for bjensen:

Relationships Between Objects
Configure Relationship Change Notification

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 21

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?_fields=reports"
{
 "_id": "bjensen",
 "_rev": "0000000057b5fe9d",
 "reports": [
 {
 "_ref": "managed/user/psmith",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "psmith",
 "_refProperties": {
 "_id": "ffc6f0f3-93db-4939-b9eb-1f8389a59a52",
 "_rev": "0000000081aa991a"
 }
 }
]
}

IDM maintains referential integrity by deleting the relationship reference, if the object referred to
by that relationship is deleted. In our example, if bjensen's user entry is deleted, the corresponding
reference in psmith's manager property is removed.

Configure Relationship Change Notification
A relationship exists between two managed objects. By default, when a relationship changes (when
it is created, updated, or deleted), the managed objects on either side of the relationship are not
notified of that change. This means that the state of each object with respect to that relationship field
is not recalculated until the object is read. This default behavior improves performance, especially in
the case where many objects are affected by a single relationship change.

For roles, a special kind of relationship, change notification is configured by default. The purpose of
this default configuration is to notify managed users when any of the relationships that link users,
roles, and assignments are manipulated. For more information about relationship change notification
in the specific case of managed roles, see "Roles and Relationship Change Notification".

To change the default configuration, or to set up notification for other relationship changes, use the
notify* properties in the relationship definition, as described in this section.

A relationship exists between an origin object and a referenced object. These terms reflect which
managed object is specified in the URL (for example managed/user/psmith), and which object is
referenced by the relationship (_ref*) properties. For more information about the relationship
properties, see "Create a Relationship Between Two Objects".

In the previous example, a PUT on managed/user/psmith with "manager" : {_ref : "managed/user/bjensen"},
causes managed/user/psmith to be the origin object, and managed/user/bjensen to be the referenced object
for that relationship, as shown in the following illustration:

Relationships Between Objects
Configure Relationship Change Notification

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 22

Relationship Objects

m anaged/user/psm ith

("m anager" : { _ref : "m anaged/user/bjensen"})

origin object

relat ionship

m anaged/user/bjensen

re ferenced object

Note that for the reverse relationship (a PUT on managed/user/bjensen with "reports" : [{_ref = "managed/
user/psmith"}]) managed/user/bjensen would be the origin object, and managed/user/psmith would be the
referenced object.

By default, when a relationship changes, neither the origin object nor the referenced object is notified
of the change. So, with the PUT on managed/user/psmith with "manager" : {_ref : "managed/user/bjensen"},
neither psmith's object nor bjensen's object is notified.

Note

Auditing is not tied to relationship change notification and is always triggered when a relationship changes.
Therefore, relationship changes are audited, regardless of the notify and notifySelf properties.

To configure relationship change notification, set the notify and notifySelf properties in your managed
object schema. These properties specify whether objects that reference relationships are notified of a
relationship change:

notifySelf

Notifies the origin object of the relationship change.

In our example, if the manager definition includes "notifySelf" : true, and if the relationship is
changed through a URL that references psmith, then psmith's object would be notified of the
change. For example, for a CREATE, UPDATE or DELETE request on the psmith/manager, psmith
would be notified, but the managed object referenced by this relationship (bjensen) would not be
notified.

If the relationship were manipulated through a request to bjensen/reports, then bjensen would only
be notified if the reports relationship specified "notifySelf" : true.

notify

Notifies the referenced object of the relationship change.

Set this property on the resourceCollection of the relationship property. In our example, assume
that the manager definition has a resourceCollection with a path of managed/user, and that this object

Relationships Between Objects
Configure Relationship Change Notification

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 23

specifies "notify" : true. If the relationship changes through a CREATE, UPDATE, or DELETE on
the URL psmith/manager, then the reference object (managed/user/bjensen) would be notified of the
change to the relationship.

notifyRelationships

This property controls the propagation of notifications out of a managed object when one of
its properties changes through an update or patch, or when that object receives a notification
through one of these fields.

The notifyRelationships property takes an array of relationships as a value; for example,
"notifyRelationships" : ["relationship1", "relationship2"]. The relationships specified here are fields
defined on the managed object type (which might itself be a relationship).

Notifications are propagated according to the recipient’s notifyRelationships configuration. If a
managed object type is notified of a change through one if its relationship fields, the notification
is done according to the configuration of the recipient object. To illustrate, look at the attributes
property in the default managed/assignment object:
{
 "name" : "assignment",
 "schema" : {
 ...
 "properties" : {
 ...
 "attributes" : {
 "description" : "The attributes operated on by this assignment.",
 "title" : "Assignment Attributes",
 ...
 "notifyRelationships" : ["roles"]
 },
...

This configuration means that if an assignment is updated or patched, and the assignment's
attributes change in some way, all the roles connected to that assignment are notified. Because
the role managed object has "notifyRelationships" : ["members"] defined on its assignments field,
the notification that originated from the change to the assignment attribute is propagated to the
connected roles, and then out to the members of those roles.

So, the role is notified through its assignments field because an attribute in the assignment
changed. This notification is propagated out of the members field because the role definition has
"notifyRelationships" : ["members"] on its assignments field.

By default, roles, assignments, and members use relationship change notification to ensure that
relationship changes are accurately provisioned.

For example, the default user object includes a roles property with notifySelf set to true:

Relationships Between Objects
Configure Relationship Change Notification

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 24

{
 "name" : "user",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "roles" : {
 "description" : "Provisioning Roles",
 ...
 "items" : {
 "type" : "relationship",
 ...
 "reverseRelationship" : true,
 "reversePropertyName" : "members",
 "notifySelf" : true,
 ...
 }
...

In this case, notifySelf indicates the origin or user object. If any changes are made to a relationship
referencing a role through a URL that includes a user, the user will be notified of the change. For
example, if there is a CREATE on managed/user/psmith/roles which specifies a set of references to
existing roles, user psmith will be notified of the change.

Similarly, the role object includes a members property. That property includes the following schema
definition:
{
 "name" : "role",
 ...
 "schema" : {
 ...
 "properties" : {
 ...
 "members" : {
 ...
 "items" : {
 "type" : "relationship",
 ...
 "properties" : {
 ...
 "resourceCollection" : [
 {
 "notify" : true,
 "path" : "managed/user",
 "label" : "User",
 ...
 }
]
 }
...

Notice the "notify" : true setting on the resourceCollection. This setting indicates that if the
relationship is created, updated, or deleted through a URL that references that role, all objects in

Relationships Between Objects
Validate Relationships Between Objects

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 25

that resource collection (in this case, managed/user objects) that are identified as members of that role
must be notified of the change.

Important

• To notify an object at the end of a relationship that the relationship has changed (using the notify property),
the relationship must be bidirectional ("reverseRelationship" : true).

When an object is notified of a relationship state change (create, delete, or update), part of that notification
process involves calculating the changed object state with respect to the changed relationship field. For
example, if a managed user is notified that a role has been created, the user object calculates its base state,
and the state of its roles field, before and after the new role was created. This before and after state is then
reconciled. An object that is referenced by a forward (unidirectional) relationship does not have a field that
references that relationship; the object is "pointed-to", but does not "point-back". Because this object cannot
calculate its before and after state with respect to the relationship field, it cannot be notified.

Similarly, relationships that are notified of changes to the objects that reference them must be bidirectional
relationships.

If you configure relationship change notification on a unidirectional relationship, IDM throws an exception.

• You cannot configure relationship change notification in the Admin UI; you must update the managed object
schema in the conf/managed.json file directly.

Validate Relationships Between Objects
Optionally, you can specify that a relationship between two objects must be validated when the
relationship is created. For example, you can indicate that a user cannot reference a role, if that role
does not exist.

When you create a new relationship type, validation is disabled by default, because it involves
an expensive query to the relationship that is not always required. To configure validation of a
referenced relationship, set "validate": true in the schema. The default managed.json files provided with
the sample configurations enable validation for the following relationships:

• For user objects ‒ roles, managers, and reports

• For role objects ‒ members and assignments

• For assignment objects ‒ roles

The following configuration of the manager relationship enables validation, and prevents a user from
referencing a manager that has not already been created:
"manager" : {
 "type" : "relationship",
 ...
 "validate" : true,

Relationships Between Objects
Create Bidirectional Relationships

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 26

Create Bidirectional Relationships
In most cases, you define a relationship between two objects in both directions. For example, a
relationship between a user and his manager might indicate a reverse relationship between the
manager and her direct report. Reverse relationships are particularly useful for queries. You might
want to query jdoe's user entry to discover who his manager is, or query bjensen's user entry to
discover all the users who report to bjensen.

You declare a reverse relationship as part of the relationship definition. Consider the following
sample excerpt of the default managed object configuration:
"reports" : {
 "description" : "Direct Reports",
 "title" : "Direct Reports",
 ...
 "type" : "array",
 "returnByDefault" : false,
 "items" : {
 "type" : "relationship",
 "reverseRelationship" : true,
 "reversePropertyName" : "manager",
 "validate" : true,
 ...
 }
...

The reports property is a relationship between users and managers. So, you can refer to a managed
user's reports by referencing the reports. However, the reports property is also a reverse relationship
("reverseRelationship" : true) which means that you can list all users that reference that report.

You can list all users whose manager property is set to the currently queried user.

The reverse relationship includes an optional resourceCollection that lets you query a set of objects,
based on specific fields:
"resourceCollection" : [
 {
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]

The path property of the resourceCollection points to the set of objects to be queried. If this path is
not in the local repository, the link expansion can incur a significant performance cost. Although the
resourceCollection is optional, the same performance cost is incurred if the property is absent.

Relationships Between Objects
Grant Relationships Conditionally

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 27

The query property indicates how you will query this resource collection to configure the relationship.
In this case, "queryFilter" : "true", indicates that you can search on any of the properties listed in the
fields array when you are assigning a manager to a user or a new report to a manager. To configure
these relationships from the Admin UI, see "Manage Relationships Through the Admin UI".

Grant Relationships Conditionally
Relationships can be granted dynamically, based on a specified condition. In order to conditionally
grant a relationship, the schemas for the resources you are creating a relationship between need to
be configured to support conditional association. To do this, three fields in the schema are used:

conditionalAssociation

Boolean. This property is applied to the resourceCollection for the grantor of the relationship. For
example, the members relationship on managed/role specifies that there is a conditional association
with the managed/user resource:
"resourceCollection" : [
 {
 "notify" : true,
 "conditionalAssociation" : true,
 "path" : "managed/user",
 "label" : "User",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]

conditionalAssociationField

This property is a string, specifying the field used to determine whether a conditional relationship
is granted. The field is applied to the resourceCollection of the grantee of the relationship. For
example, the roles relationship on managed/user specifies that the conditional association with
managed/role is defined by the condition field in managed/role:

Relationships Between Objects
View Relationships Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 28

"resourceCollection" : [
 {
 "path" : "managed/role",
 "label" : "Role",
 "conditionalAssociationField" : "condition",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "name"
]
 }
 }
]

The field name specified will usually be condition if you are using default schema, but can be any
field that evaluates a condition and has been flagged as isConditional.

isConditional

Boolean. This is applied to the field you wish to check to determine whether membership in
a relationship is granted. Only one field on a resource can be marked as isConditional. For
example, in the relationship between managed/user and managed/role, conditional membership in the
relationship is determined by the query filter specified in the managed/role condition field:
"condition" : {
 "description" : "A conditional filter for this role",
 "title" : "Condition",
 "viewable" : false,
 "searchable" : false,
 "isConditional" : true,
 "type" : "string"
}

Conditions can be a powerful tool for dynamically creating relationships between two objects. An
example of conditional relationships in use can be seen in Grant a Role Based on a Condition.

View Relationships Over REST
By default, information about relationships is not returned as the result of a GET request on a
managed object. You must explicitly include the relationship property in the request, for example:

Relationships Between Objects
View Relationships Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 29

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 }
}

To obtain more information about the referenced object (psmith's manager, in this case), you can
include additional fields from the referenced object in the query, using the syntax object/property (for
a simple string value) or object/*/property (for an array of values).

The following example returns the email address and contact number for psmith's manager:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=manager/mail,manager/telephoneNumber"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "manager": {
 "_rev": "000000005bac8c10",
 "_id": "bjensen",
 "telephoneNumber": "12345678",
 "mail": "bjensen@example.com",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 }
}

To query all the relationships associated with a managed object, query the reference (*_ref) property
of that object. For example, the following query shows all the objects that are referenced by psmith's
entry:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \

Relationships Between Objects
View Relationships Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 30

--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=*_ref"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "reports": [],
 "manager": {
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 },
 "roles": [],
 "_meta": {
 "_ref": "internal/usermeta/601a3086-8c64-4966-b33c-7a213b13d859",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "601a3086-8c64-4966-b33c-7a213b13d859",
 "_refProperties": {
 "_id": "9de71bd7-1e1b-462e-b565-ac0a7d2f9269",
 "_rev": "0000000037f79a00"
 }
 },
 "authzRoles": [],
 "_notifications": [
 {
 "_ref": "internal/notification/3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refResourceCollection": "internal/notification",
 "_refResourceId": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refProperties": {
 "_id": "f54b6f84-7d3f-4486-a7c1-676fca03eeab",
 "_rev": "00000000748da107"
 }
 }
]
}

To expand that query to show all fields within each relationship, add a wildcard as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/psmith?_fields=*_ref/*"
{
 "_id": "psmith",
 "_rev": "0000000014c0b68d",
 "reports": [],
 "manager": {
 "_rev": "000000005bac8c10",
 "_id": "bjensen",
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "telephoneNumber": "12345678",

Relationships Between Objects
View Relationships Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 31

 "active": "true",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveAssignments": [],
 "effectiveRoles": [],
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "42418f09-ad6c-4b77-bf80-2a12d0c44678",
 "_rev": "00000000288b921e"
 }
 },
 "roles": [],
 "_meta": {
 "_rev": "0000000079e86d8d",
 "_id": "601a3086-8c64-4966-b33c-7a213b13d859",
 "createDate": "2020-07-29T08:52:20.061794Z",
 "lastChanged": {
 "date": "2020-07-29T11:52:16.424167Z"
 },
 "loginCount": 0,
 "_ref": "internal/usermeta/601a3086-8c64-4966-b33c-7a213b13d859",
 "_refResourceCollection": "internal/usermeta",
 "_refResourceId": "601a3086-8c64-4966-b33c-7a213b13d859",
 "_refProperties": {
 "_id": "9de71bd7-1e1b-462e-b565-ac0a7d2f9269",
 "_rev": "0000000037f79a00"
 }
 },
 "authzRoles": [],
 "_notifications": [
 {
 "_rev": "00000000d93a6598",
 "_id": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "notificationType": "info",
 "message": "Your profile has been updated.",
 "createDate": "2020-07-29T11:52:16.517200Z",
 "_ref": "internal/notification/3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refResourceCollection": "internal/notification",
 "_refResourceId": "3000bb64-4619-490a-8c4b-50ae7ca6b20c",
 "_refProperties": {
 "_id": "f54b6f84-7d3f-4486-a7c1-676fca03eeab",
 "_rev": "00000000748da107"
 }
 }
]
}

Relationships Between Objects
View Relationships in Graph Form

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 32

Note

Metadata is implemented using the relationships mechanism so when you request all relationships for a user
(with _ref/), you will also get all the metadata for that user, if metadata is being tracked. For more information,
see "Track User Metadata".

View Relationships in Graph Form
The Identity Relationships widget gives a visual display of the relationships between objects.

This widget is not displayed on any dashboard by default. You can add it as follows:

1. Log in to the Admin UI.

2. Select Dashboards, and choose the dashboard to which you want to add the widget.

For more information about managing dashboards in the UI, see "Manage Dashboards" in the
Setup Guide.

3. Select Add Widget.

4. In the Add Widget window, scroll down to the Utilities item, select Identity Relationships, then
click Settings.

5. Choose the Widget Size (small, medium, or large).

6. From the Chart Type list, select Collapsible Tree Layout or Radial Layout.

The Collapsible Tree Layout looks something like this:

The Radial Layout looks something like this:

7. Select the object for which you want to display relationships, for example, User.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 33

8. Select the property or properties that will be used to search on that object, and that will be
displayed in the widget, for example, userName and city.

Optionally, select Preview for an idea of what the data represented by widget will look like. Select
Settings to return to the Add Widget window.

9. Click Add to add the widget to the dashboard.

When you have added the Identity Relationships widget, select the user whose relationships you want
to search.

The following graph shows all of imartinez's relationships. The graph shows imartinez's manager and
her direct reports.

Select or deselect the Data Types on the left of the screen to control how much information is
displayed.

Select and move the graph for a better view. Double-click on any user in the graph to view that user's
profile.

Manage Relationships Through the Admin UI
This section describes how to set up relationships between managed objects by using the Admin UI.
You can set up a relationship between any object types. The examples in this section demonstrate
how to set up a relationship between users and devices, such as IoT devices.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 34

For illustration purposes, these examples assume that you have started IDM and already have some
managed users. If this is not the case, start the server with the sample configuration described
in "Synchronize Data From a CSV File to IDM" in the Samples Guide, and run a reconciliation to
populate the managed user repository.

In the following procedures, you will:

• Create a new managed object type named Device and add a few devices, each with unique serial
numbers (see "Create a New Device Object Type").

• Set up a bidirectional relationship between the Device object and the managed User object (see
"Configure the Relationship Between a Device and a User").

• Demonstrate the relationships, assign devices to users, and show relationship validation (see
"Demonstrate the Relationship").

Create a New Device Object Type

This procedure illustrates how to set up a new Device managed object type, adding properties to
collect information such as model, manufacturer, and serial number for each device. In the next
procedure, you will set up the relationship.

1. Click Configure > Managed Objects > New Managed Object.

Give the object an appropriate name and Readable Title. For this procedure, specify Device for
both these fields.

Enter a description for the object, select an icon that represents the object, and click Save.

You should now see three tabs: Properties, Details, and Scripts. Select the Properties tab.

2. Click Add a Property to set up the schema for the device.

For each property, enter a Name, and Label, select the data Type for the property, and specify
whether that property is required for an object of this type.

For the purposes of this example, include the properties shown in the following image: model,
serialNumber, manufacturer, description, and category.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 35

When you save the properties for the new managed object type, IDM saves those entries in your
project's conf/managed.json file.

3. Now select Manage > Device > New Device and add a device as shown in the following image:

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 36

4. Continue adding new devices to the Device object.

When you have finished, select Manage > Device to view the complete list of Devices.

The remaining procedures in this section assume that you have added devices similar to the
following:

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 37

5. (Optional) To change the order in which properties of the Device managed object are displayed,
select Configure > Managed Objects > Device. Select the property that you want to move and
drag it up or down the list.

Alternatively, you can make the same changes to this schema (or any managed object schema) in
your project's conf/managed.json file.

Configure the Relationship Between a Device and a User

To set up a relationship between the Device object type and the User object type, you must identify
the specific property on each object that will form the basis of the relationship. For example, a device
must have an owner and a user can own one or more devices. The property type for each of these
must be relationship.

In this procedure, you will update the managed Device object type to add a new Relationship type
property named owner. You will then link that property to a new property on the managed User object,
named device. At the end of the procedure, the updated object types will look as follows:

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 38

Relationship Properties on User and Device Objects

1. Create a new relationship property on the Device object:

a. Select Configure > Managed Objects and select the Device object that you created
previously.

b. On the Properties tab, add a new property named owner. Select Relationship as the property
Type. Select Required, as all device objects must have an owner:

Note

You cannot change the Type of a property after it has been created. If you create the property with an
incorrect Type, you must delete the property and recreate it.

2. When you have saved the Owner property, select it to show the relationship on the Details tab:

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 39

3. Click the + Related Resource item and select user as the Resource.

This sets up a relationship between the new Device object and the managed User object.

Under Display Properties, select all of the properties of the user object that should be visible
when you display a user's devices in the UI. For example, you might want to see the user's name,
email address and telephone number.

Note that this list of Display Properties also specifies how you can search for user objects when
you are assigning a device to a user.

Click Show advanced options. Notice that the Query Filter field is set to true. This setting allows
you to search on any of the Display Properties that you have selected, when you are assigning a
device to a user.

Click Save to continue.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 40

You now have a one-way relationship between a device and a user.

4. Click the + Two-way Relationship item to configure the reverse relationship:

a. Select Has Many to indicate that a single user can have more than one device.

b. In the Reverse property name field, enter the new property name that will be created in the
managed User object type. As shown in "Relationship Properties on User and Device Objects",
that property is device in this example.

c. Under Display Properties, select all of the properties of the device object that should be
visible when you display a user in the UI. For example, you might want to see the model and
serial number of each device.

d. Click Show advanced options. Notice that the Query Filter field is set to true. This setting
allows you to search on any of the Display Properties that you have selected, when you are
assigning a device to a user.

e. Select Validate relationship.

This setting ensures that the relationship is valid when a device is assigned to a user. IDM
verifies that both the user and device objects exist, and that that specific device has not
already been assigned to user.

f. Click Save to continue.

5. You should now have the following reverse relationship configured between User objects and
Device objects:

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 41

Select Configure > Managed Objects > User.

Scroll down to the end of the Properties tab and notice that the device property was created
automatically when you configured the relationship.

Demonstrate the Relationship

This procedure demonstrates how devices can be assigned to users, based on the relationship
configuration that you set up in the previous two procedures.

1. Select Manage > User, click on a user entry and select the new Device tab.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 42

2. Click Add Device and click in the Device field to display the list of devices that you added in the
previous procedure.

3. Select two devices and click Add.

4. On the Device tab, click the Show Chart icon at the top right.

A graphical representation of the relationship between the user and her devices is displayed:

5. You can also assign an owner to a device.

Select Manage > Device, and select one of the devices that you did not assign in the previous
step.

Click Add Owner and search for the user to whom the device should be assigned.

6. To demonstrate the relationship validation, try to assign a device that has already been assigned
to a different user.

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 43

The UI displays the error: Conflict with Existing Relationship.

View the Relationship Configuration in the UI

The Managed Objects Relationship Diagram provides a visual display of the relationship configuration
between managed objects. Unlike the Identity Relationships widget, described in "View Relationships
in Graph Form", this widget does not show the actual relationship data, but rather shows the
configured relationship types.

This widget is not displayed on any dashboard by default. You can add it as follows:

1. Log in to the Admin UI.

2. Select Dashboards, and choose the dashboard to which you want to add the widget.

For more information about managing dashboards in the UI, see "Manage Dashboards" in the
Setup Guide.

3. Select Add Widget.

4. In the Add Widget window, scroll down to the Utilities item and select Managed Objects
Relationship Diagram.

There are no configurable settings for this widget.

5. The Preview button shows the current relationship configuration. The following image shows the
relationship configuration for a basic IDM installation with no specific configuration:

The legend indicates which relationships are required, which are optional, and which are one to
one or one to many. In the default relationship configuration shown in the previous image, you

Relationships Between Objects
Manage Relationships Through the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 44

can see that a user can have one or more roles and a role can have one or more users. A manager
can have one or more reports but a user can have only one manager. There are no mandatory
relationships in this default configuration.

Roles
IDM Role Types

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 45

Chapter 3

Roles
The managed role object is a default managed object type that uses the relationships mechanism. You
should understand how relationships work before you read about IDM roles.

• "IDM Role Types"

• "Managed Roles"

• "Manipulate Roles Over REST and in the UI"

• "Use Temporal Constraints to Restrict Effective Roles"

• "Use Assignments to Provision Users"

• "Effective Roles and Effective Assignments"

• "Roles and Relationship Change Notification"

• "Managed Role Script Hooks"

• "Use Groups to Control Access to IDM"

IDM Role Types
IDM supports two types of roles:

• Provisioning roles: used to specify how objects are provisioned to an external system.

Provisioning roles are created as managed roles, at the context path openidm/managed/role/role-name,
and are granted to managed users as values of the user's roles property.

• Authorization roles: used to specify the authorization rights of a managed object internally, within
IDM.

Authorization roles are created as internal roles, at the context path openidm/internal/role/role-name,
and are granted to managed users as values of the user's authzRoles property.

Provisioning roles and authorization roles use relationships to link the role to the managed object to
which it applies. Authorization roles can also be granted statically, during authentication, with the
defaultUserRoles property. For more information, see "Authentication and Roles" in the Security Guide.

Roles
Managed Roles

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 46

Managed Roles
These sections describe how to create and use provisioning roles. For information about internal
authorization roles, and how IDM controls authorization to its own endpoints, see "Authorization and
Roles" in the Security Guide.

Managed roles are defined like any other managed object, and are granted to users through the
relationships mechanism.

A managed role can be granted manually, as a static value of the user's roles attribute, or
dynamically, as a result of a condition or script. For example, a user might be granted a role such as
sales-role dynamically, if that user is in the sales organization.

A user's roles attribute takes an array of references as a value, where the references point to the
managed roles. For example, if user bjensen has been granted two roles (employee and supervisor), the
value of bjensen's roles attribute would look something like the following:
"roles": [
 {
 "_ref": "managed/role/employee",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "employee",
 "_refProperties": {
 "_grantType": "",
 "_id": "bb399428-21a9-4b01-8b74-46a7ac43e0be",
 "_rev": "00000000e43e9ba7"
 }
 },
 {
 "_ref": "managed/role/supervisor",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "supervisor",
 "_refProperties": {
 "_grantType": "",
 "_id": "9f7d124b-c7b1-4bcf-9ece-db4900e37c31",
 "_rev": "00000000e9c19d26"
 }
 }
]

The _refResourceCollection is the container that holds the role. The _refResourceId is the ID of the role.
The _ref property is a resource path that is derived from the _refResourceCollection and the URL-
encoded _refResourceId. _refProperties provides more information about the relationship.

Important

Some of the examples in this documentation set use client-assigned IDs (such as bjensen and scarter) for the
user objects because it makes the examples easier to read. If you create objects using the Admin UI, they are
created with server-assigned IDs (such as 55ef0a75-f261-47e9-a72b-f5c61c32d339). This particular example
uses a client-assigned role ID that is the same as the role name. All other examples in this chapter use server-

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 47

assigned IDs. Generally, immutable server-assigned UUIDs are used for all managed objects in production
environments.

Manipulate Roles Over REST and in the UI
These sections show the REST calls to create, read, update, and delete managed roles, and to grant
roles to users. For information about using roles to provision users to external systems, see "Use
Assignments to Provision Users".

Note that the easiest way to work with roles is to use the Admin UI.

+ Create a Role

To create a role, send a PUT or POST request to the /openidm/managed/role context path. The
following example creates a managed role named employee:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}

This employee role has no corresponding assignments. Assignments are what enables the
provisioning logic to the external system. Assignments are created and maintained as separate
managed objects, and are referred to within role definitions. For more information about
assignments, see "Use Assignments to Provision Users".

To create a role through the Admin UI:

1. Select Manage > Role and select New Role on the Role List page.

2. Enter a name and description for the new role and select Save.

3. Optionally, select Temporal Constraint to restrict the role grant to a set time period
or Condition to define a query filter that will allow the role to be granted to members
dynamically.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 48

For more information, see "Use Temporal Constraints to Restrict Effective Roles" and Grant
Roles Dynamically.

+ List Roles

To list all managed roles over REST, query the openidm/managed/role endpoint. The following
example shows the employee role that you created in the previous example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role?_queryFilter=true"
{
 "result": [
 {
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
 }
],
 ...
}

To display all configured managed roles in the Admin UI, select Manage > Role.

If you have a large number of roles, select Advanced Filter to build a more complex query filter to
display only the roles you want.

+ Grant Roles to a User

You grant roles to users through the relationship mechanism. Relationships are essentially
references from one managed object to another; in this case from a user object to a role object.
For more information about relationships, see "Relationships Between Objects".

You can grant roles statically or dynamically.

To grant a role statically, you must do one of the following:

• Update the value of the user's roles property to reference the role.

• Update the value of the role's members property to reference the user.

For more information see To Grant Roles Statically.

Dynamic role grants use the result of a condition or script to update a user's list of roles. For more
information, see Grant Roles Dynamically.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 49

+ To Grant Roles Statically

Grant a role to a user statically using the REST interface or the Admin UI as follows:

Over REST

Use one of the following methods to grant a role to a user over REST:

• Update the user's roles property to refer to the role.

The following example grants the employee role (with ID 5790220a-719b-49ad-96a6-
6571e63cbaf1) to user scarter:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/roles/-",
 "value": {"_ref" : "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"}
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "000000003be825ce",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
 }
],
 "effectiveAssignments": []
}

Note that scarter's effectiveRoles attribute has been updated with a reference to the new
role. For more information about effective roles and effective assignments, see "Effective
Roles and Effective Assignments".

When you update a user's existing roles array, use the - special index to add the new
value to the set. For more information, see Set semantic arrays in "Patch Operation:
Add" in the REST API Reference.

• Update the role's members property to refer to the user.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 50

The following sample command makes scarter a member of the employee role:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/members/-",
 "value": {"_ref" : "managed/user/scarter"}
 }
]' \
"http://localhost:8080/openidm/managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "description": "Role granted to workers on the company payroll"
}

The members property of a role is not returned by default in the output. To show all
members of a role, you must specifically request the relationship properties (*_ref) in
your query. The following example lists the members of the employee role (currently only
scarter):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1?
_fields=*_ref,name"
{
 "_id": "5790220a-719b-49ad-96a6-6571e63cbaf1",
 "_rev": "0000000079c6644f",
 "name": "employee",
 "assignments": [],
 "members": [
 {
 "_ref": "managed/user/scarter",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "scarter",
 "_refProperties": {
 "_id": "7ad15a7b-6806-487b-900d-db569927f56d",
 "_rev": "0000000075e09cbf"
 }
 }
]
}

• You can replace an existing role grant with a new one by using the replace operation in
your patch request.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 51

The following command replaces scarter's entire roles entry (that is, overwrites any
existing roles) with a single entry, the reference to the employee role (ID 5790220a-719b-
49ad-96a6-6571e63cbaf1):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "replace",
 "field": "/roles",
 "value": [
 {"_ref":"managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"}
]
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "00000000da112702",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/5790220a-719b-49ad-96a6-6571e63cbaf1"
 }
],
 "effectiveAssignments": []
}

Using the Admin UI

Use one of the following UI methods to grant a role to a user:

• Update the user entry:

1. Select Manage > User and select the user to whom you want to grant the role.

2. Select the Provisioning Roles tab and select Add Provisioning Roles.

3. Select the role from the dropdown list and select Add.

• Update the role entry:

1. Select Manage > Role and select the role that you want to grant.

2. Select the Role Members tab and select Add Role Members.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 52

3. Select the user from the dropdown list and select Add.

+ Grant Roles Dynamically

Grant a role dynamically by using one of the following methods:

• Use a condition, expressed as a query filter, in the role definition. If the condition is true
for a particular member, that member is granted the role. Conditions can be used in both
managed and internal roles.

• Use a custom script to define a more complex role-granting strategy.

+ Grant a Role Based on a Condition

A role that is granted based on a defined condition is called a conditional role. To create a
conditional role, include a query filter in the role definition.

Important

Properties that are used as the basis of a conditional role query must be configured as searchable
and must be indexed in the repository configuration. To configure a property as searchable, update
the schema in your conf/managed.json file. For more information, see "Create and Modify Object
Types".

To create a conditional role by using the Admin UI, select Condition on the role Details
page, then define the query filter that will be used to assess the condition.

To create a conditional role over REST, include the query filter as a value of the condition
property in the role definition. The following example creates a role, fr-employee, that will
be granted only to those users who live in France (whose country property is set to FR):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "fr-employee",
 "description": "Role granted to employees resident in France",
 "condition": "/country eq \"FR\""
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "eb18a2e2-ee1e-4cca-83fb-5708a41db94f",
 "_rev": "000000004085704c",
 "name": "fr-employee",
 "description": "Role granted to employees resident in France",
 "condition": "/country eq \"FR\""
}

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 53

When a conditional role is created or updated, IDM automatically assesses all managed
users, and recalculates the value of their roles property, if they qualify for that role. When
a condition is removed from a role, that is, when the role becomes an unconditional role,
all conditional grants are removed. So, users who were granted the role based on the
condition, have that role removed from their roles property.

Caution

When a conditional role is defined in an existing data set, every user entry (including the mapped
entries on remote systems) must be updated with the assignments implied by that conditional role.
The time that it takes to create a new conditional role is impacted by the following items:

• The number of managed users affected by the condition.

• The number of assignments related to the conditional role.

• The average time required to provision updates to all remote systems affected by those
assignments.

In a data set with a very large number of users, creating a new conditional role can therefore incur
a significant performance cost when you create it. Ideally, you should set up your conditional roles
at the beginning of your deployment to avoid performance issues later.

+ Grant a Role By Using Custom Scripts

The easiest way to grant roles dynamically is to use conditional roles, as described in Grant
a Role Based on a Condition. If your deployment requires complex conditional logic that
cannot be achieved with a query filter, you can create a custom script to grant the role, as
follows:

1. Create a roles directory in your project's script directory and copy the default effective
roles script to that new directory:
mkdir project-dir/script/roles/
cp /path/to/openidm/bin/defaults/script/roles/effectiveRoles.js project-dir/script/roles/

The new script will override the default effective roles script.

2. Modify the script to reference additional roles that have not been granted manually, or
as the result of a conditional grant. The effective roles script calculates the grants that
are in effect when the user is retrieved.

For example, the following addition to the effectiveRoles.js script grants the roles
dynamic-role1 and dynamic-role2 to all active users (managed user objects whose
accountStatus value is active). This example assumes that you have already created the
managed roles, dynamic-role1 (with ID d2e29d5f-0d74-4d04-bcfe-b1daf508ad7c) and dynamic-
role2 (with ID 709fed03-897b-4ff0-8a59-6faaa34e3af6, and their corresponding assignments:

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 54

// This is the location to expand to dynamic roles,
// project role script return values can then be added via
// effectiveRoles = effectiveRoles.concat(dynamicRolesArray);

if (object.accountStatus === 'active') {
 effectiveRoles = effectiveRoles.concat([
 {"_ref": "managed/role/d2e29d5f-0d74-4d04-bcfe-b1daf508ad7c"},
 {"_ref": "managed/role/709fed03-897b-4ff0-8a59-6faaa34e3af6"}
]);
}

Note

For conditional roles, the user's roles property is updated if the user meets the condition. For
custom scripted roles, the user's effectiveRoles property is calculated when the user is retrieved,
and includes the dynamic roles according to the custom script.

If you make any of the following changes to a scripted role grant, you must perform a
manual reconciliation of all affected users before assignment changes will take effect on an
external system:

• If you create a new scripted role grant.

• If you change the definition of an existing scripted role grant.

• If you change any of the assignment rules for a role that is granted by a custom script.

+ Query a User's Roles

To query user roles over REST, query the user's roles property. The following example shows that
scarter has been granted two roles—an employee role, and an fr-employee role:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter/roles?_queryFilter=true&_fields=_ref/*,name"
{
 "result": [
 {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceRev": "0000000027a959cf",
 "name": "employee",
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 55

 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
 },
 {
 "_id": "b281ffdf-477e-4211-a112-84476435bab2",
 "_rev": "00000000d612a248",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "01ee6191-75d8-4d4b-9291-13a46592c57a",
 "_refResourceRev": "000000000cb0794d",
 "name": "fr-employee",
 "_ref": "managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a",
 "_refProperties": {
 "_grantType": "conditional",
 "_id": "b281ffdf-477e-4211-a112-84476435bab2",
 "_rev": "00000000d612a248"
 }
 }
],
 ...
}

Note that the fr-employee role indicates a _grantType of conditional. This property indicates how the
role was granted to the user. If no _grantType is listed, the role was granted statically.

Querying a user's roles in this way does not return any roles that would be in effect as a result of
a custom script, or of any temporal constraint applied to the role. To return a complete list of all
the roles in effect at a specific time, query the user's effectiveRoles property, as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter?_fields=effectiveRoles"

Alternatively, to check which roles have been granted to a user, either statically or dynamically,
look at the user's entry in the Admin UI:

1. Select Manage > User, then select the user whose roles you want to see.

2. Select the Provisioning Roles tab.

3. If you have a large number of managed roles, use the Advanced Filter option on the Role List
page to build a custom query.

+ Delete a User's Roles

To remove a statically granted role from a user entry, do one of the following:

• Update the value of the user's roles property to remove the reference to the role.

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 56

• Update the value of the role's members property to remove the reference to that user.

You can use both of these methods over REST, or use the Admin UI.

Important

A delegated administrator must use PATCH to add or remove relationships.

Roles that have been granted as the result of a condition can only be removed when the condition is
changed or removed, or when the role itself is deleted.

Over REST

Use one of the following methods to remove a role grant from a user:

• DELETE the role from the user's roles property, including the reference ID (the ID of the
relationship between the user and the role) in the delete request.

The following example removes the employee role from user scarter. The role ID is b8783543-
869a-4bd4-907e-9c1d89f826ae, but the ID required in the DELETE request is the reference ID
(5a023862-654d-4d7f-b9d0-7c151b8dede5):
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/user/scarter/roles/5a023862-654d-4d7f-b9d0-7c151b8dede5"
{
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1",
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
}

• PATCH the user entry to remove the role from the array of roles, specifying the value of the
role object in the JSON payload.

Caution

When you remove a role in this way, you must include the entire object in the value, as shown in the
following example:

curl \
--header "Content-type: application/json" \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 57

--request PATCH \
--data '[
 {
 "operation" : "remove",
 "field" : "/roles",
 "value" : {
 "_ref": "managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_refProperties": {
 "_id": "5a023862-654d-4d7f-b9d0-7c151b8dede5",
 "_rev": "00000000baa999c1"
 }
 }
 }
]' \
"http://localhost:8080/openidm/managed/user/scarter"
{
 "_id": "scarter",
 "_rev": "000000007b78257d",
 "mail": "scarter@example.com",
 "givenName": "Steven",
 "sn": "Carter",
 "description": "Created By CSV",
 "userName": "scarter",
 "telephoneNumber": "1234567",
 "accountStatus": "active",
 "effectiveRoles": [
 {
 "_ref": "managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a"
 }
],
 "effectiveAssignments": [],
 "preferences": {
 "updates": false,
 "marketing": false
 },
 "country": "France"
}

• DELETE the user from the role's members property, including the reference ID (the ID of the
relationship between the user and the role) in the delete request.

The following example first queries the members of the employee role, to obtain the ID of the
relationship, then removes bjensen's membership from that role:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae/members?
_queryFilter=true"
{
 "result": [
 {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a",

Roles
Manipulate Roles Over REST and in the UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 58

 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a"
 }
 }
],
 ...
}

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae/members/
a5a4bf94-6425-4458-aae4-bbd6ad094f72"
{
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a",
 "_ref": "managed/user/bjensen",
 "_refResourceCollection": "managed/user",
 "_refResourceId": "bjensen",
 "_refProperties": {
 "_id": "a5a4bf94-6425-4458-aae4-bbd6ad094f72",
 "_rev": "00000000c25d994a"
 }
}

Using the Admin UI

Use one of the following methods to remove a user's roles:

• Select Manage > User and select the user whose role or roles you want to remove.

Select the Provisioning Roles tab, select the role that you want to remove, then select
Remove Selected Provisioning Roles.

• Select Manage > Role, and select the role whose members you want to remove.

Select the Role Members tab, select the member or members that that you want to remove,
then select Remove Selected Role Members.

+ Delete a Role Definition

Delete a managed provisioning or authorization role over REST interface or by using the Admin
UI.

To delete a role over the REST interface, simply delete that managed object. The following
command deletes the employee role created in the previous section:

Roles
Use Temporal Constraints to Restrict Effective Roles

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 59

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/b8783543-869a-4bd4-907e-9c1d89f826ae"
{
 "_id": "b8783543-869a-4bd4-907e-9c1d89f826ae",
 "_rev": "0000000027a959cf",
 "privileges": [],
 "name": "employee",
 "description": "All employees"
}

Note

You cannot delete a role that is currently granted to users. If you attempt to delete a role that is granted
to a user (either over the REST interface, or by using the Admin UI), IDM returns an error. The following
example attempts to remove a role that is still granted to a user:

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/role/01ee6191-75d8-4d4b-9291-13a46592c57a"
{
 "code": 409,
 "reason": "Conflict",
 "message": "Cannot delete a role that is currently granted"
}

To delete a role through the Admin UI, select Manage > Role, select the role you want to remove,
then Delete Selected.

Use Temporal Constraints to Restrict Effective Roles
Temporal constraints restrict the period that a role is effective. You can apply temporal constraints to
managed and internal roles, and to role grants (for individual users).

For example, you might want a role, contractors-2020, to apply to all contract employees for the year
2020. In this case, you would set the temporal constraint on the role. Alternatively, you might want
to assign a contractors role that applies to an individual user only for the period of their contract of
employment.

The following examples show how to set temporal constraints on role definitions, and on individual
role grants:

+ Add a Temporal Constraint to a Role

Roles
Use Temporal Constraints to Restrict Effective Roles

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 60

When you create a role, you can include a temporal constraint in the role definition that restricts
the validity of the role, regardless of how that role is granted. Temporal constraints are expressed
as a time interval in ISO 8601 date and time format. For more information on this format, see the
ISO 8601 standard.

The following example adds a contractor role over the REST interface. The role is effective from
March 1st, 2020 to August 31st, 2020:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}' \
"http://localhost:8080/openidm/managed/role?_action=create"
{
 "_id": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_rev": "000000007429750e",
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}

This example specifies the time zone as Coordinated Universal Time (UTC) by appending Z to the
time. If no time zone information is provided, the time zone is assumed to be local time. To specify
a different time zone, include an offset (from UTC) in the format ±hh:mm. For example, an interval
of 2020-03-01T00:00:00.000-07:00/2020-08-31T00:00:00.000-07:00 specifies a time zone that is seven
hours behind UTC.

When the period defined by the constraint has ended, the role object remains in the repository,
but the effective roles script will not include the role in the list of effective roles for any user.

The following example assumes that user scarter has been granted a role contractor-march. A
temporal constraint has been included in the contractor-march role definition, specifying that the
role should be applicable only during the month of March 2020. At the end of this period, a query
on scarter's entry shows that his roles property still includes the contractor-march role (with ID
0face495-772d-4d36-a30d-8594618aba0d), but his effectiveRoles property does not:

https://en.wikipedia.org/wiki/ISO_8601#Time_intervals

Roles
Use Temporal Constraints to Restrict Effective Roles

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 61

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/scarter?_fields=_id,userName,roles,effectiveRoles"
{
 "_id": "scarter",
 "_rev": "00000000e5fdeb51",
 "userName": "scarter",
 "effectiveRoles": [],
 "roles": [
 {
 "_ref": "managed/role/0face495-772d-4d36-a30d-8594618aba0d",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "0face495-772d-4d36-a30d-8594618aba0d",
 "_refProperties": {
 "_id": "5f41d5a5-19b4-4524-a4b1-445790ff14da",
 "_rev": "00000000cb339810"
 }
 }
]
}

The role is still in place but is no longer effective.

To restrict the period during which a role is valid by using the Admin UI, select Temporal
Constraint on the role Details tab, then select a timezone offset relative to GMT and the start and
end dates for the required period.

+ Add a Temporal Constraint to a Role Grant

To restrict the validity of a role for individual users, apply a temporal constraint at the grant
level, rather than as part of the role definition. In this case, the temporal constraint is taken into
account per user, when the user's effective roles are calculated. Temporal constraints that are
defined at the grant level can be different for each user who is a member of that role.

To apply a temporal constraint to a grant over the REST interface, include the constraint as one
of the _refProperties of the relationship between the user and the role. The following example
assumes a contractor role, with ID ed761370-b24f-4e21-8e58-a3230942da67. The command adds user
bjensen as a member of that role, with a temporal constraint that specifies that she be a member
of the role for one year only, from January 1st, 2020 to January 1st, 2021:

Roles
Use Temporal Constraints to Restrict Effective Roles

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 62

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/members/-",
 "value": {
 "_ref": "managed/user/bjensen",
 "_refProperties": {
 "temporalConstraints": [{"duration": "2020-01-01T00:00:00.000Z/2021-01-01T00:00:00.000Z"}]
 }
 }
 }
]' \
"http://localhost:8080/openidm/managed/role/ed761370-b24f-4e21-8e58-a3230942da67"
{
 "_id": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_rev": "000000007429750e",
 "name": "contractor",
 "description": "Role granted to contract workers for 2020",
 "temporalConstraints": [
 {
 "duration": "2020-03-01T00:00:00.000Z/2020-08-31T00:00:00.000Z"
 }
]
}

A query on bjensen's roles property shows that the temporal constraint has been applied to this
grant:

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 63

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen/roles?_queryFilter=true"
{
 "result": [
 {
 "_id": "40600260-111d-4695-81f1-450365025784",
 "_rev": "00000000173daedb",
 "_ref": "managed/role/ed761370-b24f-4e21-8e58-a3230942da67",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "ed761370-b24f-4e21-8e58-a3230942da67",
 "_refProperties": {
 "temporalConstraints": [
 {
 "duration": "2020-01-01T00:00:00.000Z/2021-01-01T00:00:00.000Z"
 }
],
 "_id": "40600260-111d-4695-81f1-450365025784",
 "_rev": "00000000173daedb"
 }
 }
],
 ...
}

To restrict the period during which a role grant is valid by using the Admin UI, set a temporal
constraint when you add the member to the role.

For example, to specify that bjensen be added to a Contractor role only for the period of her
employment contract, select Manage > Role, select the Contractor role, then select Add Role
Members. On the Add Role Members screen, select bjensen from the list, then enable the
Temporal Constraint, and specify the start and end date of her contract.

Use Assignments to Provision Users
Authorization roles control access to IDM itself. Provisioning roles define rules for how attribute
values are updated on external systems. These rules are configured through assignments that are
attached to a provisioning role definition. The purpose of an assignment is to provision an attribute or
set of attributes, based on an object's role membership.

The synchronization mapping configuration between two resources provides the basic account
provisioning logic (how an account is mapped from a source to a target system). Role assignments
provide additional provisioning logic that is not covered in the basic mapping configuration. The
attributes and values that are updated by using assignments might include group membership, access
to specific external resources, and so on. A group of assignments can collectively represent a role.

Assignment objects are created, updated, and deleted like any other managed object, and are
attached to a role by using the relationships mechanism, in much the same way as a role is granted

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 64

to a user. Assignments are stored in the repository and are accessible at the context path /openidm/
managed/assignment.

This section describes how to manipulate assignments over the REST interface, and by using the
Admin UI. When you have created an assignment, and attached it to a role definition, all user objects
that reference that role definition will, as a result, reference the corresponding assignment in their
effectiveAssignments attribute.

+ Create an Assignment

You can create assignments over the REST interface or by using the Admin UI:

Over REST

To create a new assignment over REST, send a PUT or POST request to the /openidm/managed/
assignment context path.

The following example creates a new managed assignment named employee. The JSON payload
in this example shows the following:

• The assignment is applied for the mapping managedUser_systemLdapAccounts, so attributes will be
updated on the external LDAP system specified in this mapping.

• The name of the attribute on the external system whose value will be set is employeeType, and
its value will be set to Employee.

• When the assignment is applied during a sync operation, the attribute value Employee is
added to any existing values for that attribute. When the assignment is removed (if the role
is deleted, or if the user is no longer a member of that role), the attribute value Employee is
removed from the values of that attribute.
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}' \

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 65

"http://localhost:8080/openidm/managed/assignment?_action=create"
{
 "_id": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_rev": "00000000b2329649",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Note that at this stage, the assignment is not linked to any role, so no user can make use of
the assignment. You must add the assignment to a role, as described in Add an Assignment to
a Role.

Using the Admin UI

1. Select Manage > Assignment > New Assignment.

2. Enter a name and description for the new assignment.

3. Select the mapping to which the assignment should apply. The mapping indicates the
target resource, that is, the resource on which the attributes specified in the assignment
will be adjusted.

Select Save to add the assignment.

4. Select the Attributes tab and select the attribute or attributes whose values will be
adjusted by this assignment. The attribute you select here will determine what is
displayed next:

• Regular text field—specify what the value of the attribute should be, when this
assignment is applied.

• Item button—specify a managed object type, such as an object, relationship, or string.

• Properties button—specify additional information, such as an array of role references.

5. Select the assignment operation from the dropdown list:

• Merge With Target: the attribute value will be added to any existing values for that
attribute. This operation merges the existing value of the target object attribute with
the value(s) from the assignment. If duplicate values are found (for attributes that take a
list as a value), each value is included only once in the resulting target. This assignment

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 66

operation is used only with complex attribute values like arrays and objects, and does
not work with strings or numbers.

• Replace Target: the attribute value will overwrite any existing values for that attribute.
The value from the assignment becomes the authoritative source for the attribute.

6. Select the unassignment operation from the dropdown list:

• Remove From Target: the attribute value is removed from the system object when the user
is no longer a member of the role, or when the assignment itself is removed from the
role definition.

• No Operation: removing the assignment from the user's effectiveAssignments has no effect
on the current state of the attribute in the system object.

7. (Optional) Select the Events tab to specify any scriptable events associated with this
assignment.

The assignment and unassignment operations described in the previous step operate at
the attribute level. That is, you specify what should happen with each attribute affected by
the assignment when the assignment is applied to a user, or removed from a user.

The scriptable On assignment and On unassignment events operate at the assignment
level, rather than the attribute level. Define scripts here to apply additional logic or
operations that should be performed when a user (or other object) receives or loses an
entire assignment. This logic can be anything that is not restricted to an operation on a
single attribute.

For information about the variables available to these scripts, see "Variables Available to
Role Assignment Scripts" in the Scripting Guide.

8. Select the Roles tab to attach this assignment to an existing role definition.

+ Add an Assignment to a Role

After you have created a role, and an assignment, you create a relationship between the
assignment and the role, in much the same way as a user references a role.

Update a role definition to include one or more assignments over the REST interface, or by using
the Admin UI:

Over REST

Update the role definition to include a reference to the ID of the assignment in the assignments
property of the role. The following example adds the employee assignment (ID 1a6a3af3-024f-
4cf1-b4f6-116b98053816) to an existing employee role (ID 2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4):

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 67

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request PATCH \
--data '[
 {
 "operation": "add",
 "field": "/assignments/-",
 "value": { "_ref": "managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816" }
 }
]' \
"http://localhost:8080/openidm/managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4"
{
 "_id": "2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_rev": "00000000e85263c7",
 "privileges": [],
 "name": "employee",
 "description": "Roll granted to all permanent employees"
}

To check that the assignment was added successfully, query the role's assignments property:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4/assignments?
_queryFilter=true&_fields=_ref/*,name,assignments"
{
 "result": [
 {
 "_id": "d15822f0-05bc-464a-927d-8e5018a234d3",
 "_rev": "0000000010eea343",
 "_refResourceCollection": "managed/assignment",
 "_refResourceId": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_refResourceRev": "00000000b2329649",
 "name": "employee",
 "_ref": "managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_refProperties": {
 "_id": "d15822f0-05bc-464a-927d-8e5018a234d3",
 "_rev": "0000000010eea343"
 }
 }
],
 ...
}

Note that the assignments property references the assignment that you created in the previous
step.

To remove an assignment from a role definition, remove the reference to the assignment from
the role's assignments property.

Roles
Use Assignments to Provision Users

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 68

Using the Admin UI

1. Select Manage > Role and select the role to which you want to add an assignment.

2. Select the Managed Assignments tab and select Add Managed Assignments.

3. Select the assignment that you want to add to the role, then select Add.

+ Delete an Assignment

Delete assignments over the REST interface, or by using the Admin UI:

Over REST

To delete an assignment over the REST interface, simply delete that object. The following
example deletes the employee assignment created in the previous example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/managed/assignment/1a6a3af3-024f-4cf1-b4f6-116b98053816"
{
 "_id": "1a6a3af3-024f-4cf1-b4f6-116b98053816",
 "_rev": "00000000b2329649",
 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "name": "employeeType",
 "value": [
 "Employee"
],
 "assignmentOperation": "mergeWithTarget",
 "unassignmentOperation": "removeFromTarget"
 }
]
}

Note

You can delete an assignment, even if it is referenced by a managed role. When the assignment
is removed, any users to whom the corresponding roles were granted will no longer have that
assignment in their list of effectiveAssignments. For more information about effective roles and
effective assignments, see "Effective Roles and Effective Assignments".

Using the Admin UI

To delete an assignment by using the Admin UI, select Manage > Assignment.

Roles
Effective Roles and Effective Assignments

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 69

Select the assignment you want to remove, then select Delete.

Important

If you have mapped roles and assignments to properties on a target system, and you are preloading the result
set into memory, make sure that your targetQuery returns the mapped property. For example, if you have
mapped a specific role to the ldapGroups property on the target system, the target query must include the
ldapGroups property when it returns the object.

The following mapping excerpt indicates that the target query must return the _id of the object as well as its
ldapGroups property:

"targetQuery": {
 "_queryFilter": true,
 "_fields": "_id,ldapGroups"
}

For more information about preloading the result set for reconciliation operations, see "Improving
Reconciliation Query Performance" in the Synchronization Guide.

Effective Roles and Effective Assignments
Effective roles and effective assignments are virtual properties of a user object. Their values are
calculated by IDM, using relationships between related objects to know when to recalculate when
changes occur. The relationships between objects are configured using the notify, notifySelf, and
notifyRelationships settings for managed/user, managed/role, and managed/assignment. Which related objects
to traverse for calculation is configured using queryConfig. Calculation or recalculation is triggered
when the roles or assignments for a managed user are added, removed, or changed, including by
changes from temporal constraints, and notification of that change is sent to the related objects.

The following excerpt of a managed.json file shows how these two virtual properties are constructed for
each managed user object:
"effectiveRoles" : {
 "type" : "array",
 "title" : "Effective Roles",
 "description" : "Effective Roles",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "queryConfig" : {
 "referencedRelationshipFields" : ["roles"]
 },
 "usageDescription" : "",
 "isPersonal" : false,
 "items" : {
 "type" : "object",
 "title" : "Effective Roles Items"
 }

Roles
Effective Roles and Effective Assignments

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 70

},
"effectiveAssignments" : {
 "type" : "array",
 "title" : "Effective Assignments",
 "description" : "Effective Assignments",
 "viewable" : false,
 "returnByDefault" : true,
 "isVirtual" : true,
 "queryConfig" : {
 "referencedRelationshipFields" : ["roles", "assignments"],
 "referencedObjectFields" : ["*"]
 },
 "usageDescription" : "",
 "isPersonal" : false,
 "items" : {
 "type" : "object",
 "title" : "Effective Assignments Items"
 }
}

When a role references an assignment, and a user references the role, that user automatically
references the assignment in its list of effective assignments.

effectiveRoles uses the roles relationship to calculate the grants that are currently in effect, including
any qualified by temporal constraints.

effectiveAssignments uses the roles relationship, and the assignments relationship for each role, to
calculate the current assignments in effect for that user. The synchronization engine reads the
calculated value of the effectiveAssignments attribute when it processes the user. The target system is
updated according to the configured assignmentOperation for each assignment.

When a user's roles or assignments are updated, IDM calculates the effectiveRoles and
effectiveAssignments for that user based on the current value of the user's roles property, and the
assignments property of any roles referenced by the roles property. The previous set of examples
showed the creation of a role employee that referenced an assignment employee and was granted to user
bjensen. Querying that user entry would show the following effective roles and effective assignments:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/bjensen?
_fields=userName,roles,effectiveRoles,effectiveAssignments"
{
 "_id": "ca8855fd-a404-42c7-88b7-02f8a8a825b2",
 "_rev": "0000000081eebe1a",
 "userName": "bjensen",
 "effectiveRoles": [
 {
 "_ref": "managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4"
 }
],
 "effectiveAssignments": [
 {

Roles
Roles and Relationship Change Notification

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 71

 "name": "employee",
 "description": "Assignment for employees.",
 "mapping": "managedUser_systemLdapAccounts",
 "attributes": [
 {
 "assignmentOperation": "mergeWithTarget",
 "name": "employeeType",
 "unassignmentOperation": "removeFromTarget",
 "value": [
 "employee"
]
 }
],
 "_rev": "0000000087d5a9a5",
 "_id": "46befacf-a7ad-4633-864d-d93abfa561e9"
 }
],
 "roles": [
 {
 "_ref": "managed/role/2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_refResourceCollection": "managed/role",
 "_refResourceId": "2243f5f8-ed75-4c3b-b4b3-058d5c58fbb4",
 "_refProperties": {
 "_id": "93552530-10fa-49a4-865f-c942dffd2801",
 "_rev": "0000000081ed9f2b"
 }
 }
]
}

In this example, synchronizing the managed/user repository with the external LDAP system defined in
the mapping populates user bjensen's employeeType attribute in LDAP with the value employee.

Roles and Relationship Change Notification
Before you read this section, see "Configure Relationship Change Notification" to understand the
notify and notifyRelationships properties, and how change notification works for relationships in
general. In the case of roles, the change notification configuration exists to ensure that managed
users are notified when any of the relationships that link users, roles, and assignments are
manipulated (that is, created, updated, or deleted).

Consider the situation where a user has role R. A new assignment A is created that references role R.
Ultimately, we want to notify all users that have role R so that their reconciliation state will reflect
any attributes in the new assignment A. We achieve this notification with the following configuration:

In the managed object schema, the assignment object definition has a roles property that includes
a resourceCollection. The path of this resource collection is managed/role and "notify" : true for the
resource collection:

Roles
Managed Role Script Hooks

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 72

{
 "name" : "assignment",
 "schema" : {
 ...
 "properties" : {
 ...
 "roles" : {
 ...
 "items" : {
 ...
 "resourceCollection" : [
 {
 "notify" : true,
 "path" : "managed/role",
 "label" : "Role",
 "query" : {
 "queryFilter" : "true",
 "fields" : [
 "name"
]
 }
 }
 ...
}

With this configuration, when assignment A is created, with a reference to role R, role R is notified of
the change. However, we still need to propagate that notification to any users who are members of role
R. To do this, we configure the role object as follows:
{
 "name" : "role",
 "schema" : {
 ...
 "properties" : {
 ...
 "assignments" : {
 ...
 "notifyRelationships" : ["members"]
 }
 ...
}

When role R is notified of the creation of a new relationship to assignment A, the notification is
propagated through the assignments property. Because "notifyRelationships" : ["members"] is set on the
assignments property, the notification is propagated across role R to all members of role R.

Managed Role Script Hooks
Like any other managed object, you can use script hooks to configure role behavior. The default role
definition in conf/managed.json includes an onDelete hook that calls a script to prevent the role from
being deleted if it is currently assigned to users:

Roles
Use Groups to Control Access to IDM

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 73

{
 "name" : "role",
 "onDelete" : {
 "type" : "text/javascript",
 "file" : "roles/onDelete-roles.js"
 },
 ...

Use Groups to Control Access to IDM
A user's access to IDM is based on one or more authorization roles. Authorization roles are
cumulative, and are calculated for a user in the following order:

1. Roles set specifically in the user's userRoles property

2. Group roles—based on group membership in an external system

Group roles are controlled with the following properties in the ${authConfig}:

• groupMembership: the property on the external system that represents group membership. In a
DS directory server, that property is ldapGroups by default. In an Active Directory server, the
property is memberOf by default. For example:
"groupMembership" : "ldapGroups"

Note that the value of the groupMembership property must be the ICF property name defined in the
provisioner file, rather than the property name on the external system.

• groupRoleMapping: a mapping between an IDM role and a group on the external system. Setting
this property ensures that if a user authenticates through pass-through authentication, they are
given specific IDM roles depending on their membership in groups on the external system. In
the following example, users who are members of the group cn=admins,ou=Groups,dc=example,dc=com
are given the internal openidm-admin role when they authenticate:
"groupRoleMapping" : {
 "internal/role/openidm-admin" : ["cn=admins,ou=Groups,dc=example,dc=com"]
}

• groupComparisonMethod: the method used to check whether the authenticated user's group
membership matches one of the groups mapped to an IDM role (in the groupRoleMapping
property).

The groupComparisonMethod can be one of the following:

• equals: a case-sensitive equality check

• caseInsensitive: a case-insensitive equality check

Roles
Use Groups to Control Access to IDM

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 74

• ldap: a case-insensitive and whitespace-insensitive equality check. Because LDAP
directories do not take case or whitespace into account in group DNs, you must set the
groupComparisonMethod if you are using pass-through authentication with an LDAP directory.

Note

To control access to external systems, use provisioning roles and assignments, as described in "Use
Assignments to Provision Users".

Use Policies to Validate Data
Default Policy for Managed Objects

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 75

Chapter 4

Use Policies to Validate Data
IDM provides an extensible policy service that enables you to apply specific validation requirements
to various components and properties. This chapter describes the policy service, and provides
instructions on configuring policies for managed objects.

The policy service provides a REST interface for reading policy requirements and validating
the properties of components against configured policies. Objects and properties are validated
automatically when they are created, updated, or patched. Policies are generally applied to user
passwords, but can also be applied to any managed or system object, and to internal user objects.

The policy service enables you to accomplish the following tasks:

• Read the configured policy requirements of a specific component.

• Read the configured policy requirements of all components.

• Validate a component object against the configured policies.

• Validate the properties of a component against the configured policies.

The router service limits policy application to managed, system, and internal user objects. To
apply policies to additional objects, such as the audit service, you must modify your project's conf/
router.json file. For more information about the router service, see "Router Configuration" in the
Scripting Guide.

A default policy applies to all managed objects. You can configure this default policy to suit your
requirements, or you can extend the policy service by supplying your own scripted policies.

Default Policy for Managed Objects
Policies applied to managed objects are configured in two files:

• A policy script file (openidm/bin/defaults/script/policy.js) that defines each policy and specifies how
policy validation is performed. For more information, see "Policy Script File".

• A managed object policy configuration element, defined in your project's conf/managed.json file, that
specifies which policies are applicable to each managed resource. For more information, see "Policy
Configuration Element".

Use Policies to Validate Data
Policy Script File

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 76

Note

The configuration for determining which policies apply to resources other than managed objects is defined in
your project's conf/policy.json file. The default policy.json file includes policies that are applied to internal
user objects, but you can extend the configuration in this file to apply policies to system objects.

Policy Script File

The policy script file (openidm/bin/defaults/script/policy.js) separates policy configuration into two
parts:

• A policy configuration object, which defines each element of the policy. For more information, see
"Policy Configuration Objects".

• A policy implementation function, which describes the requirements that are enforced by that
policy.

Together, the configuration object and the implementation function determine whether an object is
valid in terms of the applied policy. The following excerpt of a policy script file configures a policy
that specifies that the value of a property must contain a certain number of capital letters:
...
{ "policyId": "at-least-X-capitals",
 "policyExec": "atLeastXCapitalLetters",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements": ["AT_LEAST_X_CAPITAL_LETTERS"]
},
...

policyFunctions.atLeastXCapitalLetters = function(fullObject, value, params, property) {
 var isRequired = _.find(this.failedPolicyRequirements, function (fpr) {
 return fpr.policyRequirement === "REQUIRED";
 }),
 isString = (typeof(value) === "string"),
 valuePassesRegexp = (function (v) {
 var test = isString ? v.match(/[A-Z]/g) : null;
 return test !== null && test.length >= params.numCaps;
 }(value));

 if ((isRequired || isString) && !valuePassesRegexp) {
 return [{ "policyRequirement" : "AT_LEAST_X_CAPITAL_LETTERS", "params" : {"numCaps":
 params.numCaps} }];
 }

 return [];
}
...

To enforce user passwords that contain at least one capital letter, the policyId from the preceding
example is applied to the appropriate resource (managed/user/*). The required number of capital letters

Use Policies to Validate Data
Policy Script File

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 77

is defined in the policy configuration element of the managed object configuration file (see "Policy
Configuration Element".

Policy Configuration Objects

Each element of the policy is defined in a policy configuration object. The structure of a policy
configuration object is as follows:
{
 "policyId": "minimum-length",
 "policyExec": "minLength",
 "clientValidation": true,
 "validateOnlyIfPresent": true,
 "policyRequirements": ["MIN_LENGTH"]
}

• policyId - a unique ID that enables the policy to be referenced by component objects.

• policyExec - the name of the function that contains the policy implementation. For more information,
see "Policy Implementation Functions".

• clientValidation - indicates whether the policy decision can be made on the client. When
"clientValidation": true, the source code for the policy decision function is returned when the client
requests the requirements for a property.

• validateOnlyIfPresent - notes that the policy is to be validated only if it exists.

• policyRequirements - an array containing the policy requirement ID of each requirement that is
associated with the policy. Typically, a policy will validate only one requirement, but it can validate
more than one.

Policy Implementation Functions

Each policy ID has a corresponding policy implementation function that performs the validation.
Implementation functions take the following form:

function <name>(fullObject, value, params, propName) {
 <implementation_logic>
}

• fullObject is the full resource object that is supplied with the request.

• value is the value of the property that is being validated.

• params refers to the params array that is specified in the property's policy configuration.

• propName is the name of the property that is being validated.

The following example shows the implementation function for the required policy:

Use Policies to Validate Data
Default Policy Reference

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 78

function required(fullObject, value, params, propName) {
 if (value === undefined) {
 return [{ "policyRequirement" : "REQUIRED" }];
 }
 return [];
}

Default Policy Reference

IDM includes the following default policies and parameters:

Policy Id Parameters
required

The property is required; not optional.

not-empty

The property can't be empty.

unique

The property must be unique.

valid-username

Tests for uniqueness and internal user
conflicts.
no-internal-user-conflict

Tests for internal user conflicts.

regexpMatches

Matches a regular expression.

regexp

flags

The regular expression pattern.

valid-type

Tests for the specified types.

types

valid-query-filter

Tests for a valid query filter.

valid-array-items

Tests for valid array items.

valid-date

Tests for a valid date.

valid-email-address-format

Tests for a valid email address.

Use Policies to Validate Data
Default Policy Reference

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 79

Policy Id Parameters
valid-name-format

Tests for a valid name format.

valid-phone-format

Tests for a valid phone number format.

at-least-X-capitals

The property must contain the minimum
specified number of capital letters.

numCaps Minimum number of capital letters.

at-least-X-numbers

The property must contain the minimum
specified number of numbers.

numNums Minimum number of numbers.

validNumber

Tests for a valid number.

minimumNumber

The property value must be greater than
the minimum.

minimum The minimum value.

maximumNumber

The property value must be less than the
maximum.

maximum The maximum value.

minimum-length

The property's minimum string length.

minLength The minimum string length.

maximum-length

The property's maximum string length.

maxLength The maximum string length.

cannot-contain-others

The property cannot contain values of the
specified fields.

disallowedFields A comma-separated list of the fields to
check against. For example, the default
managed user password policy specifies
userName,givenName,sn as disallowed fields.

cannot-contain-characters

The property cannot contain the specified
characters.

forbiddenChars A comma-separated list of disallowed
characters. For example, the default
managed user userName policy specifies /
as a disallowed character.

cannot-contain-duplicates

The property cannot contain duplicate
characters.

mapping-exists

Use Policies to Validate Data
Policy Configuration Element

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 80

Policy Id Parameters
A sync mapping must exist for the
property.
valid-permissions

Tests for valid permissions.

valid-accessFlags-object

Tests for valid access flags.

valid-privilege-path

Tests for a valid privilege path.

valid-temporal-constraints

Tests for valid temporal constraints.

Policy Configuration Element

The configuration of a managed object property (in the managed.json file) can include a policies
element that specifies how policy validation should be applied to that property. The following excerpt
of the default managed.json file shows how policy validation is applied to the password and _id properties
of a managed/user object:
{
 "name" : "user",
 "schema" : {
 "id" : "http://jsonschema.net",
 "properties" : {
 "_id" : {
 "description" : "User ID",
 "type" : "string",
 "viewable" : false,
 "searchable" : false,
 "userEditable" : false,
 "usageDescription" : "",
 "isPersonal" : false,
 "policies" : [
 {
 "policyId" : "cannot-contain-characters",
 "params" : {
 "forbiddenChars" : [
 "/"
]
 }
 }
]
 },
 "password" : {
 "title" : "Password",
 "description" : "Password",
 "type" : "string",
 "viewable" : false,

Use Policies to Validate Data
Validate Managed Object Data Types

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 81

 "searchable" : false,
 "userEditable" : true,
 "encryption" : {
 "purpose" : "idm.password.encryption"
 },
 "scope" : "private",
 "isProtected": true,
 "usageDescription" : "",
 "isPersonal" : false,
 "policies" : [
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 8
 }
 },
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 },
 {
 "policyId" : "at-least-X-numbers",
 "params" : {
 "numNums" : 1
 }
 },
 {
 "policyId" : "cannot-contain-others",
 "params" : {
 "disallowedFields" : [
 "userName",
 "givenName",
 "sn"
]
 }
 }
]
 }
 }
 }
}

Note that the policy for the _id property references the function cannot-contain-characters, that is
defined in the policy.js file. The policy for the password property references the functions minimum-
length, at-least-X-capitals, at-least-X-numbers, and cannot-contain-others, that are defined in the policy.js
file. The parameters that are passed to these functions (number of capitals required, and so forth) are
specified in the same element.

Validate Managed Object Data Types

The type property of a managed object specifies the data type of that property, for example, array,
boolean, integer, number, null, object, or string. For more information about data types, see the JSON
Schema Primitive Types section of the JSON Schema standard.

http://json-schema.org/latest/json-schema-core.html#anchor8
http://json-schema.org/latest/json-schema-core.html#anchor8

Use Policies to Validate Data
Configure Policy Validation Using the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 82

The type property is subject to policy validation when a managed object is created or updated.
Validation fails if data does not match the specified type, such as when the data is an array instead of
a string. The valid-type policy in the default policy.js file enforces the match between property values
and the type defined in the managed.json file.

IDM supports multiple valid property types. For example, you might have a scenario where a
managed user can have more than one telephone number, or a null telephone number (when the user
entry is first created and the telephone number is not yet known). In such a case, you could specify
the accepted property type as follows in your managed.json file:
"telephoneNumber" : {
 "type" : "string",
 "title" : "Telephone Number",
 "description" : "Telephone Number",
 "viewable" : true,
 "userEditable" : true,
 "pattern" : "^\\+?([0-9\\- \\(\\)])*$",
 "usageDescription" : "",
 "isPersonal" : true,
 "policies" : [
 {
 "policyId" : "minimum-length",
 "params" : {
 "minLength" : 1
 }
 },
 {
 "policyId": "maximum-length",
 "params": {
 "maxLength": 255
 }
 }
]
}

In this case, the valid-type policy from the policy.js file checks the telephone number for an accepted
type and pattern, either for a real telephone number or a null entry.

Configure Policy Validation Using the Admin UI

To configure policy validation for a managed object type using the Admin UI, update the
configuration of the object type—a high-level overview:

1. Go to the managed object, and edit or create a property.

2. Click the Validation tab, and add the policy.

+ Show Me

Use Policies to Validate Data
Configure Policy Validation Using the Admin UI

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 83

1. From the navigation bar, click Configure > Managed Objects.

Use Policies to Validate Data
Extend the Policy Service

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 84

2. On the Managed Objects page, edit or create a managed object.

3. On the Managed Object NAME page, do one of the following:

• To edit an existing property, click the property.

• To create a property, click Add a Property, enter the required information, and click Save.

• Now click the property.

4. From the Validation tab, click Add Policy.

5. In the Add/Edit Policy window, enter information in the following fields, and click Add or Save:

Policy Id

Refers to the unique PolicyId in the policy.js file. For a list of the default policies, see "Default
Policy Reference".

Parameter Name

Refers to the parameters for the PolicyId. For a list of the default policy parameters, see
"Default Policy Reference".

Value

The parameter's value to validate.

Important

Be cautious when using Validation Policies. If a policy relates to an array of relationships, such as between
a user and multiple devices, Return by Default should always be set to false. You can verify this in your
${managedConfig}. Any managed object that has items of "type" : "relationship", must also have
"returnByDefault" : false.

Extend the Policy Service
To extend the policy service, add custom scripted policies, or add policies that are applied only under
certain conditions.

• "Add Custom Scripted Policies"

• "Add Conditional Policy Definitions"

Use Policies to Validate Data
Add Custom Scripted Policies

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 85

Add Custom Scripted Policies
If your deployment requires additional validation functionality that is not supplied by the default
policies, you can add your own policy scripts to your project's script directory, and reference them
from your project's conf/policy.json file.

Do not modify the default policy script file (openidm/bin/defaults/script/policy.js) as doing so might
result in interoperability issues in a future release. To reference additional policy scripts, set the
additionalFiles property conf/policy.json.

The following example creates a custom policy that rejects properties with null values. The policy is
defined in a script named mypolicy.js:
var policy = { "policyId" : "notNull",
 "policyExec" : "notNull",
 "policyRequirements" : ["NOT_NULL"]
}

addPolicy(policy);

function notNull(fullObject, value, params, property) {
 if (value == null) {
 var requireNotNull = [
 {"policyRequirement": "NOT_NULL"}
];
 return requireNotNull;
 }
 return [];
}

The mypolicy.js policy is referenced in the policy.json configuration file as follows:
{
 "type" : "text/javascript",
 "file" : "policy.js",
 "additionalFiles" : ["script/mypolicy.js"],
 "resources" : [
 {
 ...
 }
]
}

Note

In cases where you are using the Admin UI, both policy.js and mypolicy.js will be run within the client, and
then again by the the server. When creating new policies, be aware that these policies may be run in both
contexts.

Add Conditional Policy Definitions
You can extend the policy service to support policies that are applied only under specific conditions.
To apply a conditional policy to managed objects, add the policy to your project's managed.json file. To
apply a conditional policy to other objects, add it to your project's policy.json file.

Use Policies to Validate Data
Add Conditional Policy Definitions

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 86

The following excerpt of a managed.json file shows a sample conditional policy configuration for the
"password" property of managed user objects. The policy indicates that sys-admin users have a more
lenient password policy than regular employees:
{
 "objects" : [
 {
 "name" : "user",
 ...
 "properties" : {
 ...
 "password" : {
 "title" : "Password",
 "type" : "string",
 ...
 "conditionalPolicies" : [
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'sys-admin')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["90"]
 }
 }
]
 },
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.org === 'employees')"
 },
 "dependencies" : ["org"],
 "policies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["30"]
 }
 }
]
 }
],
 "fallbackPolicies" : [
 {
 "policyId" : "max-age",
 "params" : {
 "maxDays" : ["7"]
 }
 }
]
 }
 ...
}

Use Policies to Validate Data
Disable Policy Enforcement

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 87

To understand how a conditional policy is defined, examine the components of this sample policy. For
more information on the policy function, see "Policy Implementation Functions".

There are two distinct scripted conditions (defined in the condition elements). The first condition
asserts that the user object, contained in the fullObject argument, is a member of the sys-admin org. If
that assertion is true, the max-age policy is applied to the password attribute of the user object, and the
maximum number of days that a password may remain unchanged is set to 90.

The second condition asserts that the user object is a member of the employees org. If that assertion
is true, the max-age policy is applied to the password attribute of the user object, and the maximum
number of days that a password may remain unchanged is set to 30.

In the event that neither condition is met (the user object is not a member of the sys-admin org or the
employees org), an optional fallback policy can be applied. In this example, the fallback policy also
references the max-age policy and specifies that for such users, their password must be changed after
7 days.

The dependencies field prevents the condition scripts from being run at all, if the user object does not
include an org attribute.

Note

This example assumes that a custom max-age policy validation function has been defined, as described in "Add
Custom Scripted Policies".

Tip

These scripted conditions do not apply to progressive profiling. For more information, see "Custom Progressive
Profile Conditions" in the Self-Service Reference.

Disable Policy Enforcement
Policy enforcement is the automatic validation of data when it is created, updated, or patched. In
certain situations you might want to disable policy enforcement temporarily. You might, for example,
want to import existing data that does not meet the validation requirements with the intention of
cleaning up this data at a later stage.

You can disable policy enforcement by setting openidm.policy.enforcement.enabled to false in your
resolver/boot.properties file. This setting disables policy enforcement in the back-end only, and has
no impact on direct policy validation calls to the Policy Service (which the UI makes to validate
input fields). So, with policy enforcement disabled, data added directly over REST is not subject to
validation, but data added with the UI is still subject to validation.

You should not disable policy enforcement permanently, in a production environment.

Use Policies to Validate Data
Manage Policies Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 88

Manage Policies Over REST
Manage the policy service over the REST interface at the openidm/policy endpoint.

• "List the Defined Policies"

• "Validate Objects and Properties Over REST"

List the Defined Policies

The following REST call displays a list of all the policies defined in policy.json (policies for objects
other than managed objects). The policy objects are returned in JSON format, with one object for
each defined policy ID:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/policy"
{
 "_id": "",
 "resources": [
 ...
 {
 "resource": "internal/user/*",
 "properties": [
 {
 "name": "_id",
 "policies": [
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": ["/"]
 },
 "policyFunction": "\nfunction (fullObject, value, params, property) {\n ...",
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
],
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
 ...
]
 ...
 }
]
}

To display the policies that apply to a specific resource, include the resource name in the URL. For
example, the following REST call displays the policies that apply to managed users:

Use Policies to Validate Data
Validate Objects and Properties Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 89

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/policy/managed/user/*"
{
 "_id": "*",
 "resource": "managed/user/*",
 "properties": [
 {
 "policyRequirements": [
 "VALID_TYPE",
 "CANNOT_CONTAIN_CHARACTERS"
],
 "fallbackPolicies": null,
 "name": "_id",
 "policies": [
 {
 "policyRequirements": [
 "VALID_TYPE"
],
 "policyId": "valid-type",
 "params": {
 "types": [
 "string"
]
 }
 },
 {
 "policyId": "cannot-contain-characters",
 "params": {
 "forbiddenChars": ["/"]
 },
 "policyFunction": "...",
 "policyRequirements": [
 "CANNOT_CONTAIN_CHARACTERS"
]
 }
],
 "conditionalPolicies": null
 }
 ...
]
}

Validate Objects and Properties Over REST
To verify that an object adheres to the requirements of all applied policies, include the validateObject
action in the request.

The following example verifies that a new managed user object is acceptable, in terms of the policy
requirements. Note that the ID in the URL (test in this example) is ignored—the action simply
validates the object in the JSON payload:
curl \

Use Policies to Validate Data
Validate Objects and Properties Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 90

--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "sn": "Jones",
 "givenName": "Bob",
 "telephoneNumber": "0827878921",
 "passPhrase": null,
 "mail": "bjones@example.com",
 "accountStatus": "active",
 "userName": "bjones@example.com",
 "password": "123"
}' \
"http://localhost:8080/openidm/policy/managed/user/test?_action=validateObject"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the object is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the user password does not meet the validation
requirements.

Use the validateProperty action to verify that a specific property adheres to the requirements of a
policy.

The following example checks whether a user's new password (12345) is acceptable:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \

Use Policies to Validate Data
Validate Objects and Properties Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 91

--header "Content-Type: application/json" \
--request POST \
--data '{
 "password": "12345"
}' \
"http://localhost:8080/openidm/policy/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "MIN_LENGTH",
 "params": {
 "minLength": 8
 }
 }
],
 "property": "password"
 },
 {
 "policyRequirements": [
 {
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS",
 "params": {
 "numCaps": 1
 }
 }
],
 "property": "password"
 }
]
}

The result (false) indicates that the password is not valid. The unfulfilled policy requirements are
provided as part of the response - in this case, the minimum length and the minimum number of
capital letters.

Validating a property that fulfills the policy requirements returns a true result, for example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "password": "1NewPassword"
}' \
"http://localhost:8080/openidm/policy/managed/user/9dce06d4-2fc1-4830-a92b-bd35c2f6bcbb?
_action=validateProperty"
{
 "result": true,
 "failedPolicyRequirements": []
}

Use Policies to Validate Data
Validate Objects and Properties Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 92

Validate Field Removal
To validate field removal, specify the fields to remove when calling the policy validateProperty action.
You cannot remove fields that:

• Are required in the required schema array.

• Have a required policy.

• Have a default value.

The following example validates the removal of the fields description and givenName:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "_remove": ["description", "givenName"]
}' \
"http://localhost:8080/openidm/policy/managed/user/ca5a3196-2ed3-4a76-8881-30403dee70e9?
_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "policyRequirement": "REQUIRED"
 }
],
 "property": "givenName"
 }
]
}

Validate Properties to Unknown Resource Paths
To perform a validateProperty action to a path that is unknown (*), such as managed/user/* or managed/
user/userDoesntExistYet, the payload must include:

• An object field that contains the object details.

• A properties field that contains the properties to be evaluated.

+ Pre-registration Validation Example

A common use case for validating properties for unknown resources is prior to object creation,
such as during pre-registration.

1. Always pass the object and properties content in the POST body because IDM has no object to
look up.

Use Policies to Validate Data
Validate Objects and Properties Over REST

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 93

2. Use any placeholder id in the request URL, as * has no special meaning in the API.

This example uses a conditional policy for any object with the description test1:
"password" : {
 ...
 "conditionalPolicies" : [
 {
 "condition" : {
 "type" : "text/javascript",
 "source" : "(fullObject.description === 'test1')"
 },
 "dependencies" : ["description"],
 "policies" : [
 {
 "policyId" : "at-least-X-capitals",
 "params" : {
 "numCaps" : 1
 }
 }
]
 }
],

Using the above conditional policy, you could perform a validateProperty action to managed/user/*
with the request:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '{
 "object": {
 "description": "test1"
 },
 "properties": {
 "password": "passw0rd"
 }
}' \
"http://localhost:8080/openidm/policy/managed/user/*?_action=validateProperty"
{
 "result": false,
 "failedPolicyRequirements": [
 {
 "policyRequirements": [
 {
 "params": {
 "numCaps": 1
 },
 "policyRequirement": "AT_LEAST_X_CAPITAL_LETTERS"
 }
],
 "property": "password"
 }
]
}

Store Managed Objects in the Repository
Repository Configuration Files

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 94

Chapter 5

Store Managed Objects in the Repository
IDM stores managed objects, internal users, and configuration objects in a repository. By default,
the server uses an embedded ForgeRock Directory Services (DS) instance as its repository. In
production, you must replace this embedded instance with an external DS instance, or with a JDBC
repository, as described in "Select a Repository" in the Installation Guide.

These topics describe the repository configuration, and how objects are mapped in the repository.

• "Repository Configuration Files"

• "Generic and Explicit Object Mappings"

Repository Configuration Files
Configuration files for all supported repositories are located in the /path/to/openidm/db/database/conf
directory. For JDBC repositories, the configuration is defined in two files:

• datasource.jdbc-default.json specifies the connection to the database.

• repo.jdbc.json specifies the mapping between IDM resources and database tables.

For a DS repository, the repo.ds.json file specifies the resource mapping and, in the case of an
external repository, the connection details to the LDAP server.

For both DS and JDBC, the conf/repo.init.json file specifies IDM's initial internal roles and users in the
Security Guide.

Copy the configuration files for your specific database type to your project's conf/ directory.

JDBC Connection Configuration

The default database connection configuration file for a MySQL database follows:

Store Managed Objects in the Repository
JDBC Connection Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 95

{
 "driverClass" : "com.mysql.jdbc.Driver",
 "jdbcUrl" : "jdbc:mysql://&{openidm.repo.host}:&{openidm.repo.port}/openidm?
allowMultiQueries=true&characterEncoding=utf8&serverTimezone=UTC",
 "databaseName" : "openidm",
 "username" : "openidm",
 "password" : "openidm",
 "connectionTimeout" : 30000,
 "connectionPool" : {
 "type" : "hikari",
 "minimumIdle" : 20,
 "maximumPoolSize" : 50
 }
}

The configuration file includes the following properties:

driverClass

"driverClass" : string

To use the JDBC driver manager to acquire a data source, set this property, as well as jdbcUrl,
username, and password. The driver class must be the fully-qualified class name of the database
driver to use for your database.

Using the JDBC driver manager to acquire a data source is the most likely option, and the only
one supported "out of the box". The remaining options in the sample repository configuration file
assume that you are using a JDBC driver manager.

Example: "driverClass" : "com.mysql.jdbc.Driver"

jdbcUrl

The connection URL to the JDBC database. The URL should include all of the parameters
required by your database. For example, to specify the encoding in MySQL use
'characterEncoding=utf8'.

Specify the values for openidm.repo.host and openidm.repo.port in one of the following ways:

• Set the values in resolver/boot.properties or your project's conf/system.properties file, for example:
openidm.repo.host = localhost
openidm.repo.port = 3306

• Set the properties in the OPENIDM_OPTS environment variable and export that variable before
startup. You must include the JVM memory options when you set this variable. For example:

Store Managed Objects in the Repository
JDBC Connection Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 96

export OPENIDM_OPTS="-Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=3306"
/path/to/openidm/startup.sh
Executing ./startup.sh...
Using OPENIDM_HOME: /path/to/openidm
Using PROJECT_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m -Xms1024m -Dopenidm.repo.host=localhost -Dopenidm.repo.port=3306
Using LOGGING_CONFIG: -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/resolver/boot.properties
-> OpenIDM version "7.0.4"
OpenIDM ready

databaseName

The name of the database to which IDM connects. By default, this is openidm.

username

The username with which to access the JDBC database.

password

The password with which to access the JDBC database. IDM automatically encrypts clear
string passwords. To replace an existing encrypted value, replace the whole crypto-object value,
including the brackets, with a string of the new password.

connectionTimeout

The period of time, in milliseconds, after which IDM should consider an attempted connection to
the database to have failed. The default period is 30000 milliseconds (30 seconds).

connectionPool

Database connection pooling configuration. The default connection pool library is HikariCP:
"connectionPool" : {
 "type" : "hikari"
}

IDM uses the default HikariCP configuration, except for the following parameters. You might
need to adjust these parameters, according to your database workload:

• minimumIdle

This property controls the minimum number of idle connections that HikariCP maintains in the
connection pool. If the number of idle connections drops below this value, HikariCP attempts to
add additional connections.

By default, HikariCP runs as a fixed-sized connection pool, that is, this property is not set. The
connection configuration files provided with IDM set the minimum number of idle connections
to 20.

• maximumPoolSize

Store Managed Objects in the Repository
JDBC Database Table Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 97

This property controls the maximum number of connections to the database, including idle
connections and connections that are being used.

By default, HikariCP sets the maximum number of connections to 10. The connection
configuration files provided with IDM set the maximum number of connections to 50.

For information about the HikariCP configuration parameters, see the HikariCPCP Project Page.

JDBC Database Table Configuration

An excerpt of a MySQL database table configuration file follows:
{
 "dbType" : "MYSQL",
 "useDataSource" : "default",
 "maxBatchSize" : 100,
 "maxTxRetry" : 5,
 "queries" : {...},
 "commands" : {...},
 "resourceMapping" : {...}
}

The configuration file includes the following properties:

dbType : string, optional

The type of database. The database type might affect the queries used and other optimizations.
Supported database types include the following:

DB2
SQLSERVER (for Microsoft SQL Server)
MYSQL
ORACLE
POSTGRESQL

useDataSource : string, optional

This option refers to the connection details that are defined in the configuration file, described
previously. The default configuration file is named datasource.jdbc-default.json. This is the file that
is used by default (and the value of the "useDataSource" is therefore "default"). You might want to
specify a different connection configuration file, instead of overwriting the details in the default
file. In this case, set your connection configuration file datasource.jdbc-name.json and set the value
of "useDataSource" to whatever name you have used.

maxBatchSize

The maximum number of SQL statements that will be batched together. This parameter allows
you to optimize the time taken to execute multiple queries. Certain databases do not support
batching, or limit how many statements can be batched. A value of 1 disables batching.

https://github.com/brettwooldridge/HikariCP#configuration-knobs-baby

Store Managed Objects in the Repository
JDBC Database Table Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 98

maxTxRetry

The maximum number of times that a specific transaction should be attempted before that
transaction is aborted.

queries

Any custom queries that can be referenced from the configuration.

Options supported for query parameters include the following:

• A default string parameter, for example:
openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

For more information about the query function, see openidm.query(resourceName, params,
fields) in the Scripting Guide.

• A list parameter (${list:propName}).

Use this parameter to specify a set of indeterminate size as part of your query. For example:
WHERE targetObjectId IN (${list:filteredIds})

• A boolean parameter (${bool:propName}).

Use this parameter to query boolean values in the database.

• Numeric parameters for integers (${int:propName}), large integers (${long:propName}), and decimal
values (${num:propName}).

Use these parameters to query numeric values in the database, corresponding to the column
data type in your repository.

commands

Specific commands configured to manage the database over the REST interface. Currently, the
following default commands are included in the configuration:

• purge-by-recon-expired

• purge-by-recon-number-of

• delete-mapping-links

• delete-target-ids-for-recon

These commands assist with removing stale reconciliation audit information from the repository,
and preventing the repository from growing too large. The commands work by executing a query
filter, then performing the specified operation on each result set. Currently the only supported
operation is DELETE, which removes all entries that match the filter.

Store Managed Objects in the Repository
DS Repository Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 99

resourceMapping

Defines the mapping between IDM resource URIs (for example, managed/user) and JDBC tables. The
structure of the resource mapping is as follows:
"resourceMapping" : {
 "default" : {
 "mainTable" : "genericobjects",
 "propertiesTable" : "genericobjectproperties",
 "searchableDefault" : true
 },
 "genericMapping" : {...},
 "explicitMapping" : {...}
}

The default mapping object represents a default generic table in which any resource that does not
have a more specific mapping is stored.

The generic and explicit mapping objects are described in the following section.

DS Repository Configuration
An excerpt of a DS repository configuration file follows:
{
 "embedded" : false,
 "maxConnectionAttempts" : 5,
 "security" : {...},
 "ldapConnectionFactories" : {...},
 "queries" : {...},
 "commands" : {...},
 "rest2LdapOptions" : {...},
 "indices" : {...},
 "schemaProviders" : {...},
 "resourceMapping" : {...}
}

The configuration file includes the following properties:

embedded : boolean

Specifies an embedded or external DS instance.

IDM uses an embedded DS instance by default. The embedded instance is not supported in
production.

maxConnectionAttempts : integer

Specifies the number of times IDM should attempt to connect to the DS instance. On startup,
IDM will attempt to connect to DS indefinitely. The maxConnectionAttempts parameter controls the
number of reconnection attempts in the event of a failure during normal operation, for example, if
an attempt to access the DS repository times out.

By default, IDM will attempt to reconnect to the DS instance 5 times.

Store Managed Objects in the Repository
DS Repository Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 100

security

Specifies the keystore and truststore for secure connections to DS.
"security": {
 "trustManager": "file",
 "fileBasedTrustManagerType": "JKS",
 "fileBasedTrustManagerFile": "&{idm.install.dir}/security/truststore",
 "fileBasedTrustManagerPasswordFile": "&{idm.install.dir}/security/storepass"
}

In the default case, where DS servers use TLS key pairs generated using a deployment key and
password, you must import the deployment key-based CA certificate into the IDM truststore. For
more information, see "External DS Repository" in the Installation Guide.

Note that the security settings have no effect for an embedded DS repository. Embedded DS is not
supported in production, and is meant for evaluation or testing purposes only.

ldapConnectionFactories

For an external DS repository, configures the connection to the DS instance. For example:
"ldapConnectionFactories": {
 "bind": {
 "connectionSecurity": "startTLS",
 "heartBeatIntervalSeconds": 60,
 "heartBeatTimeoutMilliSeconds": 10000,
 "primaryLdapServers": [
 {
 "hostname": "localhost",
 "port": 31389
 }
],
 "secondaryLdapServers": []
 },
 "root": {
 "inheritFrom": "bind",
 "authentication": {
 "simple": { "bindDn": "uid=admin", "bindPassword": "password" }
 }
 }
}

The connection to the DS repository uses the DS REST2LDAP gateway and the
ldapConnectionFactories property sets the gateway configuration. For example, the
secondaryLdapServers property specifies an array of LDAP servers that the gateway can contact if
the primary LDAP servers cannot be contacted.

For information on all the gateway configuration properties, see Gateway Configuration in the DS
REST API Guide.

queries

Predefined queries that can be referenced from the configuration. For a DS repository, all
predefined queries are really filtered queries (using the _queryFilter parameter), for example:

https://backstage.forgerock.com/docs/ds/7/rest-guide/rest2ldap.html#config-json

Store Managed Objects in the Repository
DS Repository Configuration

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 101

"query-all-ids": {
 "_queryFilter": "true",
 "_fields": "_id,_rev"
}

The queries are divided between those for generic mappings and those for explicit mappings, but
the queries themselves are the same for both mapping types.

commands

Specific commands configured to manage the repository over the REST interface. Currently, only
two commands are included by default:

• delete-mapping-links

• delete-target-ids-for-recon

Both of these commands assist with removing stale reconciliation audit information from the
repository, and preventing the repository from growing too large.

rest2LdapOptions

Specifies the configuration for accessing the LDAP data stored in DS. For more information, see
Gateway REST2LDAP Configuration in the DS REST API Guide.

indices

For generic mappings, enables you to set up LDAP indices on custom object properties. For more
information, see "Improving Generic Mapping Search Performance (DS)".

schemaProviders

For generic mappings, enables you to list custom objects whose properties should be indexed. For
more information, see "Improving Generic Mapping Search Performance (DS)".

resourceMapping

Defines the mapping between IDM resource URIs (for example, managed/user) and the DS directory
tree. The structure of the resource mapping object is as follows:
{
 "resourceMapping" : {
 "defaultMapping": {
 "dnTemplate": "ou=generic,dc=openidm,dc=forgerock,dc=com"
 },
 "explicitMapping" : {...},
 "genericMapping" : {...}
 }
}

The default mapping object represents a default generic organizational unit (ou) in which any
resource that does not have a more specific mapping is stored.

https://backstage.forgerock.com/docs/ds/7/rest-guide/rest2ldap.html#rest2ldap-json

Store Managed Objects in the Repository
Generic and Explicit Object Mappings

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 102

The generic and explicit mapping objects are described in "Generic and Explicit Object
Mappings" .

Generic and Explicit Object Mappings
There are two ways to map IDM objects to the tables in a JDBC database or to organizational units in
DS:

• Generic mapping, which allows you to store arbitrary objects without special configuration or
administration.

• Explicit mapping, which maps specific objects and properties to tables and columns in the JDBC
database or to organizational units in DS.

By default, IDM uses a generic mapping for user-definable objects, for both a JDBC and a DS
repository. A generic mapping speeds up initial deployment, and can make system maintenance
more flexible by providing a stable database structure. In a test environment, generic tables enable
you to modify the user and object model easily, without database access, and without the need to
constantly add and drop table columns. However, generic mapping does not take full advantage
of the underlying database facilities, such as validation within the database and flexible indexing.
Using an explicit mapping generally results in a substantial performance improvement. It is
therefore strongly advised that you change to an explicit mapping before deploying in a production
environment. If you are integrating IDM with AM, and using a shared DS repository, you must use an
explicit schema mapping.

These two mapping strategies are discussed in the following sections, for JDBC repositories and for
DS repositories:

Generic and Explicit Mappings With a JDBC Repository

Generic Mappings With a JDBC Repository
Generic mapping speeds up development, and can make system maintenance more flexible by
providing a stable database structure. However, generic mapping can have a performance impact
and does not take full advantage of the database facilities (such as validation within the database and
flexible indexing). In addition, queries can be more difficult to set up.

In a generic table, the entire object content is stored in a single large-character field named fullobject
in the mainTable for the object. To search on specific fields, you can read them by referring to them
in the corresponding properties table for that object. The disadvantage of generic objects is that,
because every property you might like to filter by is stored in a separate table, you must join to that
table each time you need to filter by anything.

The following diagram shows a pared down database structure for the default generic table, when
using a MySQL repository. The diagram indicates the relationship between the main table and the
corresponding properties table for each object.

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 103

Generic Tables Entity Relationship Diagram

These separate tables can make the query syntax particularly complex. For example, a simple query
to return user entries based on a user name would need to be implemented as follows:
SELECT obj.objectid, obj.rev, obj.fullobject FROM ${_dbSchema}.${_mainTable} obj
INNER JOIN ${_dbSchema}.${_propTable} prop ON obj.id = prop.${_mainTable}_id
INNER JOIN ${_dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes_id
WHERE prop.propkey='/userName' AND prop.propvalue = ${uid} AND objtype.objecttype = ${_resource}",

The query can be broken down as follows:

1. Select the full object, the object ID, and the object revision from the main table:

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 104

SELECT obj.objectid, obj.rev, obj.fullobject FROM ${_dbSchema}.${_mainTable} obj

2. Join to the properties table and locate the object with the corresponding ID:
INNER JOIN ${_dbSchema}.${_propTable} prop ON obj.id = prop.${_mainTable}_id

3. Join to the object types table to restrict returned entries to objects of a specific type. For example,
you might want to restrict returned entries to managed/user objects, or managed/role objects:
INNER JOIN ${_dbSchema}.objecttypes objtype ON objtype.id = obj.objecttypes_id

4. Filter records by the userName property, where the userName is equal to the specified uid and the
object type is the specified type (in this case, managed/user objects):
WHERE prop.propkey='/userName'
 AND prop.propvalue = ${uid}
 AND objtype.objecttype = ${_resource}",

The value of the uid field is provided as part of the query call, for example:
openidm.query("managed/user", { "_queryId": "for-userName", "uid": "jdoe" });

Tables for user definable objects use a generic mapping by default.

The following sample generic mapping object illustrates how managed/ objects are stored in a generic
table:
"genericMapping" : {
 "managed/*" : {
 "mainTable" : "managedobjects",
 "propertiesTable" : "managedobjectproperties",
 "searchableDefault" : true,
 "properties" : {
 "/picture" : {
 "searchable" : false
 }
 }
 }
}

mainTable (string, mandatory)

Indicates the main table in which data is stored for this resource.

The complete object is stored in the fullobject column of this table. The table includes an
objecttypes foreign key that is used to distinguish the different objects stored within the table.
In addition, the revision of each stored object is tracked, in the rev column of the table, enabling
multiversion concurrency control (MVCC). For more information, see "Manipulating Managed
Objects Programmatically".

propertiesTable (string, mandatory)

Indicates the properties table, used for searches.

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 105

Note

PostgreSQL repositories do not use these properties tables to access specific properties. Instead, the
PostgreSQL json_extract_path_text() function achieves this functionality.

The contents of the properties table is a defined subset of the properties, copied from the
character large object (CLOB) that is stored in the fullobject column of the main table. The
properties are stored in a one-to-many style separate table. The set of properties stored here is
determined by the properties that are defined as searchable.

The stored set of searchable properties makes these values available as discrete rows that can be
accessed with SQL queries, specifically, with WHERE clauses. It is not otherwise possible to query
specific properties of the full object.

The properties table includes the following columns:

• ${_mainTable}_id corresponds to the id of the full object in the main table, for example,
manageobjects_id, or genericobjects_id.

• propkey is the name of the searchable property, stored in JSON pointer format (for example /
mail).

• proptype is the data type of the property, for example java.lang.String. The property type is
obtained from the Class associated with the value.

• propvalue is the value of property, extracted from the full object that is stored in the main table.

Regardless of the property data type, this value is stored as a string, so queries against it
should treat it as such.

searchableDefault (boolean, optional)

Specifies whether all properties of the resource should be searchable by default. Properties that
are searchable are stored and indexed. You can override the default for individual properties in
the properties element of the mapping. The preceding example indicates that all properties are
searchable, with the exception of the picture property.

For large, complex objects, having all properties searchable implies a substantial performance
impact. In such a case, a separate insert statement is made in the properties table for each
element in the object, every time the object is updated. Also, because these are indexed fields, the
recreation of these properties incurs a cost in the maintenance of the index. You should therefore
enable searchable only for those properties that must be used as part of a WHERE clause in a
query.

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 106

Note

PostgreSQL repositories do not use the searchableDefault property.

properties

Lists any individual properties for which the searchable default should be overridden.

Note that if an object was originally created with a subset of searchable properties, changing this
subset (by adding a new searchable property in the configuration, for example) will not cause the
existing values to be updated in the properties table for that object. To add the new property to
the properties table for that object, you must update or recreate the object.

Improving Generic Mapping Search Performance (JDBC)
All properties in a generic mapping are searchable by default. In other words, the value of the
searchableDefault property is true unless you explicitly set it to false. Although there are no individual
indexes in a generic mapping, you can improve search performance by setting only those properties
that you need to search as searchable. Properties that are searchable are created within the
corresponding properties table. The properties table exists only for searches or look-ups, and has a
composite index, based on the resource, then the property name.

The sample JDBC repository configuration files (db/database/conf/repo.jdbc.json) restrict searches
to specific properties by setting the searchableDefault to false for managed/user mappings. You must
explicitly set searchable to true for each property that should be searched. The following sample
extract from repo.jdbc.json indicates searches restricted to the userName property:
"genericMapping" : {
 "managed/user" : {
 "mainTable" : "manageduserobjects",
 "propertiesTable" : "manageduserobjectproperties",
 "searchableDefault" : false,
 "properties" : {
 "/userName" : {
 "searchable" : true
 }
 }
 }
}

With this configuration, IDM creates entries in the properties table only for userName properties of
managed user objects.

If the global searchableDefault is set to false, properties that do not have a searchable attribute
explicitly set to true are not written in the properties table.

Explicit Mappings With a JDBC Repository
Explicit mapping is more difficult to set up and maintain, but can take complete advantage of the
native database facilities.

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 107

An explicit table offers better performance and simpler queries. There is less work in the reading
and writing of data, because the data is all in a single row of a single table. In addition, it is
easier to create different types of indexes that apply to only specific fields in an explicit table. The
disadvantage of explicit tables is the additional work required in creating the table in the schema.
Also, because rows in a table are inherently more simple, it is more difficult to deal with complex
objects. Any non-simple key:value pair in an object associated with an explicit table is converted to
a JSON string and stored in the cell in that format. This makes the value difficult to use, from the
perspective of a query attempting to search within it.

You can have a generic mapping configuration for most managed objects, and an explicit mapping
that overrides the default generic mapping in certain cases.

IDM provides a sample configuration, for each JDBC repository, that sets up an explicit mapping for
the managed user object and a generic mapping for all other managed objects. This configuration
is defined in the files named /path/to/openidm/db/repository/conf/repo.jdbc-repository-explicit-managed-
user.json. To use this configuration, copy the file that corresponds to your repository to your project's
conf/ directory and rename it repo.jdbc.json. Run the sample-explicit-managed-user.sql data definition
script (in the path/to/openidm/db/repository/scripts directory) to set up the corresponding tables when
you configure your JDBC repository.

IDM uses explicit mapping for internal system tables, such as the tables used for auditing.

Depending on the types of usage your system is supporting, you might find that an explicit mapping
performs better than a generic mapping. Operations such as sorting and searching (such as those
performed in the default UI) tend to be faster with explicitly-mapped objects, for example.

The following sample explicit mapping object illustrates how internal/user objects are stored in an
explicit table:
"explicitMapping" : {
 "internal/user" : {
 "table" : "internaluser",
 "objectToColumn" : {
 "_id" : "objectid",
 "_rev" : { "column" : "rev", "isNotNull" : true },
 "password" : "pwd"
 }
 },
 ...
}

<resource-uri> (string, mandatory)

Indicates the URI for the resources to which this mapping applies, for example, internal/user.

table (string, mandatory)

The name of the database table in which the object (in this case internal users) is stored.

objectToColumn (string, mandatory)

The way in which specific managed object properties are mapped to columns in the table.

Store Managed Objects in the Repository
Generic and Explicit Mappings With a JDBC Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 108

The mapping can be a simple one to one mapping, for example "userName": "userName", or a more
complex JSON map or list. When a column is mapped to a JSON map or list, the syntax is as
shown in the following examples:
"messageDetail" : { "column" : "messagedetail", "type" : "JSON_MAP" }

or
"roles" : { "column" : "roles", "type" : "JSON_LIST" }

Available column data types you can specify are STRING (the default), NUMBER, JSON_MAP, JSON_LIST, and
FULLOBJECT.

You can also prevent a column from accepting a NULL value, by setting the property isNotNull to
true. This property is optional; if the property is omitted, it will default to false. Specifying which
columns do not allow a null value can improve performance when sorting and paginating large
queries. The syntax is similar to when specifying a column type:
"createDate" : { "column" : "createDate", "isNotNull" : true }

Caution

Pay particular attention to the following caveats when you map properties to explicit columns in your database:

• Support for data types in columns is restricted to numeric values (NUMBER), strings (STRING), and boolean
values (BOOLEAN). Although you can specify other data types, IDM handles all other data types as strings. Your
database will need to convert these types from a string to the alternative data type. This conversion is not
guaranteed to work.

If the conversion does work, the format might not be the same when the data is read from the database as it
was when it was saved. For example, your database might parse a date in the format 12/12/2012 and return
the date in the format 2012-12-12 when the property is read.

• Passwords are encrypted before they are stored in the repository. The length of the password column must
be long enough to store the encrypted password value, which can vary depending on how it is encrypted and
whether it is also hashed.

The sample-explicit-managed-user.sql file referenced in this section sets the password column to a length of
511 characters (VARCHAR(511) to account for the additional space an encrypted password requires. For more
information about IDM encryption and an example encrypted password value, see "encrypt" in the Setup
Guide and "Encoding Attribute Values" in the Security Guide.

• If your data objects include virtual properties, you must include columns in which to store these properties. If
you don't explicitly map the virtual properties, you will see errors similar to the following when you attempt
to create the corresponding object:

{
 "code":400,
 "reason":"Bad Request",
 "message":"Unmapped fields [/property-name/0] for type managed/user and table
 openidm.managed_user"
}

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 109

When virtual properties are returned in the result of a query, the query previously persisted values of the
requested virtual properties. To recalculate virtual property values in a query, you must set executeOnRetrieve
to true in the query request parameters. For more information, see "Property Storage Triggers".

Generic and Explicit Mappings With a DS Repository

For both generic and explicit mappings, IDM maps object types using a dnTemplate property. The
dnTemplate is effectively a pointer to where the object is stored in DS. For example, the following
excerpt of the default repo.ds.json file shows how configuration objects are stored under the DN
ou=config,dc=openidm,dc=forgerock,dc=com:
"config": {
 "dnTemplate": "ou=config,dc=openidm,dc=forgerock,dc=com"
}

Generic Mappings With a DS Repository

By default, IDM uses a generic mapping for all objects except the following:

• Internal users, roles, and privileges

• Links

• Clustered reconciliation target IDs

Note

Clustered reconciliation is not currently supported with a DS repository.

• Locks

• Objects related to queued synchronization

With a generic mapping, all the properties of an object are stored as a single JSON blob in the fr-idm-
json attribute. To create a new generic mapping, you need only specify the dnTemplate, that is, where
the object will be stored in the directory tree.

You can specify a wildcard mapping, that stores all nested URIs under a particular branch of the
directory tree, for example:
"managed/*": {
 "dnTemplate": "ou=managed,dc=openidm,dc=forgerock,dc=com"
}

With this mapping, all objects under managed/, such as managed/user and managed/device, will be stored
in the branch ou=managed,dc=openidm,dc=forgerock,dc=com. You do not have to specify separate mappings

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 110

for each of these objects. The mapping creates a new ou for each object. So, for example, managed/user
objects will be stored under the DN ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com and managed/device
objects will be stored under the DN ou=device,ou=managed,dc=openidm,dc=forgerock,dc=com.

Improving Generic Mapping Search Performance (DS)

By default, all generic objects are instances of the fr-idm-generic-obj object class and their properties
are stored as a single JSON blob in the fr-idm-json attribute. The fr-idm-json attribute is indexed by
default, which results in all attributes of a generic object being indexed. JDBC repositories behave in
a similar way, with all generic objects being searchable by default.

To optimize search performance on specific generic resources, you can set up your own schema
providers and indices as described in this section. For a detailed explanation of how indexes improve
LDAP search performance, see Indexes in the DS Configuration Guide.

For the embedded DS repository, or an external DS repository installed as described in "External DS
Repository" in the Installation Guide, the following managed user properties are indexed by default:

• userName (cn)

• givenName

• sn

• mail

• accountStatus

You can configure managed user indexes in the repository configuration (repo.ds.json) by adding
indices and schemaProviders objects, as follows:
"indices" : {
 ...
 "fr-idm-managed-user-json" : {
 "type" : ["EQUALITY"]
 },
 ...
},
"schemaProviders" : {
 "IDM managed/user Json Schema" : {
 "matchingRuleName" : "caseIgnoreJsonQueryMatchManagedUser",
 "matchingRuleOid" : "1.3.6.1.4.1.36733.2.....",
 "caseSensitiveStrings" : false,
 "fields" : ["accountStatus", "givenName", "mail", "sn", "userName"]
 },
 ...
}

The indexed properties are listed in the array of fields for that managed object. To index additional
managed user properties, add the property names to this array of fields.

https://backstage.forgerock.com/docs/ds/7/config-guide/indexing.html

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 111

To set up indexes on generic objects other than the managed user object, you must do the following:

• Add the object to the DS schema.

The schema for an embedded DS repository is stored in the /path/to/openidm/db/openidm/opendj/db/
schema/60-repo-schema.ldif file.

You can use the managed user object as an example of the schema syntax:
###
Managed User
###
attributeTypes: (1.3.6.1.4.1.36733.2.3.1.13
 NAME 'fr-idm-managed-user-json'
 SYNTAX 1.3.6.1.4.1.36733.2.1.3.1
 EQUALITY caseIgnoreJsonQueryMatchManagedUser
 ORDERING caseIgnoreOrderingMatch
 SINGLE-VALUE
 X-ORIGIN 'OpenIDM DSRepoService')
objectClasses: (1.3.6.1.4.1.36733.2.3.2.6
 NAME 'fr-idm-managed-user'
 SUP top
 STRUCTURAL
 MUST (fr-idm-managed-user-json)
 X-ORIGIN 'OpenIDM DSRepoService')

For information about adding JSON objects to the DS schema, see Schema and JSON in the DS
Configuration Guide.

Warning

If you delete the db/openidm directory, any additions you have made to the schema will be lost. If you have
customized the schema, be sure to back up the 60-repo-schema.ldif file.

• Add the object to the indices property in the conf/repo.ds.json file.

The following example sets up an equality index for a managed devices object:
"indices" : {
 ...
 "fr-idm-managed-devices-json" : {
 "type" : ["EQUALITY"]
 },
 ...
}

• Add the object to the schemaProviders property in the conf/repo.ds.json file and list the properties that
should be indexed.

The following example sets up indexes for the deviceName, brand, and assetNumber properties of the
managed device object:

https://backstage.forgerock.com/docs/ds/7/config-guide/schema.html#json-in-ldap

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 112

"schemaProviders" : {
 "Managed Device Json" : {
 "matchingRuleName" : "caseIgnoreJsonQueryMatchManagedDevice",
 "matchingRuleOid" : "1.3.6.1.4.1.36733.2.....",
 "caseSensitiveStrings" : false,
 "fields" : ["deviceName", "brand", "assetNumber"]
 }
}

For more information about indexing JSON attributes, see JSON Query Matching Rule Index in the
DS Configuration Guide.

Note

The OIDs shown in this section are reserved for ForgeRock internal use. If you set up additional objects and
attributes, or if you change the default schema, you must specify your own OIDs here.

Explicit Mappings With a DS Repository

The default configuration uses a generic mapping for managed user objects. To use an explicit
mapping for managed user objects, change the repository configuration before you start IDM for the
first time.

To set up an explicit mapping:

1. Copy the repo.ds-explicit-managed-user.json file to your project's conf directory, and rename that file
repo.ds.json:
cp /path/to/openidm/db/ds/conf/repo.ds-explicit-managed-user.json project-dir/conf/repo.ds.json

Important

This file is configured for an embedded DS repository by default. To set up an explicit mapping for an
external DS repository, change the value of the embedded property to false and add the following properties:

https://backstage.forgerock.com/docs/ds/7/config-guide/indexing.html#json-index-example

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 113

"security": {
 "trustManager": "file",
 "fileBasedTrustManagerType": "JKS",
 "fileBasedTrustManagerFile": "&{idm.install.dir}/security/truststore",
 "fileBasedTrustManagerPasswordFile": "&{idm.install.dir}/security/storepass"
},
"ldapConnectionFactories": {
 "bind": {
 "connectionSecurity": "startTLS",
 "heartBeatIntervalSeconds": 60,
 "heartBeatTimeoutMilliSeconds": 10000,
 "primaryLdapServers": [
 {
 "hostname": "localhost",
 "port": 31389
 }
],
 "secondaryLdapServers": []
 },
 "root": {
 "inheritFrom": "bind",
 "authentication": {
 "simple": {
 "bindDn": "uid=admin",
 "bindPassword": "password"
 }
 }
 }
}

For more information on these properties, see "DS Repository Configuration".

2. Start IDM.

IDM uses the DS REST to LDAP gateway to map JSON objects to LDAP objects stored in the
directory. To create additional explicit mappings, you must specify the LDAP objectClasses to which
the object is mapped, and how each property maps to its corresponding LDAP attributes. Specify at
least the property type and the corresponding ldapAttribute. For relationships between objects, you
must explicitly define those objects in the repository configuration.

The following excerpt shows an example of an explicit managed user object mapping:
"managed/user" : {
 "dnTemplate": "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 "objectClasses": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "fr-idm-managed-user-explicit",
 "inetuser"
],
 "properties": {
 "_id": {
 "type": "simple", "ldapAttribute": "uid", "isRequired": true, "writability": "createOnly"
 },

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 114

 "userName": {
 "type": "simple", "ldapAttribute": "cn"
 },
 "password": {
 "type": "json", "ldapAttribute": "fr-idm-password"
 },
 "accountStatus": {
 "type": "simple", "ldapAttribute": "fr-idm-accountStatus"
 },
 "roles": {
 "type": "json", "ldapAttribute": "fr-idm-role", "isMultiValued": true
 },
 "effectiveRoles": {
 "type": "json", "ldapAttribute": "fr-idm-effectiveRole", "isMultiValued": true
 },
 "effectiveAssignments": {
 "type": "json", "ldapAttribute": "fr-idm-effectiveAssignment", "isMultiValued": true
 },
 ...
 }
}

You do not need to map the _rev (revision) property of an object as this property is implicit in all
objects and maps to the DS etag operational attribute.

If your data objects include virtual properties, you must include property mappings for these
properties. If you don't explicitly map the virtual properties, you will see errors similar to the
following when you attempt to create the corresponding object:
{
 "code": 400,
 "reason": "Bad Request",
 "message": "Unmapped fields..."
}

For more information about the REST to LDAP property mappings, see Mapping Configuration in the
DS REST API Guide.

For performance reasons, the DS repository does not apply unique constraints to links. This behavior
is different to the JDBC repositories, where uniqueness on link objects is enforced.

Important

DS currently has a default index entry limit of 4000. Therefore, you cannot query more than 4000 records
unless you create a Virtual List View (VLV) index. A VLV index is designed to help DS respond to client
applications that need to browse through a long list of objects.

You cannot create a VLV index on a JSON attribute. For generic mappings, IDM avoids this restriction by using
client-side sorting and searching. However, for explicit mappings you must create a VLV index for any filtered

https://backstage.forgerock.com/docs/ds/7/rest-guide/rest2ldap.html#mappings-json

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 115

or sorted results, such as results displayed in a UI grid. To configure a VLV index, use the dsconfig command
described in Virtual List View Index in the DS Configuration Guide.

Specifying How IDM IDs Map to LDAP Entry Names

The DS REST2LDAP configuration lets you set a namingStrategy that specifies how LDAP entry
names are mapped to JSON resources. When IDM stores its objects in a DS repository, this
namingStrategy determines how the IDM _id value maps to the Relative Distinguished Name (RDN) of
the corresponding DS object.

The namingStrategy is specified as part of the explicitMapping of an object in the repo.ds.json file. The
following example shows a naming strategy configuration for an explicit managed user mapping:
"resourceMapping": {
 "defaultMapping": {
 "dnTemplate": "ou=generic,dc=openidm,dc=forgerock,dc=com"
 },
 ...
 "explicitMapping": {
 "managed/user": {
 "dnTemplate": "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 "objectClasses": [
 "person",
 "organizationalPerson",
 "inetOrgPerson",
 "fr-idm-managed-user-explicit"
],
 "namingStrategy": {
 "type": "clientDnNaming",
 "dnAttribute": "uid"
 },
 ...
 }
 }
}

The namingStrategy can be one of the following:

• clientDnNaming - IDM provides an _id to DS and that _id is used to generate the DS RDN. In the
following example, the IDM _id maps to the LDAP uid attribute:
{
 "namingStrategy": {
 "type": "clientDnNaming",
 "dnAttribute": "uid"
 }
}

With this default configuration, entries are stored in DS with a DN similar to the following:

"uid=idm-uuid,ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com"

https://backstage.forgerock.com/docs/ds/7/config-guide/indexing.html#configure-vlv

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 116

Note

If these default DNs are suitable in your deployment, you do not have to change anything with regard to the
naming strategy.

• clientNaming - IDM provides an _id to DS but the DS RDN is derived from a different user attribute in
the LDAP entry. In the following example, the RDN is the cn attribute. The _id that IDM provides for
the object maps to the LDAP uid attribute:
{
 "namingStrategy": {
 "type": "clientNaming",
 "dnAttribute": "cn",
 "idAttribute": "uid"
 }
}

With this configuration, entries are stored in DS with a DN similar to the following:

"cn=username,ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com"

Specifying a namingStrategy is optional. If you do not specify a strategy, the default is clientDnNaming
with the following configuration:
{
 "namingStrategy" : {
 "type" : "clientDnNaming",
 "dnAttribute" : "uid"
 },
 "properties: : {
 "_id": {
 "type": "simple",
 "ldapAttribute": "uid",
 "isRequired": true,
 "writability": "createOnly"
 },
 ...
 }
}

Note

If you do not set a dnAttribute as part of the naming strategy, the value of the dnAttribute is taken from the
value of the ldapAttribute on the _id property.

Relationship Properties in a DS Repository

The IDM object model lets you define relationships between objects. In a DS repository, relationships
are implemented using the reference and reverseReference REST to LDAP property types. For more

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 117

information about the reference and reverseReference property types, read the JSON property mapping
section of the DS HTTP User Guide.

Relationship properties must be defined in the repository configuration (repo.ds.json), for both generic
and explicit object mappings.

The following property definitions for a managed/user object show how the relationship between a
manager and their reports is defined in the repository configuration:
"managed/user" : {
 "dnTemplate" : "ou=user,ou=managed,dc=openidm,dc=forgerock,dc=com",
 ...
 "properties" : {
 ...
 "reports" : {
 "type" : "reverseReference",
 "resourcePath" : "managed/user",
 "propertyName" : "manager",
 "isMultiValued" : true
 },
 "manager" : {
 "type" : "reference",
 "ldapAttribute" : "fr-idm-managed-user-manager",
 "primaryKey" : "uid",
 "resourcePath" : "managed/user",
 "isMultiValued" : false
 },
 ...
 }
}

This configuration sets the reports property as a reverseReference, or reverse relationship of the manager
property. This means that if you add a manager to a user, the user automatically becomes one of the
reports of that manager.

Note the ldapAttribute defined in the relationship object (fr-idm-managed-user-manager in this case). Your
DS schema must include this attribute, and an object class that contains this attribute. Relationship
attributes in the DS schema must use the Name and Optional JSON syntax.

The following example shows the DS schema definition for the IDM manager property:
attributeTypes: (1.3.6.1.4.1.36733.2.3.1.69
 NAME 'fr-idm-managed-user-manager'
 DESC 'Reference to a users manager'
 SINGLE-VALUE
 SYNTAX 1.3.6.1.4.1.36733.2.1.3.12
 EQUALITY nameAndOptionalCaseIgnoreJsonIdEqualityMatch
 X-STABILITY 'Internal')

Important

If you define a relationship in the schema (managed.json) and you do not define that relationship as a reference
or reverse reference in the repository configuration (repo.ds.json), you will be able to query the relationships,
but filtering and sorting on those queries will not work. This is the case when you define relationship objects

https://backstage.forgerock.com/docs/ds/7/rest-guide/rest2ldap.html#mappings-json-properties
https://backstage.forgerock.com/docs/ds/7/schemaref/s-NameandOptionalJSON.html

Store Managed Objects in the Repository
Generic and Explicit Mappings With a DS Repository

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 118

in the Admin UI—the relationship is defined only in the managed object schema and not in the repository
configuration.

In this case, queries such as the following are not supported:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/_id/managedOrgs?
_pageSize=50&_sortKeys=_id&_totalPagedResultsPolicy=ESTIMATE&_queryFilter=true"

This restriction includes delegated admin privilege filters.

Access Data Objects
Access Data Objects By Using Scripts

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 119

Chapter 6

Access Data Objects
You can access data objects by using scripts (through the Resource API) or by using direct HTTP calls
(through the REST API).

These sections describe these two methods of accessing objects, and provide information on
constructing and calling data queries:

• "Access Data Objects By Using Scripts"

• "Access Data Objects By Using the REST API"

• "Define and Call Data Queries"

• "Upload Files to the Server"

Access Data Objects By Using Scripts
IDM's uniform programming model means that all objects are queried and manipulated in the
same way, using the Resource API. The URL or URI that is used to identify the target object for
an operation depends on the object type. For an explanation of object types, see "Data Models and
Objects Reference". For more information about scripts and the objects available to scripts, see
"Scripting Function Reference" in the Scripting Guide.

You can use the Resource API to obtain managed, system, configuration, and repository objects, as
follows:

val = openidm.read("managed/organization/mysampleorg")
val = openidm.read("system/mysystem/account")
val = openidm.read("config/custom/mylookuptable")
val = openidm.read("repo/custom/mylookuptable")

For information about constructing an object ID, see "URI Scheme" in the REST API Reference.

You can update entire objects with the update() function, as follows:

openidm.update("managed/organization/mysampleorg", rev, object)
openidm.update("system/mysystem/account", rev, object)

You can apply a partial update to a managed or system object by using the patch() function:

Access Data Objects
Access Data Objects By Using the REST API

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 120

openidm.patch("managed/organization/mysampleorg", rev, value)

The create(), delete(), and query() functions work the same way.

Access Data Objects By Using the REST API
IDM provides RESTful access to data objects through the ForgeRock Common REST API. To access
objects over REST, you can use a browser-based REST client, such as the Simple REST Client for
Chrome, or RESTClient for Firefox. Alternatively you can use the curl command-line utility.

For a comprehensive overview of the REST API, see the REST API Reference.

To obtain a managed object through the REST API, depending on your security settings and
authentication configuration, perform an HTTP GET on the corresponding URL, for example http://
localhost:8080/openidm/managed/organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object.

In general, you can map any HTTP request to the corresponding openidm.method call. The following
example shows how the parameters provided in an openidm.query request correspond with the key-
value pairs that you would include in a similar HTTP GET request:

Reading an object using the Resource API:
openidm.query("managed/user", { "_queryFilter": "true" }, ["userName","sn"])

Reading an object using the REST API:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=userName,sn"

Define and Call Data Queries
An advanced query model enables you to define queries and to call them over the REST or Resource
API. Three types of queries are supported, on both managed, and system objects:

• Common filter expressions

• Parameterized, or predefined queries

• Native query expressions

http://curl.haxx.se/

Access Data Objects
Common Filter Expressions

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 121

Each of these mechanisms is discussed in the following sections.

Tip

For limits on queries in progressive profiling, see "Custom Progressive Profile Conditions" in the Self-Service
Reference.

Common Filter Expressions

The ForgeRock REST API defines common filter expressions that enable you to form arbitrary queries
using a number of supported filter operations. This query capability is the standard way to query data
if no predefined query exists, and is supported for all managed and system objects.

Common filter expressions are useful in that they do not require knowledge of how the object is
stored and do not require additions to the repository configuration.

Common filter expressions are called with the _queryFilter keyword. The following example uses a
common filter expression to retrieve managed user objects whose user name is Smith:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"smith"'

The filter is URL encoded in this example. The corresponding filter using the resource API would be:
openidm.query("managed/user", { "_queryFilter" : '/userName eq "smith"' });

Note that, this JavaScript invocation is internal and is not subject to the same URL-encoding
requirements that a GET request would be. Also, because JavaScript supports the use of single
quotes, it is not necessary to escape the double quotes in this example.

For a list of supported filter operations, see "Construct Queries".

Note that using common filter expressions to retrieve values from arrays is currently not supported.
If you need to search within an array, you should set up a predefined (parameterized) in your
repository configuration. For more information, see "Parameterized Queries".

Parameterized Queries

You can access managed objects in JDBC repositories using custom parameterized queries. Define
these queries in your JDBC repository configuration, (repo.*.json), and call them by their _queryId.

Important

• Parameterized queries are not supported for system objects, or for DS repositories.

Access Data Objects
Native Query Expressions

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 122

• All internal queries are filtered queries. Internal queries that reference a queryId are translated to filtered
queries.

A typical query definition is as follows:
"query-all-ids" : "SELECT objectid FROM ${_dbSchema}.${_table} LIMIT ${int:_pageSize} OFFSET
 ${int:_pagedResultsOffset}",

To call this query, you would reference its ID, as follows:

?_queryId=query-all-ids

The following example calls query-all-ids over the REST interface:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/openidm/managed/user?_queryId=query-all-ids"

Note

In repo.jdbc.json, the queries configuration object has a property, validInRelationshipQuery, which is an array
specifying the IDs of queries that use relationships. If you define parameterized queries that you expect to
use as part of a relationship query, you must add the query ID to this array. If no query IDs are specified or if
the property is absent, relationship information is not returned in query results, even if requested. For more
information about relationships, see "Relationships Between Objects".

Native Query Expressions

Native query expressions are supported for system objects only, and can be called directly.

You should only use native queries in situations where common query filters or parameterized
queries are insufficient. For example, native queries are useful if the query needs to be generated
dynamically.

The query expression is specific to the target resource and uses the native query language of that
system resource.

Native queries are made using the _queryExpression keyword.

Construct Queries

The openidm.query function lets you query managed and system objects. The query syntax is openidm.
query(id, params), where id specifies the object on which the query should be performed, and params
provides the parameters that are passed to the query (the _queryFilter). For example:

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 123

var params = {
 '_queryFilter' : 'givenName co "' + sourceCriteria + '" or ' + 'sn co "' + sourceCriteria + '"'
};
var results = openidm.query("system/ScriptedSQL/account", params)

Over the REST interface, the query filter is specified as _queryFilter=filter, for example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=userName+eq+"Smith"'

Note

In _queryFilter expressions, string values must use double-quotes. Numeric and boolean expressions should
not use quotes.

When called over REST, you must URL encode the filter expression. The following examples show the
filter expressions using the resource API and the REST API, but do not show the URL encoding, to
make them easier to read.

For generic mappings, any fields that are included in the query filter (for example userName in the
previous query), must be explicitly defined as searchable, if you have set the global searchableDefault
to false. For more information, see "Improving Generic Mapping Search Performance (JDBC)".

The filter expression is constructed from the building blocks shown in this section. In these
expressions the simplest json-pointer is a field of the JSON resource, such as userName or id. A JSON
pointer can, however, point to nested elements.

Note

You can also use the negation operator (!) in query construction. For example, a _queryFilter=!(userName+eq
+"jdoe") query would return every userName except for jdoe.

Comparison Expressions

You can set up query filters with the following expression types:

+ Objects That Equal a Specified Value

This is the associated JSON comparison expression: json-pointer eq json-value.

Consider the following example:
"_queryFilter" : '/givenName eq "Dan"'

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 124

The following REST call returns the user name and given name of all managed users whose first
name (givenName) is "Dan":
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=givenName+eq
+"Dan"&_fields=userName,givenName'
{
 "result": [
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

+ Objects That Contain a Specified Value

This is the associated JSON comparison expression: json-pointer co json-value.

Consider the following example:
"_queryFilter" : '/givenName co "Da"'

The following REST call returns the user name and given name of all managed users whose first
name (givenName) contains "Da":
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=givenName+co+"Da"&_fields=userName,givenName'
{
 "result": [
 {
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "givenName": "David",

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 125

 "userName": "dakers"
 },
 {
 "givenName": "Dan",
 "userName": "dlangdon"
 },
 {
 "givenName": "Dan",
 "userName": "dcope"
 },
 {
 "givenName": "Dan",
 "userName": "dlanoway"
 },
 {
 "givenName": "Daniel",
 "userName": "dsmith"
 },
 ...
],
 "resultCount": 10,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

+ Objects That Start With a Specified Value

This is the associated JSON comparison expression: json-pointer sw json-value.

Consider the following example:
"_queryFilter" : '/sn sw "Jen"'

The following REST call returns the user names of all managed users whose last name (sn) starts
with "Jen":

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 126

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=sn+sw+"Jen"&_fields=userName'
{
 "result": [
 {
 "userName": "bjensen"
 },
 {
 "userName": "djensen"
 },
 {
 "userName": "cjenkins"
 },
 {
 "userName": "mjennings"
 }
],
 "resultCount": 4,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

+ Objects That Are Less Than a Specified Value

This is the associated JSON comparison expression: json-pointer lt json-value.

Consider the following example:
"_queryFilter" : '/employeeNumber lt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is lower
than 5000:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=employeeNumber+lt
+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },
 {

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 127

 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {
 "employeeNumber": 2892,
 "userName": "dcarter"
 },
 ...
],
 "resultCount": 4999,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

+ Objects That Are Less Than or Equal to a Specified Value

This is the associated JSON comparison expression: json-pointer le json-value.

Consider the following example:
"_queryFilter" : '/employeeNumber le 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000
or less:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=employeeNumber+le
+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 4907,
 "userName": "jnorris"
 },
 {
 "employeeNumber": 4905,
 "userName": "afrancis"
 },
 {
 "employeeNumber": 3095,
 "userName": "twhite"
 },
 {
 "employeeNumber": 3921,
 "userName": "abasson"
 },
 {

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 128

 "employeeNumber": 2892,
 "userName": "dcarter"
 },
 ...
],
 "resultCount": 5000,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

+ Objects That Are Greater Than a Specified Value

This is the associated JSON comparison expression: json-pointer gt json-value

Consider the following example:
"_queryFilter" : '/employeeNumber gt 5000'

The following REST call returns the user names of all managed users whose employeeNumber is
higher than 5000:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=employeeNumber+gt
+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 5003,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 },
 ...
],
 "resultCount": 1458,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 129

}

+ Objects That Are Greater Than or Equal to a Specified Value

This is the associated JSON comparison expression: json-pointer ge json-value.

Consider the following example:
"_queryFilter" : '/employeeNumber ge 5000'

The following REST call returns the user names of all managed users whose employeeNumber is 5000
or greater:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=employeeNumber+ge
+5000&_fields=userName,employeeNumber'
{
 "result": [
 {
 "employeeNumber": 5000,
 "userName": "agilder"
 },
 {
 "employeeNumber": 5011,
 "userName": "bsmith"
 },
 {
 "employeeNumber": 5034,
 "userName": "bjensen"
 },
 {
 "employeeNumber": 5027,
 "userName": "cclarke"
 },
 {
 "employeeNumber": 5033,
 "userName": "scarter"
 },
 ...
],
 "resultCount": 1457,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 130

}

Note

Certain system endpoints also support EndsWith and ContainsAllValues queries. However, such queries are not
supported for managed objects and have not been tested with all supported ICF connectors.

Presence Expressions

The following examples show how you can build filters using a presence expression, shown as pr. The
presence expression is a filter that returns all records with a given attribute.

A presence expression filter evaluates to true when a json-pointer pr matches any object in which the
json-pointer is present, and contains a non-null value. Consider the following expression:
"_queryFilter" : '/mail pr'

The following REST call uses that expression to return the mail addresses for all managed users with
a mail property:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=mail+pr&_fields=mail'
{
 "result": [
 {
 "mail": "jdoe@exampleAD.com"
 },
 {
 "mail": "bjensen@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Depending on the connector, you can apply the presence filter on system objects. The following query
returns the email address of all users in a CSV file who have the email attribute in their entries:

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 131

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/system/csvfile/account?_queryFilter=email+pr&_fields=email'
{
 "result": [
 {
 "_id": "bjensen",
 "email": "bjensen@example.com"
 },
 {
 "_id": "scarter",
 "email": "scarter@example.com"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "MA%3D%3D",
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Note

Not all connectors support the presence filter. In most cases, you can replicate the behavior of the presence
filter with an "equals" (eq) query such as _queryFilter=email+eq"*"

Literal Expressions

A literal expression is a boolean:

• true matches any object in the resource.

• false matches no object in the resource.

For example, you can list the _id of all managed objects as follows:

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 132

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=true&_fields=_id'
{
 "result": [
 {
 "_id": "d2e29d5f-0d74-4d04-bcfe-b1daf508ad7c"
 },
 {
 "_id": "709fed03-897b-4ff0-8a59-6faaa34e3af6"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

In Expression Clause

IDM provides limited support for the in expression clause. You can use this clause for queries on
singleton string properties, not arrays. in query expressions are not supported through the Admin UI.

The in operator is shorthand for multiple OR conditions.

Note

The following example command includes escaped characters. For readability, the non-escaped URL syntax is:

Access Data Objects
Construct Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 133

http://localhost:8080/openidm/managed/user?_pageSize=1000&_fields=userName&_queryFilter=/userName+in
+'["user3a","user4a"]'

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?_pageSize=1000&_fields=userName&_queryFilter=userName%20in
%20'%5B%22user4a%22%2C%22user3a%22%5D'"
{
 "result": [
 {
 "_id": "e32f9a3d-0039-4cb0-82d7-347cb808672e",
 "_rev": "000000000ae18357",
 "userName": "user3a"
 },
 {
 "_id": "120625c5-cfe7-48e7-b66a-6a0a0f9d2901",
 "_rev": "000000005ad98467",
 "userName": "user4a"
 }
],
 "resultCount": 2,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Filter Expanded Relationships

You can use _queryFilter to directly filter expanded relationships from a collection, such as authzRoles.
The following example queries the manager-int authorization role of a user:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user/b70293db-8743-45a7-9215-1ca8fd8a0073/authzRoles?
_queryFilter=name+eq+'manager-int'&_fields=*"
{
 "result": [
 {
 "_id": "b1d78144-7029-4135-8e73-85efe0a40b6b",
 "_rev": "00000000d4b8ab97",
 "_ref": "internal/role/c0a38233-c0f2-477d-8f18-f5485b7d002f",
 "_refResourceCollection": "internal/role",
 "_refResourceId": "c0a38233-c0f2-477d-8f18-f5485b7d002f",
 "_refProperties": {
 "_grantType": "",
 "_id": "b1d78144-7029-4135-8e73-85efe0a40b6b",
 "_rev": "00000000d4b8ab97"
 },

Access Data Objects
Page Query Results

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 134

 "name": "manager-int",
 "description": "manager-int-desc",
 "temporalConstraints": null,
 "condition": null,
 "privileges": null
 }
],
 "resultCount": 1,
 "pagedResultsCookie": null,
 "totalPagedResultsPolicy": "NONE",
 "totalPagedResults": -1,
 "remainingPagedResults": -1
}

Complex Expressions
You can combine expressions using the boolean operators and, or, and ! (not). The following example
queries managed user objects located in London, with last name Jensen:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user/?_queryFilter=city+eq+"London"+and+sn+eq
+"Jensen"&_fields=userName,givenName,sn'
{
 "result": [
 {
 "sn": "Jensen",
 "givenName": "Clive",
 "userName": "cjensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Dave",
 "userName": "djensen"
 },
 {
 "sn": "Jensen",
 "givenName": "Margaret",
 "userName": "mjensen"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Page Query Results
The common filter query mechanism supports paged query results for managed objects, and for some
system objects, depending on the system resource. There are two ways to page objects in a query:

• Using a cookie based on the value of a specified sort key.

Access Data Objects
Page Query Results

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 135

• Using an offset that specifies how many records should be skipped before the first result is
returned.

These methods are implemented with the following query parameters:

_pagedResultsCookie

Opaque cookie used by the server to keep track of the position in the search results. The format
of the cookie is a base-64 encoded version of the value of the unique sort key property. The
value of the returned cookie is URL-encoded to prevent values such as + from being incorrectly
translated.

You cannot page results without sorting them (using the _sortKeys parameter). If you do not
specify a sort key, the _id of the record is used as the default sort key. At least one of the
specified sort key properties must be a unique value property, such as _id.

Tip

For paged searches on generic mappings with the default DS repository, you should sort on the _id
property, as this is the only property that is stored outside of the JSON blob. If you sort on something other
than _id, the search will incur a performance hit because IDM effectively has to pull the entire result set,
and then sort it.

The server provides the cookie value on the first request. You should then supply the cookie
value in subsequent requests until the server returns a null cookie, meaning that the final page of
results has been returned.

The _pagedResultsCookie parameter is supported only for filtered queries, that is, when used with
the _queryFilter parameter. You cannot use the _pagedResultsCookie with a _queryId.

The _pagedResultsCookie and _pagedResultsOffset parameters are mutually exclusive, and cannot be
used together.

Paged results are enabled only if the _pageSize is a non-zero integer.

_pagedResultsOffset

Specifies the index within the result set of the number of records to be skipped before the first
result is returned. The format of the _pagedResultsOffset is an integer value. When the value of
_pagedResultsOffset is greater than or equal to 1, the server returns pages, starting after the
specified index.

This request assumes that the _pageSize is set, and not equal to zero.

For example, if the result set includes 10 records, the _pageSize is 2, and the _pagedResultsOffset is
6, the server skips the first 6 records, then returns 2 records, 7 and 8. The _remainingPagedResults
value would be 2, the last two records (9 and 10) that have not yet been returned.

If the offset points to a page beyond the last of the search results, the result set returned is
empty.

Access Data Objects
Page Query Results

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 136

_pageSize

An optional parameter indicating that query results should be returned in pages of the specified
size. For all paged result requests other than the initial request, a cookie should be provided with
the query request.

The default behavior is not to return paged query results. If set, this parameter should be an
integer value, greater than zero.

When a _pageSize is specified, and non-zero, the server calculates the totalPagedResults, in
accordance with the totalPagedResultsPolicy, and provides the value as part of the response. If
a count policy is specified (_totalPagedResultsPolicy=EXACT, The totalPagedResults returns the total
result count. If no count policy is specified in the query, or if _totalPagedResultsPolicy=NONE, result
counting is disabled, and the server returns a value of -1 for totalPagedResults. The following
example shows a query that requests two results with a totalPagedResultsPolicy of EXACT:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/managed/user?
_queryFilter=true&_pageSize=2&_totalPagedResultsPolicy=EXACT"
{
 "result": [
 {
 "_id": "adonnelly",
 "_rev": "0",
 "userName": "adonnelly",
 "givenName": "Abigail",
 "sn": "Donnelly",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "adonnelly@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 },
 {
 "_id": "bjensen",
 "_rev": "0",
 "userName": "bjensen",
 "givenName": "Babs",
 "sn": "Jensen",
 "telephoneNumber": "12345678",
 "active": "true",
 "mail": "bjensen@example.com",
 "accountStatus": "active",
 "effectiveRoles": [],
 "effectiveAssignments": []
 }
],
 "resultCount": 2,
 "pagedResultsCookie": "eyIvX2lkIjoiYm11cnJheSJ9",
 "totalPagedResultsPolicy": "EXACT",
 "totalPagedResults": 22,

Access Data Objects
Sort Query Results

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 137

 "remainingPagedResults": -1
}

The totalPagedResults and _remainingPagedResults parameters are not supported for all queries.
Where they are not supported, their returned value is always -1. In addition, counting query
results using these parameters is not currently supported for a ForgeRock Directory Services
(DS) repository.

Requesting the total result count (with _totalPagedResultsPolicy=EXACT) incurs a performance cost on
the query.

Queries that return large data sets will have a significant impact on heap requirements,
particularly if they are run in parallel with other large data requests. To avoid out of memory
errors, analyze your data requirements, set the heap configuration appropriately, and modify
access controls to restrict requests on large data sets.

Sort Query Results

For common filter query expressions, you can sort the results of a query using the _sortKeys
parameter. This parameter takes a comma-separated list as a value and orders the way in which the
JSON result is returned, based on this list.

The _sortKeys parameter is not supported for predefined queries.

Note

When using DS as a repo, pagination using _pageSize is recommended if you intend to use _sortKeys. If you
do not plan to paginate your query, the data you are querying must at least be indexed in DS. For more
information about how to set up indexes in DS, see Indexes in the DS Configuration Guide.

The following query returns all users with the givenName Dan, and sorts the results alphabetically,
according to surname (sn):

https://backstage.forgerock.com/docs/ds/7/config-guide/indexing.html

Access Data Objects
Recalculate Virtual Property Values in Queries

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 138

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/system/ldap/account?_queryFilter=givenName+eq
+"Dan"&_fields=givenName,sn&_sortKeys=sn'
{
 "result": [
 {
 "sn": "Cope",
 "givenName": "Dan"
 },
 {
 "sn": "Langdon",
 "givenName": "Dan"
 },
 {
 "sn": "Lanoway",
 "givenName": "Dan"
 }
],
 "resultCount": 3,
 "pagedResultsCookie": null,
 "remainingPagedResults": -1
}

Note

When you query a relationship field, fields that belong to the related object are not available as _sortKeys. For
example, if you query a list of a manager's reports, you cannot sort by the reports' last names. This is because
the available _sortKeys are based on the object being queried, which, in the case of relationships, is actually a
list of references to other objects, not the objects themselves.

Recalculate Virtual Property Values in Queries

For managed objects IDM includes an onRetrieve script hook that enables you to recalculate property
values when an object is retrieved as the result of a query. To use the onRetrieve trigger, the query
must include the executeOnRetrieve parameter, for example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/managed/user?_queryFilter=sn+eq+"Jensen"&executeOnRetrieve=true'

If a query includes executeOnRetrieve, the query recalculates virtual property values, based on the
current state of the system. The result of the query will be the same as a read on a specific object,
because reads always recalculate virtual property values.

If a query does not include executeOnRetrieve, the query returns the virtual properties of an object,
based on the value that is persisted in the repository. Virtual property values are not recalculated.

Access Data Objects
Upload Files to the Server

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 139

For performance reasons, executeOnRetrieve is false by default.

Note

Virtual properties that use queryConfig for calculation instead of an onRetrieve script are not recalculated by
executeOnRetrieve. These properties are recalculated only when there is a change (such as adding or removing
a role affecting effectiveRoles, or a temporal constraint being triggered or changed).

Upload Files to the Server
IDM provides a generic file upload service that enables you to upload and save files either to the
filesystem or to the repository. The service uses the multipart/form-data Content-Type to accept file
content, store it, and return that content when it is called over the REST interface.

To configure the file upload service, add one or more file-description.json files to your project's conf
directory, where description provides an indication of the purpose of the upload service. For example,
you might create a file-images.json configuration file to handle uploading image files. Each file upload
configuration file sets up a separate instance of the upload service. The description in the filename
also specifies the endpoint at which the file service will be accessible over REST. In the previous
example, file-images.json, the service would be accessible at the endpoint openidm/file/images.

A sample file upload service configuration file is available in the /path/to/openidm/samples/example-
configurations/conf directory. The configuration is as follows:
{
 "enabled" : true,
 "fileHandler" : {
 "type" : file handler type,
 "root" : directory
 }
}

The service supports two file handlers—file and repo. The file handlers are configured as follows:

• "type" : "file" specifies that the uploaded content will be stored in the filesystem. If you use the
file type, you must specify a root property to indicate the directory (relative to the IDM installation
directory) in which uploaded content is stored. In the following example, uploaded content is stored
in the /path/to/openidm/images directory:
{
 "enabled" : true,
 "fileHandler" : {
 "type" : "file",
 "root" : "images"
 }
}

You cannot use the file upload service to access any files outside the configured root directory.

Access Data Objects
Upload Files to the Server

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 140

Warning

If root is configured to be an empty string, do not grant access to the file upload service to end users. When
type is configured as file, ensure that root is configured to be a directory.

• "type" : "repo" specifies that the uploaded content will be stored in the repository. The root property
does not apply to the repository file handler so the configuration is as follows:
{
 "enabled" : true,
 "fileHandler" : {
 "type" : "repo"
 }
}

The file upload service performs a multi-part CREATE operation. Each upload request includes two
--form options. The first option indicates that the uploaded file content will be converted to a base
64-encoded string and inserted into the JSON object as a field named content with the following
structure:
{
 "content" : {
 "$ref" : "cid:filename#content"
 }
}

The second --form option specifies the file to be uploaded, and the file type. The request loads the
entire file into memory, so file size will be constrained by available memory.

You can upload any mime type using this service, however, you must specify a safelist of mime types
that can be retrieved over REST. If you specify a mime type that is not in the safelist during retrieval
of the file, the response content defaults to application/json. To configure the list of supported mime
types, specify a comma-separated list as the value of the org.forgerock.json.resource.http.safemimetypes
property in the conf/system.properties file. For example:
org.forgerock.json.resource.http.safemimetypes=application/json,application/pkix-cert,application/x-pem-
file

You can only select from the following list:

• image/*

• text/plain

• text/css

• application/json

• application/pkix-cert

Access Data Objects
Upload Files to the Server

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 141

• application/x-pem-file

The following request uploads an image (PNG) file named test.png to the filesystem. The file handler
configuration file provides the REST endpoint. In this case openidm/file/images references the
configuration in the file-images.json file:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form 'test=@test.png;type=image/png' \
--request PUT \
"http://localhost:8080/openidm/file/images/test.png"
{
 "_id": "test.png",
 "content": "aW1hZ2UvcG5n"
}

Note that the resource ID is derived directly from the upload filename—system-generated IDs are not
supported.

The following request uploads a stylesheet (css) file named test.css to the same location on the
filesystem as the previous request:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form '@test.css;type=text/css' \
--request PUT \
"http://localhost:8080/openidm/file/images/test.css"
{
 "_id": "test.css",
 "content": "aW1hZ2UvY3N2"
}

Files uploaded to the repository are stored as JSON objects in the openidm.files table. The following
request uploads the same image (PNG) file (test.png) to the repository:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form 'json={"content" : {"$ref" : "cid:test#content"}};type=application/json' \
--form 'test=@test.png;type=image/png' \
--request PUT \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Note that the preceding example assumes the following file upload service configuration (in file-
repo.json:

Access Data Objects
Upload Files to the Server

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 142

{
 "enabled" : true,
 "fileHandler" : {
 "type" : "repo"
 }
}

The file type is not stored with the file. By default, a READ on uploaded file content returns the
content as a base 64-encoded string within the JSON object. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Your client can retrieve the file in the correct format by specifying the content and mimeType parameters
in the read request. For example:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/file/repo/test.css?_fields=content&_mimeType=text/css"

To delete uploaded content, send a DELETE request as follows:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request DELETE \
"http://localhost:8080/openidm/file/repo/test.png"
{
 "_id": "test.png",
 "_rev": "00000000970b4454",
 "content": "aW1hZ2UvcG5n"
}

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 143

Chapter 7

Import Bulk Data
The bulk import facility lets you import large numbers of external entries over REST. You import
entries from a comma-separated values (CSV) file, to a specified managed object type in the IDM
repository. Bulk import works as follows:

• Loads bulk CSV entries and stores them temporarily (in the IDM repository) as JSON objects

• Creates a temporary mapping between those entries and the managed object store in the repository

• Performs a reconciliation between the JSON objects and the objects in the repository

Note

The bulk import mechanism assumes that the CSV file is the authoritative data source. If you run an import
more than once, the import overwrites all of the properties of the managed object (including timestamps) with
the values in the CSV file.

To import bulk CSV entries into the repository, using the REST API, follow these steps:

+ Generate a CSV Template

The first time you upload entries, you must generate a CSV template. The template is essentially
an empty CSV file with one header row that matches the managed object type to which you are
importing. In most cases, you will be importing data that fits the managed/user object model, but you
can import any managed object type, such as roles and assignments.

To generate the CSV template, send a GET request to the openidm/csv/template endpoint. The
following request generates a CSV template for the managed user object type:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/csv/template?resourceCollection=managed/
user&_fields=header&_mimeType='text/plain'"
{
 "_id": "template",
 "header": "\"userName\",\"givenName\",\"sn\",\"mail\",\"description\",\"accountStatus\",
\"telephoneNumber\",
 \"postalAddress\",\"city\",\"postalCode\",\"country\",\"stateProvince\",\"preferences/updates\",
 \"preferences/marketing\""
}

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 144

The template is generated based on the specified resourceCollection, and includes a single header
row. The names of each header column are derived from the schema of the managed object type.
The template includes only a subset of managed user properties that can be represented by CSV
fields.

Only the following managed object properties are included in the header row:

• Properties of type string, boolean, and number

• Properties that do not start with an underscore (such as _id or _rev)

If you are importing entries to managed/user, the bulk import facility assumes that self-service
password reset is enabled. This is because the import does not support upload of hashed
passwords.

• Properties whose scope is not private

Set the parameters _fields=header and _mimeType=text/csv to download the template as a CSV file.

When you have generated the template, export your external data to CSV format, using the
headers in the generated template.

+ Upload a CSV File

The default maximum file size for bulk import is 50MBytes. If you need to import a number of
records that exceeds this size, divide the data into chunks and import each file separately. You
can also increase the maximum file size by changing the value of the maxRequestSizeInMegabytes
property in your conf/servletfilter-upload.json file.

When you have a CSV file, with the structure of the template generated in the previous example,
upload the file to the IDM repository with the following request:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--form upload=@/path/to/example-users.csv \
--request POST \
"http://localhost:8080/upload/csv/managed/user?uniqueProperty=userName"
{
 "importUUIDs": [
 "3ebd514f-bdd7-491f-928f-21b72f44e381"
]
}

--form (-F)

This option causes curl to POST data using the Content-Type multipart/form-data, which lets
you upload binary files. To indicate that the form content is a file, prefix the file name with an
@ sign.

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 145

To import more than one file at once, specify multiple --form options, for example:
--form upload=@/path/to/example-users-a-j.csv \
--form upload=@/path/to/example-users-k-z.csv \

uniqueProperty (required)

This parameter lets you correlate existing entries, based on a unique value field. This is useful
if you need to upload the same file a number of times (for example, if data in the file changes,
or if some entries in the file contained errors). You can specify any unique value property
here. You can also correlate on more than one property by specifying multiple, comma-
delimited unique properties.

A successful upload generates an array of importUUIDs. You need these UUIDs to perform other
operations on the import records.

Important

Note that the endpoint (upload/csv) is not an IDM endpoint.

+ Query Bulk Imports

A query on the csv/metadata endpoint returns the import ID, the data structure (header fields in the
CSV file), a recon ID, and a number of fields indicating the status of the import:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
"http://localhost:8080/openidm/csv/metadata/?_queryFilter=true"
{
 "result": [
 {
 "_id": "3ebd514f-bdd7-491f-928f-21b72f44e381",
 "_rev": "000000003e8ef4f7",
 "header": [
 "userName",
 "givenName",
 "sn",
 "mail",
 "description",
 "accountStatus",
 "country"
],
 "reconId": "2e2cf41a-c4b8-4dda-9d92-6e0af65a15fe-6528",
 "filename": "example-users.csv",
 "resourcePath": "managed/user",
 "total": 1000,
 "success": 1000,
 "failure": 0,

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 146

 "created": 1000,
 "updated": 0,
 "unchanged": 0,
 "begin": "2020-04-17T16:31:02.955Z",
 "end": "2020-04-17T16:31:09.861Z",
 "cancelled": false,
 "importDeleted": false,
 "tempRecords": 0,
 "purgedTempRecords": true,
 "purgedErrorRecords": false,
 "authId": "openidm-admin",
 "authzComponent": "internal/user"
 },
 {
 "_rev": "00000000d4392fc8"
 }
],
 ...
}

+ Query Imports To a Specific Object Type

Use a query filter to restrict your query to imports to a specific managed object type. The
following example queries uploads to the managed user object:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request GET \
'http://localhost:8080/openidm/csv/metadata/?_queryFilter=/resourcePath+eq+"managed/user"'
{
 "result": [
 {
 "_id": "82d9a643-8b03-4cec-86fc-3e09c4c2f01c",
 "_rev": "000000009b3ff60b",
 "header": [
 "userName",
 "givenName",
 "sn",
 "mail",
 "description",
 "accountStatus",
 "country"
],
 "reconId": "417dae3b-c939-4191-acbf-6eb1b9e802af-53335",
 "filename": "example-users.csv",
 "resourcePath": "managed/user",
 "total": 1001,
 "success": 1000,
 "failure": 1,
 "created": 0,
 "updated": 0,
 "unchanged": 1000,
 "begin": "2020-04-20T13:12:03.028Z",
 "end": "2020-04-20T13:12:05.222Z",

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 147

 "cancelled": false,
 "importDeleted": false,
 "tempRecords": 0,
 "purgedTempRecords": true,
 "purgedErrorRecords": false,
 "authId": "openidm-admin",
 "authzComponent": "internal/user"
 }
],
 ...
}

+ Handle Failed Import Records

The previous example showed the statistics that are returned when you query bulk imports. One
of these fields is "failure": 0,. If the import was unsuccessful for any records, this failure field will
have a positive value. You can then download the failed records, examine the failures and correct
them in the CSV file, then run the import again.

To download failed records, send a GET request to the endpoint export/csvImportFailures/importUUID:
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--request GET \
--header "Accept-API-Version: resource=1.0" \
"http://localhost:8080/export/csvImportFailures/82d9a643-8b03-4cec-86fc-3e09c4c2f01c"

userName, givenName, sn, mail, ..., _importError
emacheke, Edward, Macheke, emacheke, ..., "{code=403, reason=Forbidden, message=Policy
 validation
 failed, detail={result=false, failedPolicyRequirements=[{policyRequirements=[
 {policyRequirement=VALID_EMAIL_ADDRESS_FORMAT}], property=mail}]}}"

The output indicates the failed record or records, and the reason for the failure, in the _importError
field. In this example, the import failed because of a policy validation error—the email address is
not the correct format.

Warning

IDM does not scan for possible CSV injection attacks on uploaded files. Do not edit the downloaded CSV file
with Microsoft Excel, as this can expose your data to CSV injection.

+ Cancel an Import in Progress

Cancel an import that is in progress by sending a POST request to the openidm/csv/
metadata/importUUID endpoint, with the cancel action. You might want to cancel an import if the
import is taking too long, or if you have noticed problems with the import data, for example:

https://owasp.org/www-community/attacks/CSV_Injection

Import Bulk Data

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 148

curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--request POST \
"http://localhost:8080/openidm/csv/metadata/92971c92-67bb-4ae7-b41b-96d249b0b2aa/?_action=cancel"
{
 "status": "OK"
}

+ HTTP Request Timeout

By default, the timeout for the bulk import servlets is 30 seconds (or 30000 milliseconds). This
parameter is set in your resolver/boot.properties file, as follows:
openidm.servlet.timeoutMillis=30000

If you are importing a very large number of records, you might need to increase the HTTP request
timeout to prevent requests timing out.

In test environments, you can set this parameter to 0 to disable the request timeout. You should
not disable the timeout in a production environment because no timeout can lead to DDoS attacks
where thousands of slow HTTP connections are made.

For a list of all REST endpoints related to bulk import, see "Bulk Import" in the REST API Reference.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 149

Appendix A. Data Models and Objects
Reference

You can customize a variety of objects that can be addressed via a URL or URI. IDM can perform a
common set of functions on these objects, such as CRUDPAQ (create, read, update, delete, patch,
action, and query).

Depending on how you intend to use them, different object types are appropriate.

Object Types

Object Type Intended Use Special Functionality
Managed objects Serve as targets and sources for

synchronization, and to build virtual
identities.

Provide appropriate auditing,
script hooks, declarative
mappings and so forth
in addition to the REST
interface.

Configuration objects Ideal for look-up tables or other custom
configuration, which can be configured
externally like any other system configuration.

Adds file view, REST
interface, and so forth

Repository objects The equivalent of arbitrary database table
access. Appropriate for managing data
purely through the underlying data store or
repository API.

Persistence and API access

System objects Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Audit objects Houses audit data in the repository.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 150

Object Type Intended Use Special Functionality
Links Defines a relation between two objects.

Managed Objects
A managed object is an object that represents the identity-related data managed by IDM. Managed
objects are stored in the IDM repository. All managed objects are JSON-based data structures.

Managed Object Schema

IDM provides a default schema for typical managed object types, such as users and roles, but does
not control the structure of objects that you store in the repository. You can modify or extend the
schema for the default object types, and you can set up a new managed object type for any item that
can be collected in a data set.

The _rev property of a managed object is reserved for internal use, and is not explicitly part of its
schema. This property specifies the revision of the object in the repository. This is the same value
that is exposed as the object's ETag through the REST API. The content of this attribute is not
defined. No consumer should make any assumptions of its content beyond equivalence comparison.
This attribute may be provided by the underlying data store.

Schema validation is performed by the policy service and can be configured according to the
requirements of your deployment.

Properties can be defined to be strictly derived from other properties within the object. This allows
computed and composite values to be created in the object. Such properties are named virtual
properties. The value of a virtual property is computed only when that property is retrieved.

Data Consistency

Single-object operations are consistent within the scope of the operation performed, limited by the
capabilities of the underlying data store. Bulk operations have no consistency guarantees. IDM does
not expose any transactional semantics in the managed object access API.

For information on conditional header access through the REST API, see "Conditional Operations" in
the REST API Reference.

Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property state.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 151

State Triggers
Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request
methods on managed objects. Such triggers are intended to perform authorization, redact, or modify
objects before the action is performed. The object being operated on is in scope for each trigger,
meaning that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed
before any optimistic concurrency mechanisms are invoked. The reason for this is to prevent a
potential attacker from getting information about an object (including its presence in the data store)
before authorization is applied.

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.

postCreate

Called after the creation of a new object is complete.

onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception
causes the object to not be included in the result. This method is also called when lists of objects
are retrieved via requests to its container object; in this case, only the requested properties are
included in the object. Allows for uniform access control for retrieval of objects, regardless of the
method in which they were requested.

onUpdate

Called upon a request to store an object. The oldObject and newObject variables are in-scope for
the trigger. The oldObject represents a complete object, as retrieved from the data store. The
trigger can elect to change newObject properties. If, as a result of the trigger, the values of the
oldObject and newObject are identical (that is, update is reverted), the update ends prematurely, but
successfully. Throwing an exception causes the update to fail.

postUpdate

Called after an update request is complete.

onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.

postDelete

Called after an object is deleted.

onSync

Called when a managed object is changed, and the change triggers an implicit synchronization
operation. The implicit synchronization operation is triggered by calling the sync service, which

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 152

attempts to go through all the configured managed-system mappings. The sync service returns
either a response or an error. For both the response and the error, the script that is referenced
by the onSync hook is called.

You can use this hook to inject business logic when the sync service either fails or succeeds to
synchronize all applicable mappings. For an example of how the onSync hook is used to revert
partial successful synchronization operations, see "Synchronization Failure Compensation" in the
Synchronization Guide.

Object Storage Triggers
An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in
scope for the trigger.

onValidate

Validates an object prior to its storage in the data store. If an exception is thrown, the validation
fails and the object is not stored.

onStore

Called just prior to when an object is stored in the data store. Typically used to transform an
object just prior to its storage (for example, encryption).

Property Storage Triggers
A property-scoped trigger applies to a specific property within an object. Only the property itself is
in scope for the trigger. No other properties in the object should be accessed during execution of the
trigger. Unless otherwise specified, the order of execution of property-scoped triggers is intentionally
left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage in the data store.
If an exception is thrown, the validation fails and the property is not stored.

onRetrieve

Called on all requests that return a single object: read, create, update, patch, and delete.

onRetrieve is called on queries only if executeOnRetrieve is set to true in the query request
parameters. If executeOnRetrieve is not passed, or if it is false, the query returns previously
persisted values of the requested fields. This behavior avoids performance problems when
executing the script on all results of a query.

onStore

Called before an object is stored in the data store. Typically used to transform a given property
before its object is stored.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 153

Storage Trigger Sequences

Triggers are executed in the following order:

Object Retrieval Sequence

1. Retrieve the raw object from the data store

2. The executeOnRetrieve boolean is used to check whether property values should be recalculated.
The sequence continues if the boolean is set to true.

3. Call object onRetrieve trigger

4. Per-property within the object, call property onRetrieve trigger

Object Storage Sequence

1. Per-property within the object:

• Call property onValidate trigger

• Call object onValidate trigger

2. Per-property trigger within the object:

• Call property onStore trigger

• Call object onStore trigger

• Store the object with any resulting changes to the data store

Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore
trigger. The trigger has access to configuration data, which can include arbitrary attributes that you
define, such as a symmetric encryption key. Such attributes can be decrypted during retrieval from
the data store through the property onRetrieve trigger.

Managed Object Configuration

Configuration of managed objects is provided through an array of managed object configuration
objects.
{
 "objects": [managed-object-config object, ...]
}

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 154

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.
{
 "name" : string,
 "actions" : script object,
 "onCreate" : script object,
 "onDelete" : script object,
 "onRead" : script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "onSync" : script object,
 "onUpdate" : script object,
 "onValidate": script object,
 "postCreate": script object,
 "postDelete": script object,
 "postUpdate": script object,
 "schema" : {
 "id" : urn,
 "icon" : string,
 "mat-icon" : string,
 "order" : [list of properties],
 "properties": { property-configuration objects },
 "$schema" : "http://json-schema.org/draft-03/schema",
 "title" : "User",
 "viewable" : true
 }
}

name

string, required

The name of the managed object. Used to identify the managed object in URIs and identifiers.

actions

script object, optional

A custom script that initiates an action on the managed object. For more information, see
"Register Custom Scripted Actions" in the Scripting Guide.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested. The object to be
created is provided in the root scope as an object property. The script can change the object. If an
exception is thrown, the create aborts with an exception.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 155

onDelete

script object, optional

A script object to trigger when the deletion of an object is being requested. The object being
deleted is provided in the root scope as an object property. If an exception is thrown, the deletion
aborts with an exception.

onRead

script object, optional

A script object to trigger when the read of an object is being requested. The object being read is
provided in the root scope as an object property. The script can change the object. If an exception
is thrown, the read aborts with an exception.

onRetrieve

script object, optional

A script object to trigger when an object is retrieved from the repository. The object that was
retrieved is provided in the root scope as an object property. The script can change the object. If
an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be
stored is provided in the root scope as an object property. The script can change the object. If an
exception is thrown, then object storage fails.

onSync

script object, optional

A script object to trigger when a change to a managed object triggers an implicit synchronization
operation. The script has access to the syncResults object, the request object, the state of the object
before the change (oldObject) and the state of the object after the change (newObject). The script
can change the object.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object
being updated is provided in the root scope as an oldObject property. The new value of the object
being updated is provided in the root scope as a newObject property. The script can change the
newObject. If an exception is thrown, the update aborts with an exception.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 156

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be validated is
provided in the root scope as an object property. If an exception is thrown, the validation fails.

postCreate

script object, optional

A script object to trigger after an object is created, but before any targets are synchronized.

postDelete

script object, optional

A script object to trigger after a delete of an object is complete, but before any further
synchronization. The value of the deleted object is provided in the root scope as an oldObject
property.

postUpdate

script object, optional

A script object to trigger after an update to an object is complete, but before any targets are
synchronized. The value of the object before the update is provided in the root scope as an
oldObject property. The value of the object after the update is provided in the root scope as a
newObject property.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed object, and how
the object is displayed in the UI. The schema-object format is defined by the JSON Schema
specification.

The schema property includes the following additional elements:

icon

string, optional

The name of the Font Awesome icon to display for this object in the UI. Only applies to
standalone IDM.

mat-icon

string, optional

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 157

The name of the Material Design Icon to display for this object in the UI. Only applies to IDM
as part of the ForgeRock Identity Platform.

id

urn, optional

The URN of the managed object, for example,
urn:jsonschema:org:forgerock:openidm:managed:api:Role.

order

list of properties, optional

The order in which properties of this managed object are displayed in the UI.

properties

list of property configuration objects, optional

A list of property specifications. For more information, see Property Configuration Properties.

$schema

url, optional

Link to the JSON schema specification.

title

string, optional

The title of this managed object in the UI.

viewable

boolean, optional

Whether this object is visible in the UI.

Property Configuration Properties

Each managed object property, identified by its property-name, can have the following configurable
properties:
"property-name" : {
 "description" : string,
 "encryption" : property-encryption object,
 "isPersonal" : boolean true/false,

https://material.io/resources/icons/

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 158

 "isProtected" : boolean true/false,
 "isVirtual" : boolean true/false,
 "items" : {
 "id" : urn,
 "properties" : property-config object,
 "resourceCollection" : property-config object,
 "reversePropertyName" : string,
 "reverseRelationship" : boolean true/false,
 "title" : string,
 "type" : string,
 "validate" : boolean true/false,
 },
 "onRetrieve" : script object,
 "onStore" : script object,
 "onValidate" : script object,
 "pattern" : string,
 "policies" : policy object,
 "required" : boolean true/false,
 "returnByDefault" : boolean true/false,
 "scope" : string,
 "searchable" : boolean true/false,
 "secureHash" : property-hash object,
 "title" : string,
 "type" : data type,
 "usageDescription": string,
 "userEditable" : boolean true/false,
 "viewable" : boolean true/false,
}

description

string, optional

A brief description of the property.

encryption

property-encryption object, optional

Specifies the configuration for encryption of the property in the repository. If omitted or null, the
property is not encrypted.

isPersonal

boolean, true/false

Designed to highlight personally identifying information. By default, isPersonal is set to true for
userName and postalAddress.

isProtected

boolean, true/false

Specifies whether reauthentication is required if the value of this property changes.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 159

isVirtual

boolean, true/false

Specifies whether the property takes a static value, or whether its value is calculated dynamically
as the result of a script.

The most recently calculated value of a virtual property is persisted by default. The persistence
of virtual property values allows IDM to compare the new value of the property against the last
calculated value, and therefore to detect change events during synchronization.

Virtual property values are not persisted by default if you are using an explicit mapping.

items

property-configuration object, optional

For array type properties, defines the elements in the array. items can include the following sub-
properties:

id

urn, optional

The URN of the property, for example,
urn:jsonschema:org:forgerock:openidm:managed:api:Role:members:items.

properties

property configuration object, optional

A list of properties, and their configuration, that make up this items array. For example, for a
relationship type property:
"properties" : {
 "_ref" : {
 "description" : "References a relationship from a managed object",
 "type" : "string"
 },
 "_refProperties" : {
 "description" : "Supports metadata within the relationship",
 ...
 }
}

resourceCollection

property configuration object, optional

The collection of resources (objects) on which this relationship is based (for example, managed/
user objects).

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 160

reversePropertyName

string, optional

For relationship type properties, specifies the corresponding property name in the case of a
reverse relationship. For example, a roles property might have a reversePropertyName of members.

reverseRelationship

boolean, true or false.

For relationship type properties, specifies whether the relationship exists in both directions.

title

string, optional

The title of array items, as displayed in the UI, for example Role Members Items.

type

string, optional

The array type, for example relationship.

validate

boolean, true/false

For reverse relationships, specifies whether the relationship should be validated.

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository. That property may be
one of two related variables: property and propertyName. The property that was retrieved is provided
in the root scope as the propertyName variable; its value is provided as the property variable. If an
exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the repository. That property
may be one of two related variables: property and propertyName. The property that was retrieved
is provided in the root scope as the propertyName variable; its value is provided as the property
variable. If an exception is thrown, then object storage fails.

onValidate

script object, optional

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 161

A script object to trigger when the property requires validation. The value of the property to
be validated is provided in the root scope as the property property. If an exception is thrown,
validation fails.

pattern

string, optional

Any specific pattern to which the value of the property must adhere. For example, a property
whose value is a date might require a specific date format. Patterns specified here must follow
regular expression syntax.

policies

policy object, optional

Any policy validation that must be applied to the property.

required

boolean, true/false

Specifies whether the property must be supplied when an object of this type is created.

returnByDefault

boolean, true/false

For virtual properties, specifies whether the property will be returned in the results of a query on
an object of this type if it is not explicitly requested. Virtual attributes are not returned by default.

scope

string, optional

Specifies whether the property should be filtered from HTTP/external calls. The value can be
either "public" or "private". "private" indicates that the property should be filtered, "public"
indicates no filtering. If no value is set, the property is assumed to be public and thus not filtered.

searchable

boolean, true/false

Specifies whether this property can be used in a search query on the managed object. A
searchable property is visible in the End User UI. False by default.

secureHash

property-hash object, optional

Specifies the configuration for hashing of the property value in the repository. If omitted or null,
the property is not hashed.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 162

title

string, required

A human-readable string, used to display the property in the UI.

type

data type, required

The data type for the property value; can be String, Array, Boolean, Number, Object, or Resource
Collection.

usageDescription

string, optional

Designed to help end users understand the sensitivity of a property such as a telephone number.

userEditable

boolean, true/false

Specifies whether users can edit the property value in the UI. This property applies in the context
of the End User UI, in which users are able to edit certain properties of their own accounts. False
by default.

viewable

boolean, true/false

Specifies whether this property is viewable in the object's profile in the UI. True by default.

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Supported types include "text/javascript" and "groovy".

source, file

string, required (only one, source or file is required)

Specifies the source code of the script to be executed (if the keyword is "source"), or a pointer to
the file that contains the script (if the keyword is "file").

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 163

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of
"AES/CBC/PKCS5Padding" is used.

key

string, required

The alias of the key in the IDM cryptography service keystore used to encrypt the property.

Property Hash Object

{
 "algorithm" : string,
 "type" : string
}

algorithm

string, required

The algorithm that should be used to hash the value. For a list of supported hash algorithms, see
"Encoding Attribute Values by Using Salted Hash Algorithms" in the Security Guide.

type

string, optional

The type of hashing. Currently only salted hash is supported. If this property is omitted or null,
the default "salted-hash" is used.

Custom Managed Objects
Managed objects are inherently fully user definable and customizable. Like all objects, managed
objects can maintain relationships to each other in the form of links. Managed objects are intended
for use as targets and sources for synchronization operations to represent domain objects, and to
build up virtual identities. The name managed objects comes from the intention that IDM stores and
manages these objects, as opposed to system objects that are present in external systems.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 164

IDM can synchronize and map directly between external systems (system objects), without storing
intermediate managed objects. Managed objects are appropriate, however, as a way to cache the
data—for example, when mapping to multiple target systems, or when decoupling the availability of
systems—to more fully report and audit on all object changes during reconciliation, and to build up
views that are different from the original source, such as transformed and combined or virtual views.
Managed objects can also be allowed to act as an authoritative source if no other appropriate source
is available.

Other object types exist for other settings that should be available to a script, such as configuration
or look-up tables that do not need audit logging.

Setting Up a Managed Object Type

To set up a managed object, you declare the object in your project's conf/managed.json file. The
following example adds a simple foobar object declaration after the user object type.
{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

Manipulating Managed Objects Declaratively

By mapping an object to another object, either an external system object or another internal managed
object, you automatically tie the object life cycle and property settings to the other object. For more
information, see "Mapping Data Between Resources" in the Synchronization Guide.

Manipulating Managed Objects Programmatically

You can address managed objects as resources using URLs or URIs with the managed/ prefix. This
works whether you address the managed object internally as a script running in IDM or externally
through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations,
and also for arbitrary queries on the object set, but not currently for arbitrary actions. For more
information, see "Scripting Function Reference" in the Scripting Guide.

IDM supports concurrency through a multi version concurrency control (MVCC) mechanism. Each
time an object changes, IDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans as defined in JSON.

http://www.json.org

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 165

Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar", "myidentifier", mymap)

Updating Objects

The following script example updates an object type.
var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the
object concurrently, IDM rejects the update, and you must either retry or inspect the concurrent
modification.

Patching Objects

You can partially update a managed or system object using the patch method, which changes only the
specified properties of the object.

The following script example updates an object type.
openidm.patch("managed/foobar/myidentifier", rev, value)

The patch method supports a revision of "null", which effectively disables the MVCC mechanism, that
is, changes are applied, regardless of revision. In the REST interface, this matches the If-Match: "*"
condition supported by patch. Alternatively, you can omit the "If-Match: *" header.

For managed objects, the API supports patch by query, so the caller does not need to know the
identifier of the object to change.
curl \
--header "X-OpenIDM-Username: openidm-admin" \
--header "X-OpenIDM-Password: openidm-admin" \
--header "Accept-API-Version: resource=1.0" \
--header "Content-Type: application/json" \
--request POST \
--data '[
 {
 "operation": "replace",
 "field": "/password",
 "value": "Passw0rd"
 }
]' \
"http://localhost:8080/openidm/managed/user?_action=patch&_queryFilter=userName+eq+'DDOE'"

Deleting Objects

The following script example deletes an object type.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 166

var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the object
concurrently, IDM rejects deletion, and you must either retry or inspect the concurrent modification.

Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

Querying Object Sets

You can query managed objects using common query filter syntax. The following script example
queries managed user objects whose userName is smith.
var qry = {
 "_queryFilter" : "/userName eq \"smith\""
};
val = openidm.query("managed/user", qry);

For more information, see "Define and Call Data Queries".

Accessing Managed Objects Through the REST API

IDM exposes all managed object functionality through the REST API unless you configure a policy to
prevent such access. In addition to the common REST functionality of create, read, update, delete,
patch, and query, the REST API also supports patch by query. For more information, see the REST
API Reference.

IDM requires authentication to access the REST API. The authentication configuration is specified in
your project's conf/authentication.json file. The default authorization filter script is openidm/bin/defaults/
script/router-authz.js. For more information, see "Secure Authentication" in the Security Guide.

Configuration Objects
IDM provides an extensible configuration to allow you to leverage regular configuration mechanisms.

Unlike native the IDM configuration, which is interpreted automatically and can start new services,
IDM stores custom configuration objects and makes them available to your code through the API.

For an introduction to the standard configuration objects, see "Configure the Server" in the Setup
Guide.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 167

When To Use Custom Configuration Objects
Configuration objects are ideal for metadata and settings that need not be included in the data to
reconcile. Use configuration objects for data that does not require audit log, and does not serve
directly as a target or source for mappings.

Although you can set and manipulate configuration objects programmatically and manually,
configuration objects are expected to change slowly, through both manual file updates and
programmatic updates. To store temporary values that can change frequently and that you do
not expect to be updated by configuration file changes, custom repository objects might be more
appropriate.

Custom Configuration Object Naming Conventions
By convention custom configuration objects are added under the reserved context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a value for context that
does not clash with future IDM configuration names.

Mapping Configuration Objects To Configuration Files
If you have not disabled the file based view for configuration, you can view and edit all configuration
including custom configuration in openidm/conf/*.json files. The configuration maps to a file named
context-config-name.json, where context for custom configuration objects is custom by convention, and
config-name is the configuration object name. A configuration object named escalation thus maps to a
file named conf/custom-escalation.json.

IDM detects and automatically picks up changes to the file.

IDM also applies changes made through APIs to the file.

By default, IDM stores configuration objects in the repository. The file view is an added convenience
aimed to help you in the development phase of your project.

Configuration Objects File and REST Payload Formats
By default, IDM maps configuration objects to JSON representations.

IDM represents objects internally in plain, native types like maps, lists, strings, numbers,
booleans, null. The object model is restricted to simple types so that mapping objects to external
representations is easy.

The following example shows a representation of a configuration object with a look-up map.
{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 168

In the JSON representation, maps are represented with braces ({ }), and lists are represented with
brackets ([]). Objects can be arbitrarily complex, as in the following example.
{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

Accessing Configuration Objects Through the REST API

You can list all available configuration objects, including system and custom configurations, using an
HTTP GET on /openidm/config.

The _id property in the configuration object provides the link to the configuration details with an
HTTP GET on /openidm/config/id-value. By convention, the id-value for a custom configuration object
called escalation is custom/escalation.

IDM supports REST mappings for create, read, update, delete, patch, and query of configuration
objects.

Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both
internally and also through the REST interface. The resource API provides script object functions for
create, read, update, query, and delete operations.

IDM supports concurrency through a multi version concurrency control mechanism. Each time an
object changes, IDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans.

Creating Objects

The following script example creates an object type.

openidm.create("config/custom", "myconfig", mymap)

Updating Objects

The following script example updates a custom configuration object type.
openidm.update("config/custom/myconfig", mymap)

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 169

Deleting Objects

The following script example deletes a custom configuration object type.
openidm.delete("config/custom/myconfig")

Reading Objects

The following script example reads an object type.

val = openidm.read("config/custom/myconfig")

System Objects
System objects are pluggable representations of objects on external systems. They follow the same
RESTful resource based design principles as managed objects. There is a default implementation for
the ICF framework, which allows any connector object to be represented as a system object.

Audit Objects
Audit objects contain audit data selected for local storage in repository.

Links
Link objects define relations between source objects and target objects, usually relations between
managed objects and system objects. The link relationship is established by provisioning activity that
either results in a new account on a target system, or a reconciliation or synchronization scenario
that takes a LINK action.

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 170

IDM Glossary

correlation query A correlation query specifies an expression that matches existing
entries in a source repository to one or more entries in a target
repository. A correlation query might be built with a script, but it
is not the same as a correlation script. For more information, see
"Correlating Source Objects With Existing Target Objects" in the
Synchronization Guide.

correlation script A correlation script matches existing entries in a source repository,
and returns the IDs of one or more matching entries on a target
repository. While it skips the intermediate step associated with a
correlation query, a correlation script can be relatively complex, based
on the operations of the script.

entitlement An entitlement is a collection of attributes that can be added to a user
entry via roles. As such, it is a specialized type of assignment. A user or
device with an entitlement gets access rights to specified resources.
An entitlement is a property of a managed object.

JCE Java Cryptographic Extension, which is part of the Java Cryptography
Architecture, provides a framework for encryption, key generation,
and digital signatures.

JSON JavaScript Object Notation, a lightweight data interchange format
based on a subset of JavaScript syntax. For more information, see the
JSON site.

JSON Pointer A JSON Pointer defines a string syntax for identifying a specific value
within a JSON document. For information about JSON Pointer syntax,
see the JSON Pointer RFC.

http://www.json.org
https://tools.ietf.org/html/rfc6901

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 171

JWT JSON Web Token. As noted in the JSON Web Token draft IETF Memo,
"JSON Web Token (JWT) is a compact URL-safe means of representing
claims to be transferred between two parties." For IDM, the JWT is
associated with the JWT_SESSION authentication module.

managed object An object that represents the identity-related data managed by IDM.
Managed objects are configurable, JSON-based data structures that
IDM stores in its pluggable repository. The default configuration of
a managed object is that of a user, but you can define any kind of
managed object, for example, groups or roles.

mapping A policy that is defined between a source object and a target object
during reconciliation or synchronization. A mapping can also define a
trigger for validation, customization, filtering, and transformation of
source and target objects.

OSGi A module system and service platform for the Java programming
language that implements a complete and dynamic component model.
For more information, see What is OSGi? Currently, only the Apache
Felix container is supported.

reconciliation During reconciliation, comparisons are made between managed
objects and objects on source or target systems. Reconciliation can
result in one or more specified actions, including, but not limited to,
synchronization.

resource An external system, database, directory server, or other source of
identity data to be managed and audited by the identity management
system.

REST Representational State Transfer. A software architecture style for
exposing resources, using the technologies and protocols of the World
Wide Web. REST describes how distributed data objects, or resources,
can be defined and addressed.

role IDM distinguishes between two distinct role types - provisioning roles
and authorization roles. For more information, see "Managed Roles".

source object In the context of reconciliation, a source object is a data object
on the source system, that IDM scans before attempting to find a
corresponding object on the target system. Depending on the defined
mapping, IDM then adjusts the object on the target system (target
object).

synchronization The synchronization process creates, updates, or deletes objects on a
target system, based on the defined mappings from the source system.
Synchronization can be scheduled or on demand.

system object A pluggable representation of an object on an external system. For
example, a user entry that is stored in an external LDAP directory is

http://self-issued.info/docs/draft-ietf-oauth-json-web-token.html
https://www.osgi.org/resources/what-is-osgi/
http://felix.apache.org/
http://felix.apache.org/

Object Modeling Guide ForgeRock Identity Management 7 (2023-04-26)
Copyright © 2011-2020 ForgeRock AS. All rights reserved. 172

represented as a system object in IDM for the period during which
IDM requires access to that entry. System objects follow the same
RESTful resource-based design principles as managed objects.

target object In the context of reconciliation, a target object is a data object on the
target system, that IDM scans after locating its corresponding object
on the source system. Depending on the defined mapping, IDM then
adjusts the target object to match the corresponding source object.

	Object Modeling Guide
	Table of Contents
	Overview
	Chapter 1. Managed Objects
	Define the Schema
	Create and Modify Object Types
	Managed Users
	Managed Groups
	Virtual Properties
	Virtual Properties Using onRetrieve Scripts
	Virtual Properties Using queryConfig

	Run Scripts on Managed Objects
	Track User Metadata

	Chapter 2. Relationships Between Objects
	Define a Relationship Type
	Create a Relationship Between Two Objects
	Configure Relationship Change Notification
	Validate Relationships Between Objects
	Create Bidirectional Relationships
	Grant Relationships Conditionally
	View Relationships Over REST
	View Relationships in Graph Form
	Manage Relationships Through the Admin UI

	Chapter 3. Roles
	IDM Role Types
	Managed Roles
	Manipulate Roles Over REST and in the UI
	Use Temporal Constraints to Restrict Effective Roles
	Use Assignments to Provision Users
	Effective Roles and Effective Assignments
	Roles and Relationship Change Notification
	Managed Role Script Hooks
	Use Groups to Control Access to IDM

	Chapter 4. Use Policies to Validate Data
	Default Policy for Managed Objects
	Policy Script File
	Policy Configuration Objects
	Policy Implementation Functions

	Default Policy Reference
	Policy Configuration Element
	Validate Managed Object Data Types
	Configure Policy Validation Using the Admin UI

	Extend the Policy Service
	Add Custom Scripted Policies
	Add Conditional Policy Definitions

	Disable Policy Enforcement
	Manage Policies Over REST
	List the Defined Policies
	Validate Objects and Properties Over REST
	Validate Field Removal
	Validate Properties to Unknown Resource Paths

	Chapter 5. Store Managed Objects in the Repository
	Repository Configuration Files
	JDBC Connection Configuration
	JDBC Database Table Configuration
	DS Repository Configuration

	Generic and Explicit Object Mappings
	Generic and Explicit Mappings With a JDBC Repository
	Generic Mappings With a JDBC Repository
	Improving Generic Mapping Search Performance (JDBC)
	Explicit Mappings With a JDBC Repository

	Generic and Explicit Mappings With a DS Repository
	Generic Mappings With a DS Repository
	Improving Generic Mapping Search Performance (DS)

	Explicit Mappings With a DS Repository
	Specifying How IDM IDs Map to LDAP Entry Names

	Relationship Properties in a DS Repository

	Chapter 6. Access Data Objects
	Access Data Objects By Using Scripts
	Access Data Objects By Using the REST API
	Define and Call Data Queries
	Common Filter Expressions
	Parameterized Queries
	Native Query Expressions
	Construct Queries
	Comparison Expressions
	Presence Expressions
	Literal Expressions
	In Expression Clause
	Filter Expanded Relationships
	Complex Expressions

	Page Query Results
	Sort Query Results
	Recalculate Virtual Property Values in Queries

	Upload Files to the Server

	Chapter 7. Import Bulk Data
	Appendix A. Data Models and Objects Reference
	Managed Objects
	Managed Object Schema
	Data Consistency
	Managed Object Triggers
	State Triggers
	Object Storage Triggers
	Property Storage Triggers
	Storage Trigger Sequences

	Managed Object Encryption
	Managed Object Configuration
	Custom Managed Objects
	Setting Up a Managed Object Type
	Manipulating Managed Objects Declaratively
	Manipulating Managed Objects Programmatically
	Creating Objects
	Updating Objects
	Patching Objects
	Deleting Objects
	Reading Objects
	Querying Object Sets

	Accessing Managed Objects Through the REST API

	Configuration Objects
	When To Use Custom Configuration Objects
	Custom Configuration Object Naming Conventions
	Mapping Configuration Objects To Configuration Files
	Configuration Objects File and REST Payload Formats
	Accessing Configuration Objects Through the REST API
	Accessing Configuration Objects Programmatically
	Creating Objects
	Updating Objects
	Deleting Objects
	Reading Objects

	System Objects
	Audit Objects
	Links

	IDM Glossary

