
Client Application Developers Guide
/ Identity Edge Controller 6.5

Latest update: 6.5

Lana Frost

ForgeRock AS.
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2019 ForgeRock AS.

Abstract

Guide to developing client applications with the ForgeRock® Identity Edge Controller
(IEC).

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, https://fontawesome.com/.

This Font Software is licensed under the SIL Open Font License, Version 1.1. See https://opensource.org/licenses/OFL-1.1.

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
https://fontawesome.com/
https://opensource.org/licenses/OFL-1.1

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... iv
1. Before You Start ... 1

About the Build Script ... 1
Using the Training Environment ... 2

2. Initializing Client Applications With the IEC SDK .. 3
Initializing a Client Manually .. 3
Initializing a Client Dynamically .. 5

3. Registering a Device ... 7
Understanding the Device Registration Process .. 8

4. Getting and Changing Device Configuration .. 10
Understanding the Device Configuration Process .. 12

5. Getting OAuth2 Tokens For a Device .. 14
Understanding the Device Token Process .. 15

6. Pairing a Device With a User .. 17
Understanding User/Device Pairing ... 19

7. Running Custom Commands on a Device .. 20
Understanding Custom Commands .. 22

IEC Glossary .. 23

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. iv

Preface
This guide shows you how to use the ForgeRock® Identity Edge Controller (IEC) SDK to develop
client applications and to register them with the IEC Service. The IEC SDK client library provides
client APIs in C and Go for client applications to invoke ForgeRock Access Management (AM)
functionality through the IEC Service.

The SDK library is small and uses a secure lightweight messaging protocol so that it can run on
constrained devices. The examples in this Guide use the C API. Adjust the examples if you are using
Go.

This guide includes the following chapters:

• "Before You Start"

• "Initializing Client Applications With the IEC SDK"

• "Registering a Device"

• "Getting and Changing Device Configuration"

• "Getting OAuth2 Tokens For a Device"

• "Pairing a Device With a User"

• "Running Custom Commands on a Device"

Before You Start
About the Build Script

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 1

Chapter 1

Before You Start
Before you start developing clients, it is helpful to have an overview of the IEC and its components.
Read Getting Started first.

The IEC Service attests for both clients (SDK) and devices. Onboarding either of these node types will
fail if the IEC Service has not registered successfully with AM. In general, the functional flow is from
the SDK Client library (libiecclient.so) API, via ZMQ and the IEC Service to the AM IEC Plugin and
back.

The code examples in this guide assume that you have installed all the required components,
including the IEC SDK, and that everything is up and running, as described in the Installation Guide.
The examples also assume that you have unpacked the SDK in a directory named ~/forgerock and that
you have set the LIBRARY_PATH variables, as described in "To Install the IEC SDK" in the Installation
Guide. Adjust the examples for your environment.

About the Build Script
The SDK includes a sample client application named simpleclient that allows you to test that all
your IEC components are up and running and serves as a reference for building your first client
application. The SDK also includes a build script named build-examples.sh. This script sets the required
environment variables and builds all applications that it finds in the following directories:

~/forgerock/examples/app-name

The script assumes that the application consists of a single C file named ~/forgerock/examples/app-name/
app-name.c and creates an executable application named app-name in the corresponding ~/forgerock/
examples/app-name directory.

Before you use the script, open it in a text editor and adjust the path to your local compiler, for
example:
export CC=usr/bin/gcc

The build script is not executable by default. Make sure that the script is executable before you try
the examples in this guide:
chmod +x build-examples.sh

Before You Start
Using the Training Environment

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 2

Using the Training Environment
ForgeRock provides a training environment that enables you to get all the IEC components up and
running very quickly in Docker containers, and to test your client applications.

The training environment includes all the sample applications referenced in this guide. The
default credentials for the AM admin user in the training environment are amadmin and password. The
environment already has the required configured realm named edge. If you are not using the training
environment, configure this realm, as described in "Configuring AM for IoT" in the Installation Guide.

The training environment is open source and anyone with a GitHub account can use or contribute to
the project.

Although it is easiest to get started using the training environment, the remainder of this guide
assumes that you are developing applications in your own environment.

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training

Initializing Client Applications With the IEC SDK
Initializing a Client Manually

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 3

Chapter 2

Initializing Client Applications With the IEC
SDK
The IEC SDK requires access to a configuration to provide keys, URLs, and so on. After you have
installed and registered the IEC Service, you can initialize this configuration in two ways:

• Manually, using a JSON configuration file and the iecutil utility.

• Dynamically, using the iec_set_attribute function to set individual attribute values.

Initializing a Client Manually
The iecutil utility creates a configuration database (named iec-sdk.db) based on the properties in this
configuration file. A sample configuration file follows:
{
 "zmq_client": {
 "endpoint": "tcp://127.0.0.1:5556",
 "secret_key":"zZZfS7BthsFLMv$]Zq{tNNOtd69hfoBsuc-lg1cM",
 "public_key":"uH^{aIzDw5,...TRbHcu0q#(zo]uLl6Wyv/1{/^C+",
 "server_public_key":"9m27tKf3....G-f[>W]gP%fPD:?mX*)hdJ",
 "msg_timeout_sec": 5
 },
 "logging": {
 "enabled": true,
 "debug": true,
 "max_file_size_mb": 5,
 "max_backup_files": 5,
 "max_file_age_days": 0,
 "compress_file_backups": true
 },
 "client_configuration": {
 "id": "iec-client"
 }
}

The configuration database must exist for the ZMQ communication to be established. Once the
database exists, you can update it from AM through the IEC Service. For security reasons, you should
delete or protect the JSON configuration file once the client has been initialized.

To initialize a client manually:

1. Your C application must include the libiecclient.h library and a call to iec_initialise().

Initializing Client Applications With the IEC SDK
Initializing a Client Manually

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 4

See the example client application init_sdk_static.c.

2. Create a new directory in the ~/forgerock/examples directory, with the same name as your client
application and place the C application in that directory.

For example, to build the init_sdk_static.c sample application, copy init_sdk_static.c. into a new
directory named init_sdk_static:
mkdir ~/forgerock/examples/init_sdk_static
cp init_sdk_static.c ~/forgerock/examples/init_sdk_static

3. Run the build script to set the build variables and build the application:
~/forgerock/build-examples.sh

The build script creates the application init_sdk_static in the ~/forgerock/examples/init_sdk_static
directory:
ls examples/init_sdk_static/
init_sdk_static init_sdk_static.c

4. Copy the database configuration file (sdk-config.json) to the directory containing your application.
For example:
cp ~/forgerock/sdk-config.json ~/forgerock/examples/init_sdk_static

5. Edit the database configuration file to specify the IP address on which the SDK runs. For
example, if you are setting this up in the training environment, edit the file as follows:
zmq_client.endpoint: tcp://172.16.0.11:5556

Note

The value provided for client_configuration/id is used as the name of the client identity and must be unique
within the AM realm. 1

6. Change to the directory in which your client application is located, then use iecutil to initialize
the client application, based on the database configuration file in that directory:
cd ~/forgerock/examples/init_sdk_static
~/forgerock/iecutil -file sdk-config.json -initialise sdk
iec util: Initialising sdk
iec util: Finished sdk initialisation

An SDK application looks in the directory from which it's run for a configuration database or for a
file that contains the database location.

1 If the value provided contains a colon character (:), it must be a valid URI. For more information, see StringOrURI in the
JSON Web Token specification.

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/init_sdk_static/init_sdk_static.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/init_sdk_static/init_sdk_static.c
https://tools.ietf.org/html/rfc7519#section-2

Initializing Client Applications With the IEC SDK
Initializing a Client Dynamically

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 5

Note

If you change the configuration and need to reinitialize the SDK, remove the iec-sdk.db in the application
directory, then run the initialization again.

7. Run the example application:
cd ~/forgerock/examples/init_sdk_static
./init_sdk_static

If the initialization was successful, you should see the iec-client identity in the Edge Identity
Manager Console.

Initializing a Client Dynamically
Dynamic configuration takes precedence over a manual database configuration, if one exists. You
can use the iec_set_attribute utility to set a number of configuration attribute values, such as the IEC_
ENDPOINT and IEC_SECRETKEY. For a list of all the attributes, see the libiectypes.h library.

To initialize the client dynamically:

1. Your C application must include the libiecclient.h library, and provide the complete SDK
configuration with the iec_set_attribute() function.

See the sample client application init_sdk_dynamic.c.

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/init_sdk_dynamic. If you are not working in the training environment, create a
new directory in the ~/forgerock/examples directory, with the same name as your client application
and place the C application in that directory.

For example, to build the init_sdk_dynamic.c application, copy init_sdk_dynamic.c into a new
directory named init_sdk_dynamic:
mkdir ~/forgerock/examples/init_sdk_dynamic
cp init_sdk_dynamic.c ~/forgerock/examples/init_sdk_dynamic

3. Run the build script to set the build variables and build the application:
~/forgerock/build-examples.sh

The build script creates the application init_sdk_dynamic in the ~/forgerock/examples/init_sdk_dynamic
directory:
ls examples/init_sdk_dynamic/
init_sdk_dynamic init_sdk_dynamic.c

4. Run the example application:

https://stash.forgerock.org/projects/IOT/repos/identity-edge-controller-core/browse/cmd/iecsdk/libiectypes.h
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/init_sdk_dynamic/init_sdk_dynamic.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/init_sdk_dynamic/init_sdk_dynamic.c

Initializing Client Applications With the IEC SDK
Initializing a Client Dynamically

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 6

cd ~/forgerock/examples/init_sdk_dynamic
./init_sdk_dynamic
*** Initialising the SDK dynamically
*** SDK function(s): iec_initialise

Setting dynamic attributes... Done

Initialising sdk... Done

If the initialization was successful, you should see the iec-dynamic-client identity in the Edge
Identity Manager Console.

Registering a Device

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 7

Chapter 3

Registering a Device
A client application developed with the IEC SDK can register a device ID with AM and provide
configuration from AM for the device with this ID.

Note

There is a wide range of device node types from many different manufacturers. Specific programming and
configuration of these devices is outside the scope of the IEC project.

To register a device:

1. Your client application must include the libiecclient.h library and a call to iec_device_register().

See the sample client application register_device.c. This sample application includes dynamic
client initialization, shown in "Initializing a Client Dynamically".

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/register_device. If you are not working in the training environment, create a new
directory in the ~/forgerock/examples directory, with the same name as your client application and
place the C application in that directory.

For example, copy register_device.c into a new directory named register_device:
mkdir ~/forgerock/examples/register_device
cp register_device.c ~/forgerock/examples/register_device

3. Set the device ID and any custom registration data. In the example, the device ID is Narwhal. 1

Note

The registration data is discarded as soon as the device is registered. No registration data is stored in AM.

4. Run the build script to set the build variables and build the application:
~/forgerock/build-examples.sh

The build script creates the application register_device in the ~/forgerock/examples/register_device
directory:

1 If the value provided contains a colon character (:), it must be a valid URI. For more information, see StringOrURI in the
JSON Web Token specification.

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/register_device/register_device.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/register_device/register_device.c
https://tools.ietf.org/html/rfc7519#section-2

Registering a Device
Understanding the Device Registration Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 8

ls examples/register_device/
register_device register_device.c

5. Run the example application:
cd ~/forgerock/examples/register_device
./register_device
*** Registering a device
*** SDK function(s): iec_initialise, iec_device_register

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Narwhal)... Done

If the registration was successful, you should see the Narwhal identity in the Edge Identity
Manager Console. The reg-dev-client identity is the identity of your client application, set with the
IEC_CLIENT_ID dynamic attribute.

Understanding the Device Registration Process
The device registration flow is as follows:

1. The call to iec_device_register initiates the registration.

Note

The procedure assumes that the device is made known (in some way) to the client.

2. Using the specified device ID and device registration data, such as keys, the client issues a ZMQ
request of type DeviceRegister to the IEC Service. The IEC Service receives the request and does
the following:

• Registers with AM claiming to be node type device.

• Checks that the IEC Service has been registered with AM.

• Authenticates the device with AM, with the specified device ID and node type client (the client
attests for the device).

3. The client registers the device with AM using claims, with node type device and the following data:

• The specified device ID

• Registration data

• Registration key

Registering a Device
Understanding the Device Registration Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 9

4. The client returns with an outcome.

5. The IEC Service responds with a success ZMQ message.

6. The device is registered.

Getting and Changing Device Configuration

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 10

Chapter 4

Getting and Changing Device Configuration
Once a device is registered with AM, the client application can request configuration for the device
from AM, by specifying the device ID.

In this example, the user provides device configuration to AM in JSON format through the Edge
Identity Manager. By default, configuration is set at the IEC level and applied to all clients and
devices registered with that IEC. Device configuration is not returned if it's added to the device or
client profile.

To change this default behavior, edit the GetDeviceConfig script (Edge Device Configuration Command
Handler) in the AM console.

Note

In the current implementation, IEC and SDK configuration are only requested when their respective processes
are restarted.

To get the configuration for a device:

1. Your client application must include the libiecclient.h library and a call to iec_device_
configuration(), with the deviceId parameter.

See the sample client application get_device_configuration.c.

The sample application includes "Initializing a Client Dynamically" and "Registering a Device".

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/get_device_configuration.

If you are not working in the training environment, create a new directory in the ~/forgerock/
examples directory, with the same name as your client application and place the C application in
that directory.

For example, copy get_device_configuration.c into a new directory named get_device_configuration:
mkdir ~/forgerock/examples/get_device_configuration
cp get_device_configuration.c ~/forgerock/examples/get_device_configuration

3. Set the deviceId. In the example, the deviceId is Ibex.

4. Make sure that the build script is executable, then run the script to set the build variables and
build the application:

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_device_configuration/get_device_configuration.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_device_configuration/get_device_configuration.c

Getting and Changing Device Configuration

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 11

~/forgerock/build-examples.sh

5. The build script creates the application get_device_configuration in the ~/forgerock/examples/get_
device_configuration directory:
ls examples/get_device_configuration/
get_device_configuration get_device_configuration.c

6. Run the example application:
cd ~/forgerock/examples/get_device_configuration
./get_device_configuration
*** Registering a device
*** SDK function(s): iec_initialise, iec_device_register, iec_device_configuration, iec_json_*

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Ibex)... Done

Requesting configuration for device (id: Ibex)... Done

Parsing configuration: { }... Done

Extract the "minimum" value from the configuration...Not set

If the initialization and registration were successful, you should see the get-config-client and Ibex
device identities in the Edge Identity Manager Console.

Initially there is no device configuration so the sample client returns an empty JSON object as the
value of Parsing configuration: { }.

7. In the Edge Identity Manager console, Set the Device Configuration under the IEC profile, in
JSON format, for example:
{
 "display": "mountain goat",
 "minimum": 123
}

The sample application returns the value of the minimum property, if set.

8. Run the example application again:

Getting and Changing Device Configuration
Understanding the Device Configuration Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 12

./get_device_configuration
*** Registering a device
*** SDK function(s): iec_initialise, iec_device_register, iec_device_configuration, iec_json_*

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Ibex)... Done

Requesting configuration for device (id: Ibex)... Done

Parsing configuration: { "display": "mountain goat", "minimum": 123 }... Done

Extract the "minimum" value from the configuration...123

Notice that the configuration that you entered in the Edge Identity Manager console is now
returned by the client.

In a real application, the client would place this configuration in the specified memory area on the
device.

Understanding the Device Configuration Process
Obtaining device configuration occurs as follows:

1. The client initiates a request to obtain the device configuration into the specified memory area,
using the iec_device_configuration() library call with the parameter deviceID.

2. The client issues a ZMQ request of type DeviceCommand to the IEC Service, specifying the deviceID
and the GET_CONFIG command.

3. The IEC Service receives the request and does the following:

• Verifies that the IEC has been registered with AM.

• Authenticates the device with AM.

With the specified deviceID and node type client (the client attests for the device), the service
receives an SSO access token from AM.

• Obtains the command URL from the trust layer.

• Encrypts the request.

• Sends the GET_CONFIG request to AM, using the SSO access token.

The service sends this request with the deviceID and no other parameters.

Getting and Changing Device Configuration
Understanding the Device Configuration Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 13

The AM plugin runs the Edge Device Configuration Command Handler script and returns the device
configuration for this deviceID.

• The IEC Service responds with a ZMQ message that contains the device configuration from AM.

• The device configuration is placed in the specified memory area.

Note

The device configuration can be used to provide MQTT connection information to the device, such as hostname,
quality of service, publish\subscription topics, and so on.

Getting OAuth2 Tokens For a Device

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 14

Chapter 5

Getting OAuth2 Tokens For a Device
A client application developed with the IEC SDK can request OAuth2 bearer tokens (access token and
ID token) from AM for a specific device ID.

To request an OAuth2 token:

1. Your client application must include the libiecclient.h library and a call to iec_device_tokens(), with
the deviceId parameter.

See the sample client application get_device_tokens.c.

The sample application includes "Initializing a Client Dynamically" and "Registering a Device".

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/get_device_tokens. If you are not working in the training environment, create a
new directory in the ~/forgerock/examples directory, with the same name as your client application
and place the C application in that directory.

For example, copy get_device_tokens.c into a new directory named get_device_tokens:
mkdir ~/forgerock/examples/get_device_tokens
cp get_device_tokens.c ~/forgerock/examples/get_device_tokens

3. Set the device ID and any custom registration data. In the example, the device ID is Rhino.

4. Make sure that the build script is executable, then run the script to set the build variables and
build the application:
~/forgerock/build-examples.sh

5. The build script creates the application get_device_tokens in the ~/forgerock/examples/get_device_
tokens directory:
ls examples/get_device_tokens/
get_device_tokens get_device_tokens.c

6. Run the example application:

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_device_tokens/get_device_tokens.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_device_tokens/get_device_tokens.c

Getting OAuth2 Tokens For a Device
Understanding the Device Token Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 15

cd ~/forgerock/examples/get_device_tokens
./get_device_tokens
*** Getting OAuth 2.0 access and ID tokens for a device
*** SDK function(s): iec_initialise, iec_device_register, iec_device_tokens, iec_json_*

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Rhino)... Done

Requesting OAuth 2.0 ID token for device (id: Rhino)... Done

Extracting access and id tokens...
 access token: 8-Nfp1wH_ws41Cmgut_aImRXBsQ
 id token: eyJ0eXAiOiJKV1QiLCJraWQiOiJ3VTNpZklJYUxPVUFSZVJCL0ZHNmVNMVAxUU...H4GrQ

If the initialization and registration were successful, you should see the get-device-tokens-client
and Rhino device identities in the Edge Identity Manager Console.

The client returns the access and id tokens for the device. In a real application, the client would
place these tokens in the specified memory area on the device.

Understanding the Device Token Process
The flow for obtaining device tokens is as follows:

1. The client initiates the process with the iec_device_tokens library call and the deviceID parameter.

2. Using the specified device ID, the client issues a ZMQ request of type DeviceCommand to the IEC
Service, with the specific command GET_TOKENS.

3. The IEC Service receives the request and follows the standard DeviceCommand behavior:

• Verifies that the IEC has been registered with AM.

• Authenticates the device with AM.

With the specified deviceID and node type client (the client attests for the device), the service
receives an SSO access token from AM.

• Obtains the command URL from the trust layer.

• Encrypts the request.

• Sends the GET_CONFIG request to AM, using the SSO access token.

The service sends this request with the deviceID and no other parameters.

The AM plugin runs the Edge Device Tokens Command Handler script and returns the device tokens for
this deviceID.

Getting OAuth2 Tokens For a Device
Understanding the Device Token Process

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 16

4. The IEC Service responds with a ZMQ message that contains the device tokens from AM.

5. The device tokens are placed in the specified memory area.

Pairing a Device With a User

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 17

Chapter 6

Pairing a Device With a User
A registered device can be paired with another identity in AM, usually a human (user) identity but
potentially any other device identity. The user must exist in the same realm as the device and must be
able to authenticate outside of the IEC authentication flow.

The device first obtains a code and a verification URL. The user manually verifies the code, at the
specified URL. The device then obtains the user tokens that authorize it to access the specified user
resources. For a more detailed explanation of the process, see "Understanding User/Device Pairing".

Before you start this example, create a user identity in AM in the edge realm. In the AM console (in the
edge realm) select Identities > New Identity and enter the User ID, Password and Email address of a
sample user. In this example, we assume a user with User ID bjensen. You don't need to complete any
additional information for the user.

Also make sure that you have configured the OAuth2 Verification URL, as described in "Configuring
AM for IoT" in the Installation Guide.

To pair the user with a device:

1. Your client application must include the libiecclient.h library and calls to iec_user_code() and iec_
user_tokens() with the deviceId parameter.

See the sample client application get_user_tokens.c.

The sample application includes "Initializing a Client Dynamically" and "Registering a Device".

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/get_user_tokens.

If you are not working in the training environment, create a new directory in the ~/forgerock/
examples directory, with the same name as your client application and place the C application in
that directory.

For example, copy get_user_tokens.c into a new directory named get_user_tokens:
mkdir ~/forgerock/examples/get_user_tokens
cp get_user_tokens.c ~/forgerock/examples/get_user_tokens

3. Set the deviceId. In the example, the deviceId is Springbok.

4. Make sure that the build script is executable, then run the script to set the build variables and
build the application:
~/forgerock/build-examples.sh

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_user_tokens/get_user_tokens.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/get_user_tokens/get_user_tokens.c

Pairing a Device With a User

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 18

5. The build script creates the application get_user_tokens in the ~/forgerock/examples/get_user_tokens
directory:
ls examples/get_user_tokens/
get_user_tokens get_user_tokens.c

6. Run the example application:
cd ~/forgerock/examples/get_user_tokens
./get_user_tokens
*** Getting OAuth 2.0 user tokens via device flow
*** SDK function(s): iec_initialise, iec_device_register, iec_user_code, iec_user_tokens, iec_json_*

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Springbok)... Done

Requesting a user code for device (id: Springbok)... Done

Please instruct the user to visit:
 http://am.iec.com:8080/openam/oauth2/realms/root/realms/edge/device/user?nonce=0
and enter user code: XDQm3PXK

Requesting user tokens for device (id: Springbok)...

The client outputs an instruction to the user to visit the Verification URL with the specified code.
The Verification URL corresponds to the URL that is set in the OAuth2 Provider service in AM. In
the training environment, this URL is http://am.iec.com:8080/openam/oauth2/realms/root/realms/edge/
device/user?nonce=0.

7. Navigate to that URL and enter the code returned by the client (XDQm3PXK in this example).

Important

If you have the AM console open, use a private browser session to test this step, otherwise the AM takes
the credentials of the existing logged in user.

8. Log in to AM as the sample user you created at the beginning of this procedure (bjensen).

AM returns a message indicating that the specified device (springbok) is requesting access to your
account. Select Allow.

9. The client returns the user tokens in the output:
Requesting user tokens for device (id: Springbok)...
Done: {
 "access_token": "rwZDFemw-xK2hRvkcG1bJusACuU",
 "id_token": "eyJ0eXAiOiJKV1QiLCJraWQiOiJ3VTNpZklJYUxPVUFSZVJCL0...",
 "token_type": "Bearer",
 "expires_in": 3599
 }

Pairing a Device With a User
Understanding User/Device Pairing

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 19

In a real application, the client would place these tokens in the specified memory area on the
device, authorizing the device to access the specified user resources.

Understanding User/Device Pairing
The process of pairing a user and a device is similar to that described in "Understanding the Device
Token Process".

1. The client initiates a request to obtain a user code, using the iec_user_code() library call with the
deviceID parameter.

2. Using the specified device ID, the client issues a ZMQ request of type DeviceCommand to the IEC
Service, with the command GET_USER_CODE.

3. The IEC Service receives the request and follows the standard DeviceCommand behavior:

• Verifies that the IEC has been registered with AM.

• Authenticates the device with AM.

With the specified deviceID and node type client (the client attests for the device), the service
receives an SSO access token from AM.

• Obtains the command URL from the trust layer.

• Encrypts the request.

• Sends the GET_USER_CODE request to AM, using the SSO access token.

The service sends this request with the deviceID and no other parameters.

The AM plugin runs the Edge User Code Command Handler script and returns the user code and
Verification URL.

4. The IEC Service responds with a ZMQ message that contains the user code and Verification URL
from AM.

These details are passed to the user, who authenticates and validates the user code.

5. AM now regards the device and user as paired and constructs the access tokens for the device.

6. The IEC service sends the GET_USER_TOKENS request to AM with the Edge User Tokens Command Handler
script.

The process is similar to "Understanding the Device Token Process" and enables the the device to
obtain the access tokens from AM. These tokens authorize the device to access the specified user
resources.

Running Custom Commands on a Device

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 20

Chapter 7

Running Custom Commands on a Device
If your deployment requires functionality not covered by the features described previously, your
client application can use the IEC Command Handler to run custom commands on devices through
AM. Running a custom command involves the following:

1. Writing an IEC Command Handler script in Groovy.

2. Mapping that script to a command key in the IEC Service

3. Calling the command with the iec_device_custom_command library call.

To Write a Custom IEC Command Handler Script

Before you start this example, write a custom IEC Command Handler script and map it to a command
key in IEC. The following procedure sets up a Hello World script:

1. In the AM console, in the edge realm, select Scripts > New Script.

2. Set the script Name to Hello World and the Script Type to IEC Command Handler then select Create.

3. In the Script field, paste the following Groovy script:
import groovy.json.JsonOutput
import groovy.json.JsonSlurper

logger.info("Running custom command handler script")

// Pre-defined variables passed to the script
def jsonSlurper = new JsonSlurper()
def reqJson = jsonSlurper.parseText(request)

if (reqJson.command == "HELLO_WORLD") {
 response = JsonOutput.toJson([response: 'Hello World from an AM Command Script'])
} else {
 def errorMessage = "Unexpected '${reqJson.command}' command"
 logger.error(errorMessage)
 response = JsonOutput.toJson([response: 'error', message: errorMessage])
}

4. Select Validate to check the script syntax, then select Save Changes.

5. Copy the script ID from banner at the top of the page (for example Scripts > 20d894e8-a645-4128-
a5d1-e561c249db9a).

Running Custom Commands on a Device

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 21

6. Select Services > IEC Service.

7. Under Command Script Mapping, enter HELLO_WORLD as the Key and the script ID (20d894e8-a645-
4128-a5d1-e561c249db9a) as the Value.

8. Select Add and Save Changes.

To Test the Custom Command Call

1. Your client application must include the libiecclient.h library and a call to iec_device_custom_
command() with the deviceId and the command key (HELLO_WORLD) as parameters.

See the sample client application run_device_custom_command.c.

The sample application includes "Initializing a Client Dynamically" and "Registering a Device".

2. If you are working in the training environment, the sample application is already present in ~/
forgerock/examples/run_device_custom_command.

If you are not working in the training environment, create a new directory in the ~/forgerock/
examples directory, with the same name as your client application and place the C application in
that directory.

For example, copy run_device_custom_command.c into a new directory named run_device_custom_
command:
mkdir ~/forgerock/examples/run_device_custom_command
cp run_device_custom_command.c ~/forgerock/examples/run_device_custom_command

3. Set the deviceId. In the example, the deviceId is Yak.

4. Make sure that the build script is executable, then run the script to set the build variables and
build the application:
~/forgerock/build-examples.sh

5. The build script creates the application run_device_custom_command in the ~/forgerock/examples/run_
device_custom_command directory:
ls examples/run_device_custom_command/
run_device_custom_command run_device_custom_command.c

6. Run the example application:

https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/run_device_custom_command/run_device_custom_command.c
https://github.com/ForgeRock/identity-edge-controller-docs/tree/master/training/sdk/examples/run_device_custom_command/run_device_custom_command.c

Running Custom Commands on a Device
Understanding Custom Commands

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 22

cd ~/forgerock/examples/run_device_custom_command
./run_device_custom_command
*** Running a device custom command
*** SDK function(s): iec_initialise, iec_device_register, iec_device_custom_command, iec_json_*

Setting dynamic attributes... Done

Initialising sdk... Done

Registering device (id: Yak)... Done

Executing 'Hello World' custom command... Done

Received response: Hello World from an AM Command Script

The client outputs the Hello World text.

Understanding Custom Commands
Custom commands work in a similar way to the process described in "Understanding the Device
Configuration Process".

1. The client initiates a request to run a custom command, using the iec_device_custom_command()
library call with the deviceID parameter, and the custom command key. The key is mapped to the
custom Groovy script that you supply in the AM console.

2. Using the specified device ID, the client issues a ZMQ request of type DeviceCommand to the IEC
Service, with the custom command key.

3. The IEC Service receives the request and follows the standard DeviceCommand behavior:

• Verifies that the IEC has been registered with AM.

• Authenticates the device with AM.

With the specified deviceID and node type client (the client attests for the device), the service
receives an SSO access token from AM.

• Obtains the command URL from the trust layer.

• Encrypts the request.

• Sends the custom command key request to AM, using the SSO access token.

The service sends this request with the deviceID, custom command and command parameters.

The AM plugin runs the script associated with the custom key and returns a JSON payload.

4. The IEC Service responds with a ZMQ message that contains the return output from AM.

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 23

IEC Glossary

Access Management (AM) ForgeRock software (part of the ForgeRock Identity Platform) that
provides access and identity management.

client An edge node type representing a client application that uses the IEC
SDK.

constrained device A device that does not have the ability to connect securely across
wide-area networks, due to cost and/or physical constraints. See RFC
7228.

device An edge node type representing a physical device that can be
onboarded via a client node.

Directory Services (DS) ForgeRock software that is part of the ForgeRock Identity Platform
and provides storage for identities and configuration.

edge Industry term for the geographic distribution of IoT devices. Edge
computing enables a connected device to process data closer to where
it is created (on the edge).

edge gateway Hardware and software deployed at the edge, through which devices
communicate.

Edge Identity Manager ForgeRock software that provides a User Interface to AM for viewing
and managing device identities.

edge node A physical or virtual object that exists at the edge and benefits from
having an identity. Examples of edge nodes include a device, the IEC
Service or a client application.

https://tools.ietf.org/html/rfc7228#section-2
https://tools.ietf.org/html/rfc7228#section-2

Client Application Developers Guide Identity Edge Controller 6.5 (2019-09-16)
Copyright © 2019 ForgeRock AS. All rights reserved. 24

Identity Edge Controller
(IEC)

ForgeRock software consisting of multiple components that securely
provide devices with identity.

IEC AM Plugin ForgeRock software plugin that adds IoT specific functionality to AM.

IEC SDK ForgeRock client library that provides an API for client applications to
invoke AM functionality via the IEC Service.

IEC Service ForgeRock software that runs on the edge gateway and provides
secure communication between client applications and AM.

IEC Utility ForgeRock software used when installing the IEC Service or IEC SDK
to configure the components.

OP-TEE Open source implementation of the GlobalPlatform Trusted Execution
Environment (TEE) specification.

Rich Execution
Environment (REE)

GlobalPlatform term for the environment in which the user-facing
operating system runs.

Rich OS Operating system running in the Rich Execution Environment (REE),
typically Linux.

Trusted Application (TA) An application that can run in the Trusted Execution Environment
(TEE).

Trusted Execution
Environment (TEE)

GlobalPlatform term for a secure area of the main processor of a
device that ensures data is stored and processed in an isolated and
trusted environment.

https://globalplatform.org/specs-library/?filter-committee=tee
https://globalplatform.org/specs-library/?filter-committee=tee

	Client Application Developers Guide
	Table of Contents
	Preface
	Chapter 1. Before You Start
	About the Build Script
	Using the Training Environment

	Chapter 2. Initializing Client Applications With the IEC SDK
	Initializing a Client Manually
	Initializing a Client Dynamically

	Chapter 3. Registering a Device
	Understanding the Device Registration Process

	Chapter 4. Getting and Changing Device Configuration
	Understanding the Device Configuration Process

	Chapter 5. Getting OAuth2 Tokens For a Device
	Understanding the Device Token Process

	Chapter 6. Pairing a Device With a User
	Understanding User/Device Pairing

	Chapter 7. Running Custom Commands on a Device
	Understanding Custom Commands

	IEC Glossary

