
1 / 360

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com .

IG integrates web applications, APIs, and microservices with the ForgeRock Identity

Platform. Based on reverse proxy architecture, IG enforces security and access control in

conjunction with Access Management modules.

This guide is for access management designers and administrators who develop, build,

deploy, and maintain IG for their organizations. It helps you to get started quickly, and

learn more as you progress through the guide.

This guide assumes basic familiarity with the following topics:

Hypertext Transfer Protocol (HTTP), including how clients and servers exchange

messages, and the role that a reverse proxy (gateway) plays

JavaScript Object Notation (JSON), which is the format for IG configuration files

Managing services on operating systems and application servers

Configuring network connections on operating systems

Managing Public Key Infrastructure (PKI) used to establish HTTPS connections

Access management for web applications

Depending on the features you use, you should also have basic familiarity with the

following topics:

Lightweight Directory Access Protocol (LDAP) if you use IG with LDAP directory

services

Structured Query Language (SQL) if you use IG with relational databases

Configuring AM if you use password capture and replay, or if you plan to follow the

OAuth 2.0 or SAML 2.0 tutorials

The Groovy programming language if you plan to extend IG with scripts

The Java programming language if you plan to extend IG with plugins, and Apache

Maven for building plugins

Gateway guide



Example installation for this guide

https://www.forgerock.com/

2 / 360

Unless otherwise stated, the examples in this guide assume the following installation:

IG accessible on http://ig.example.com:8080 and

https://ig.example.com:8443 , as described in Downloading, starting, and

stopping IG.

Sample application installed on http://app.example.com:8081, as described in Using

the sample application.

AM installed on http://am.example.com:8088/openam, with the default

configuration.

If you use a different configuration, substitute in the procedures accordingly.

This section contains procedures for setting up items in ForgeRock Identity Cloud and AM

that you can use with IG. For more information about setting up Identity Cloud, refer to

the ForgeRock Identity Cloud Docs. For more information about setting up AM, refer to

the Access Management docs.

This procedure sets up an agent that acts on behalf of IG. After the agent is authenticated,

the token can be used to get the user profile, evaluate policies, and connect to the AM

notification endpoint.

1. Log in to the Identity Cloud admin UI as an administrator.

2. Click verified_user Gateways & Agents > + New Gateway/Agent > Identity Gateway

> Next, and add an agent profile:

ID: agent-name

Password: agent-password

3. Click Save Profile > Done. The agent profile page is displayed.

4. To add a redirect URL for CDSSO, go to the agent profile page and add the URL.

5. To change the introspection scope, click open_in_new Native Consoles > Access

Management, and update the agent in the AM admin UI. By default, the agent

Set up Identity Cloud and AM for use with IG

Set up an IG agent

Set up an IG agent in Identity Cloud

Use secure passwords in a production environment. Consider using a

password manager to generate secure passwords.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-sampleapp.html
https://backstage.forgerock.com/docs/idcloud/overview.html
https://backstage.forgerock.com/docs/am/7.3

3 / 360

can introspect OAuth 2.0 tokens issued to any client, in the realm and subrealm

where it is created.

In AM 7 and later versions, follow these steps to set up an agent that acts on behalf

of IG.

After the agent is authenticated, the token can be used to get the user profile,

evaluate policies, and connect to the AM notification endpoint:

1. In the AM admin UI, select the top-level realm, and then select Applications >

Agents > Identity Gateway.

2. Add an agent with the following values:

1. For SSO

2. For CDSSO

Agent ID : ig_agent

Password : password

Agent ID : ig_agent

Password : password

Redirect URL for CDSSO :

https://ig.ext.com:8443/home/cdsso/redirect

In AM 6.5 and earlier versions, follow these steps to set up an agent that acts on

behalf of IG.

After the agent is authenticated, the token can be used to get the user profile,

evaluate policies, and connect to the AM notification endpoint:

1. In the AM admin UI, select the top-level realm, and then select Applications >

Agents > Java (or J2EE).

2. Add an agent with the following values:

1. For SSO

2. For CDSSO

Agent ID : ig_agent

Agent URL : http://ig.example.com:8080/agentapp

Set up an IG agent in AM 7 and later



Set up an IG agent in AM 6.5 and earlier

https://ig.ext.com:8443/home/cdsso/redirect

4 / 360

Server URL : http://am.example.com:8088/openam

Password : password

Agent ID : ig_agent_cdsso

Agent URL : http://ig.ext.com:8080/agentapp

Server URL : http://am.example.com:8088/openam

Password : password

3. On the Global tab, deselect Agent Configuration Change Notification.

This option stops IG from being notified about agent configuration changes in

AM. IG doesn’t need these notifications.

4. (For CDSSO) On the SSO tab, select the following values:

Cross Domain SSO : Deselect this option

CDSSO Redirect URI : /home/cdsso/redirect

5. (For CDSSO and policy enforcement) On the SSO tab, select the following values:

Cross Domain SSO : Deselect this option

CDSSO Redirect URI : /home/pep-cdsso/redirect

This procedure sets up a demo user in the alpha realm.

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user

with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

AM is provided with a demo user in the top-level realm, with the following credentials:

Set up a demo user

Set up a demo user in Identity Cloud

Set up a demo user in AM

5 / 360

ID/username: demo

Last name: user

Password: Ch4ng31t

Email address: demo@example.com

Employee number: 123

For information about how to manage identities in AM, refer to AM’s Identity stores.

The examples in this guide use some of the following third-party tools:

curl : https://curl.haxx.se

HTTPie : https://httpie.org

jq : https://stedolan.github.io/jq/

keytool : https://docs.oracle.com/en/java/javase/11/tools/keytool.html

Many organizations have existing services that cannot easily be integrated into newer

architectures. Similarly, many existing client applications cannot communicate with

services. This section describes how IG acts as an intermediary, or proxy, between clients

and services.

IG as a reverse proxy server is an intermediate connection point between external clients

and internal services. IG intercepts client requests and server responses, enforcing

policies, and routing and shaping traffic. The following image illustrates IG as a reverse

proxy:

External tools used in this guide









About IG

IG as a proxy

IG as a reverse proxy

https://backstage.forgerock.com/docs/am/7.3/setup-guide/setting-up-identity-stores.html
https://curl.haxx.se/
https://httpie.org/
https://stedolan.github.io/jq/
https://docs.oracle.com/en/java/javase/11/tools/keytool.html

6 / 360

Service

IG

Service Zone

Client

Request Response

Adapt request for service
Enforce policies

Route and shape traffic
Adapt response

IG provides the following features as a reverse proxy:

Access management integration

Application and API security

Credential replay

OAuth 2.0 support

OpenID Connect 1.0 support

Network traffic control

Proxy with request and response capture

Request and response rewriting

SAML 2.0 federation support

Single sign-on (SSO)

In contrast, IG as a forward proxy is an intermediate connection point between an

internal client and an external service. IG regulates outbound traffic to the service, and

can adapt and enrich requests. The following image illustrates IG as a forward proxy:

IG as a forward proxy

7 / 360

IG

IG

Client Zone 1

Service

Regulate traffic
Enrich or adapt requests

Request

Cient

IG

IG

Client Zone 2

Request

Cient

IG provides the following features as a forward proxy:

Addition of authentication or authorization to the request

Addition of tracer IDs to the requests

Addition or removal of request headers or scopes

IG is optimized to run as a microgateway in containerized environments. Use IG with

business microservices to separate the security concerns of your applications from their

business logic. For example, use IG with the ForgeRock Token Validation Microservice to

provide access token validation at the edge of your namespace.

For an example, refer to IG as a microgateway. The following image illustrates the request

flow in an example deployment:

IG as a microgateway

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/microgateway-protect-service.html

8 / 360

OAuth 2.0
Authorization

Server

Cluster/Namespace

2

1

3 4

5

6

9

7 8

10

Microservice Client Bearer token

Token Validation
Microservice

Secured
Microservice B

IG as Microgateway B

Secured
Microservice A

IG as Microgateway A

Bearer to
ken

/introspect endpoint

HTTP Basic Authentication

The request is processed in the following sequence:

1. A client requests access to Secured Microservice A, providing a stateful OAuth 2.0

access token as credentials.

2. Microgateway A intercepts the request, and passes the access token for validation to

the Token Validation Microservice, using the /introspect endpoint.

3. The Token Validation Microservice requests the Authorization Server to validate the

token.

4. The Authorization Server introspects the token, and sends the introspection result to

the Token Validation Microservice.

5. The Token Validation Microservice caches the introspection result, and sends it to

Microgateway A, which forwards the result to Secured Microservice A.

6. Secured Microservice A uses the introspection result to decide how to process the

request. In this case, it continues processing the request. Secured Microservice A asks

for additional information from Secured Microservice B, providing the validated

token as credentials.

7. Microgateway B intercepts the request, and passes the access token to the Token

Validation Microservice for validation, using the /introspect endpoint.

8. The Token Validation Microservice retrieves the introspection result from the cache,

and sends it back to Microgateway B, which forwards the result to Secured

Microservice B.

9 / 360

9. Secured Microservice B uses the introspection result to decide how to process the

request. In this case it passes its response to Secured Microservice A, through

Microgateway B.

10. Secured Microservice A passes its response to the client, through Microgateway A.

The following sections describe how IG processes requests and responses:

IG processes HTTP requests and responses by passing them through user-defined chains

of filters and handlers. The filters and handlers provide access to the request and

response at each step in the chain, and make it possible to alter the request or response,

and collect contextual information.

The following image illustrates a typical sequence of events when IG processes a request

and response through a chain:

Flow inside a chain

IG chain

Client

Client

Request fi lter

Request fi lter

Response fi l ter

Response fi l ter

Handler

Handler

Protected application

Protected application

Request

Transform request, possibly
modify the object representation,
or enrich runtime context with computed information

Transformed request, context

Transformed request, context

Log transformed request

Transformed request

Response

Log response

Request, context, response

Transform response,
build a response representation with headers and entity

Request, context, transformed response

Transformed response

When IG processes a request, it first builds an object representation of the request,

including parsed query/form parameters, cookies, headers, and the entity. IG initializes a

runtime context to provide additional metadata about the request and applied

transformations. IG then passes the request representation into the chain.

In the request flow, filters modify the request representation and can enrich the runtime

context with computed information. In the ClientHandler, the entity content is serialized,

and additional query parameters can be encoded as described in RFC 3986: Query .

In the response flow, filters build a response representation with headers and the entity.

Processing requests and responses

IG object model



https://www.rfc-editor.org/rfc/rfc3986#section-3.4

10 / 360

The route configuration in Adding headers and logging results demonstrates the flow

through a chain to a protected application.

The way that IG processes requests and responses is defined by the configuration files

admin.json and config.json , and by Route configuration files. For information about

the different files used by IG, refer to Configuration directories and files.

Configuration files are flat JSON files that define objects with the following parts:

name : A unique string to identify the object. When you declare inline objects, the

name is not required.

type : The type name of the object. IG defines many object types for different

purposes.

config : Additional configuration settings for the object. The content of the

configuration object depends on its type. For information about each object type

available in the IG configuration, see the Reference.

If all of the configuration settings for the type are optional, the config field is also

optional. The object uses default settings when the config field isn’t configured, or

is configured as an empty object ("config": {}), or is configured as null

("config": null).

Filters, handlers, and other objects whose configuration settings are defined by

strings, integers, or booleans, can be defined by expressions that match the expected

type.

For information about the objects available, see admin.json, config.json and Route. An IG

route typically contains at least the following parts:

handler : An object to specify the point where the request enters the route. If the

handler type is a Chain, the request is dispatched to a list of filters, and then to

another handler.

Handler objects produce a response for a request, or delegate the request to another

handler. Filter objects transform data in the request, response, or context, or

perform an action when the request or response passes through the filter.

baseURI : A handler decorator to override the scheme, host, and port of the request

URI. After a route processes a request, it reroutes the request to the baseURI , which

most usually points to the application or service that IG is protecting.

heap : A collection of named objects configured in the top level of config.json or

in individual routes. Heap objects can be configured once and used multiple times in

the configuration.

Configuring IG

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#HeaderFilter-example-logging
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#the-configuration
file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#preface
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#GatewayHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Route

11 / 360

A heap object in a route can be used in that route. A heap object in config.json can

be used across the whole configuration, unless it is overridden in a route.

condition : An object to define a condition that a request must meet. A route can

handle a request if condition is not defined, or if the condition resolves to true .

Routes inherit settings from their parent configurations. This means that you can

configure objects in the config.json heap, for example, and then reference those

objects by name in any other IG configuration.

By default, IG configuration files are located under $HOME/.openig (on Windows %

appdata%\OpenIG). For information about how to change the location, refer to Change

the base location of the IG configuration.

The JSON format does not specify a notation for comments. If IG does not recognize a

JSON field name, it ignores the field. As a result, it is possible to use comments in

configuration files.

The following conventions are available for commenting:

A comment field to add text comments. The following example includes a text

comment.

An underscore (_) to comment a field temporarily. The following example

comments out "captureEntity": true , and as a result it uses the default setting

("captureEntity": false).

Configuration directories and files

Using comments in IG configuration files

{

"name": "capture",

"type": "CaptureDecorator",

"comment": "Write request and response information to the

logs",

"config": {

"captureEntity": true

}

}

{

"name": "capture",

"type": "CaptureDecorator",

"config": {

"_captureEntity": true

file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location

12 / 360

IG operates in the following modes:

Development mode (mutable mode)

In development mode, by default all endpoints are open and accessible.

You can create, edit, and deploy routes through IG Studio, and manage routes

through Common REST, without authentication or authorization.

Use development mode to evaluate or demo IG, or to develop configurations on a

single instance. This mode is not suitable for production.

For information about how to switch to development mode, refer to Switching from

production mode to development mode.

For information about restricting access to Studio in development mode, refer to

Restricting access to Studio.

Production mode (immutable mode)

In production mode, the /routes endpoint is not exposed or accessible.

Studio is effectively disabled, and you cannot manage, list, or even read routes

through Common REST.

By default, other endpoints, such as /share and api/info are exposed to the

loopback address only. To change the default protection for specific endpoints,

configure an ApiProtectionFilter in admin.json and add it to the IG configuration.

For information about how to switch to production mode, refer to Switching from

development mode to production mode.

After installation, IG is by default in production mode.

Decorators are heap objects to extend what another object can do. IG defines baseURI ,

capture , and timer decorators that you can use without explicitly configuring them.

For more information about the types of decorators provided by IG, refer to Decorators.

}

}

Development mode and production mode

Decorators

Decorating objects, the route handler, and the heap

file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch
file:///home/pptruser/Downloads/build/site/ig/studio-guide/restrict-access.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/immutable.html
file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html

13 / 360

Use decorations that are compatible with the object type. For example, timer records

the time to process filters and handlers, but does not record information for other object

types. Similarly, baseURI overrides the scheme, host, and ports, but has no other effect.

In a route, you can decorate individual objects, the route handler, and the heap. IG

applies decorations in this order:

1. Decorations declared on individual objects. Local decorations that are part of an

object’s declaration are inherited wherever the object is used.

2. globalDecorations declared in parent routes, then in child routes, and then in the

current route.

3. Decorations declared on the route handler.

To decorate individual objects, add the decorator’s name value as a top-level field of the

object, next to type and config .

In this example, the decorator captures all requests going into the SingleSignOnFilter, and

all responses coming out of the SingleSignOnFilter:

Decorating individual objects in a route

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

14 / 360

To decorate the handler for a route, add the decorator as a top-level field of the route.

In this example, the decorator captures all requests and responses that traverse the

route:

"capture": "all",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorating the route handler

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"capture": "all",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

15 / 360

To decorate all compatible objects in a route, configure globalDecorators as a top-level

field of the route. The globalDecorators field takes a map of the decorations to apply.

To decorate all compatible objects declared in config.json or admin.json , configure

globalDecorators as a top-level field in config.json or admin.json .

In the following example, the route has capture and timer decorations. The capture

decoration applies to AmService, Chain, SingleSignOnFilter, and ReverseProxyHandler.

The timer decoration doesn’t apply to AmService because it is not a filter or handler, but

does apply to Chain, SingleSignOnFilter, and ReverseProxyHandler:

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorating the route heap

{

"globalDecorators":

{

"capture": "all",

"timer": true

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

16 / 360

When a filter or handler is configured in config.json or in the heap, it can be used

many times in the configuration. To decorate each use of the filter or handler individually,

use a Delegate. For more information, refer to Delegate

In the following example, an AmService heap object configures an amHandler to delegate

tasks to ForgeRockClientHandler , and capture all requests and responses passing

through the handler.

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorating a named object differently in different parts of the configuration

{

"type": "AmService",

"config": {

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"amHandler": {

"type": "Delegate",

"capture": "all",

"config": {

"delegate": "ForgeRockClientHandler"

}

},

"url": "http://am.example.com:8088/openam"

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#Delegate

17 / 360

You can use the same ForgeRockClientHandler in another part of the configuration, in a

different route for example, without adding a capture decorator. Requests and responses

that pass through that use of the handler are not captured.

To log interactions between IG and AM, delegate message handling to a

ForgeRockClientHandler, and capture the requests and responses passing through the

handler. When the ForgeRockClientHandler communicates with an application, it sends

ForgeRock Common Audit transaction IDs.

In the following example, the accessTokenResolver delegates message handling to a

decorated ForgeRockClientHandler:

To try the example, replace the accessTokenResolver in the IG route of Validate access

tokens through the introspection endpoint. Test the setup as described for the example,

and note that the route’s log file contains an HTTP call to the introspection endpoint.

Decorations can apply more than once. For example, if you set a decoration on a route

and another decoration on an object defined within the route, IG applies the decoration

twice. In the following route, the request is captured twice:

}

}

Decorating IG’s interactions with AM

"accessTokenResolver": {

"name": "token-resolver-1",

"type": "TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"capture": "all",

"type": "Delegate",

"config": {

"delegate": "ForgeRockClientHandler"

}

}

}

}

Using multiple decorators for the same object

{

"handler": {

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

18 / 360

When an object has multiple decorations, the decorations are applied in the order they

appear in the JSON.

In the following route, the handler is decorated with a baseURI first, and a capture

second:

The decoration can be represented as capture[baseUri[handler]] . When a

request is processed, it is captured, and then rebased, and then processed by the handler:

The log for this route shows that the capture occurs before the rebase:

Conversely, in the following route, the handler is decorated with a capture first, and a

baseURI second:

"type": "ReverseProxyHandler",

"capture": "request"

},

"capture": "all"

}

{

"name": "myroute",

"baseURI": "http://app.example.com:8081",

"capture": "all",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world, from myroute!"

}

},

"condition": "${find(request.uri.path, '^/myroute1')}"

}

2018-09-10T13:23:18,990Z | INFO | http-nio-8080-exec-1 |

o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:f792d2ad-4409-4907-bc46-28e1c3c19ac3-7 --->

GET http://ig.example.com:8080/myroute HTTP/1.1

...

19 / 360

The decoration can be represented as baseUri[capture[handler]] . When a

request is processed, it is rebased, and then captured, and then processed by the handler.

The log for this route shows that the rebase occurs before the capture:

To prevent unwanted behavior, consider the following points when you name decorators:

Avoid decorators named comment or comments , and avoid reserved field names.

Instead of using alphanumeric field names, consider using dots in your decorator

names, such as my.decorator .

For heap objects, avoid the reserved names config , name , and type .

For routes, avoid the reserved names auditService , baseURI , condition ,

globalDecorators , heap , handler , name , secrets , and session .

In config.json , avoid the reserved name temporaryStorage .

{

"name": "myroute",

"capture": "all",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

}

"entity": "Hello, world from myroute1!"

}

},

"condition": "${find(request.uri.path, '^/myroute')}"

}

2018-09-10T13:07:07,524Z | INFO | http-nio-8080-exec-1 |

o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:3c26ab12-3cc0-403e-bec6-43bf5621f657-7 --->

GET http://app.example.com:8081/myroute HTTP/1.1

...

Guidelines for naming decorators

Configuration parameters declared as property variables

20 / 360

Configuration parameters, such as host names, port numbers, and directories, can be

declared as property variables in the IG configuration or in an external JSON file. The

variables can then be used in expressions in routes and in config.json to set the value

of configuration parameters.

Properties can be inherited across the router, so a property defined in config.json can

be used in any of the routes in the configuration.

Storing the configuration centrally and using variables for parameters that can be

different for each installation makes it easier to deploy IG in different environments

without changing a single line in your route configuration.

For more information, see Route properties.

You can change routes or change a property that is read at runtime or that relies on a

runtime expression without needing to restart IG to take the change into account.

Stop and restart IG only when you make the following changes:

Change the configuration of any route, when the scanInterval of Router is

disabled (see Router).

Add or change an external object used by the route, such as an environment

variable, system property, external URL, or keystore.

Add or update config.json or admin.json .

Common REST endpoints in IG serve API descriptors at runtime. When you retrieve an API

descriptor for an endpoint, a JSON that describes the API for that endpoint is returned.

To help you discover and understand APIs, you can use the API descriptor with a tool

such as Swagger UI to generate a web page that helps you to view and test the different

endpoints.

When you start IG, or add or edit routes, registered endpoint locations for the routes

hosted by the main router are written in $HOME/.openig/logs/route-system.log ,

where $HOME/.openig is the instance directory. Endpoint locations for subroutes are

written to other log files. To retrieve the API descriptor for a specific endpoint, append

one of the following query string parameters to the endpoint:

_api , to represent the API accessible over HTTP. This OpenAPI descriptor can be

used with endpoints that are complete or partial URLs.

Changing the configuration and restarting IG

Understanding IG APIs with API descriptors



file:///home/pptruser/Downloads/build/site/ig/reference/Properties.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router
http://swagger.io/swagger-ui/

21 / 360

The returned JSON respects the OpenAPI specification and can be consumed by

Swagger tools, such as Swagger UI .

_crestapi , to provide a compact representation that is independent of the

transport protocol. This ForgeRock® Common REST (Common REST) API descriptor

cannot be used with partial URLs.

The returned JSON respects a ForgeRock proprietary specification dedicated to

describe Common REST endpoints.

For more information about Common REST API descriptors, see Common REST API

Documentation.

Retrieving API descriptors for a router

With IG running as described in the Getting started, run the following query to

generate a JSON that describes the router operations supported by the endpoint:

Alternatively, generate a Common REST API descriptor by using the ?_crestapi

query string.

Retrieving API descriptors for the UMA service

With the UMA tutorial running as described in UMA support, run the following query

to generate a JSON that describes the UMA share API:



$ curl

http://ig.example.com:8080/openig/api/system/objects/_router/r

outes?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "0:0:0:0:0:0:0:1",

"basePath": "/openig/api/system/objects/_router/routes",

"tags": [{

"name": "Routes Endpoint"

}],

. . .

$ curl

http://ig.example.com:8080/openig/api/system/objects/_router/r

outes/00-uma/objects/umaservice/share?_api

http://swagger.io/swagger-ui/
file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#about-crest-api-descriptors
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/uma.html

22 / 360

Alternatively, generate a Common REST API descriptor by using the ?_crestapi

query string.

Retrieving API descriptors for the main router

Run a query to generate a JSON that describes the API for the main router and its

subsequent endpoints. For example:

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "0:0:0:0:0:0:0:1",

"basePath":

"/openig/api/system/objects/_router/routes/00-

uma/objects/umaservice/share",

"tags": [{

"name": "Manage UMA Share objects"

}],

. . .

$ curl

http://ig.example.com:8080/openig/api/system/objects/_router?

_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "ig.example.com:8080",

"basePath": "/openig/api/system/objects/_router",

"tags": [{

"name": "Monitoring endpoint"

}, {

"name": "Manage UMA Share objects"

}, {

"name": "Routes Endpoint"

}],

. . .

23 / 360

Because the above URL is a partial URL, you cannot use the ?_crestapi query

string to generate a Common REST API descriptor.

Retrieving API descriptors for an IG instance

Run a query to generate a JSON that describes the APIs provided by the IG instance

that is responding to a request. For example:

If routes are added after the request is performed, they are not included in the

returned JSON.

Because the above URL is a partial URL, you cannot use the ?_crestapi query

string to generate a Common REST API descriptor.

IG uses sessions to group requests from a user agent or other source, and collect

information from the requests. When multiple requests are made in the same session,

the requests can share the session information. Because session sharing is not thread-

safe, it is not suitable for concurrent exchanges.

$ curl http://ig.example.com:8080/openig/api?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "ig.example.com:8080",

"basePath": "/openig/api",

"tags": [{

"name": "Internal Storage for UI Models"

}, {

"name": "Monitoring endpoint"

}, {

"name": "Manage UMA Share objects"

}, {

"name": "Routes Endpoint"

}, {

"name": "Server Info"

}],

. . .

Sessions

24 / 360

The following table compares stateful and stateless sessions:

Feature Stateful sessions Stateless sessions

Cookie size. Unlimited. Max 4 KBytes.

Default name of the

session cookie.

IG_SESSIONID . openig-jwt-session .

Object types that can be

stored in the session.

Only Java serializable

objects, when sessions are

replicated.

Any object, when sessions

are not replicated.

JSON-compatible types,

such as strings, numbers,

booleans, null, structures

such as arrays, and list and

maps containing only

JSON-compatible types.

Session sharing between

instances of IG, for load

balancing and failover.

Possible when sessions are

replicated on multiple IG

instances.

Possible when sessions are

not replicated, if session

stickiness is configured.

Possible because the

session content is a cookie

on the user agent, that can

be copied to multiple

instances of IG.

Risk of data inconsistency

when simultaneous

requests modify the

content of a session.

Low because the session

content is stored on IG and

shared by all exchanges.

Processing is not thread-

safe.

Higher because the session

content is reconstructed

for each request.

Concurrent exchanges

don’t have the same

content.

When a JwtSession is not configured for a request, stateful sessions are created

automatically. Session information is stored in the IG cookie, called IG_SESSIONID by

default. When the user agent sends a request with the cookie, the request can access the

session information on IG.

When a JwtSession object is configured in the route that processes a request, or in its

ascending configuration (a parent route or config.json), the session is always stateless

and can’t be stateful.

When a request enters a route without a JwtSession object in the route or its ascending

configuration, a stateful session is created lazily.

Stateful sessions

25 / 360

Session duration is defined by the session property in admin.json, with a default of 30

minutes.

Even if the session is empty, the session remains usable until the timeout.

When IG is not configured for session replication, any object type can be stored in a

stateful session.

Because session content is stored on IG, and shared by all exchanges, when IG processes

simultaneous requests in a stateful session there is low risk that the data becomes

inconsistent. However, sessions are not thread-safe; different requests can

simultaneously read and modify a shared session.

Session information is available in SessionContext to downstream handlers and filters.

For more information, refer to SessionContext.

When a stateful session is replicated on the multiple IG instances, consider the following

points:

The session can store only object types that can be serialized.

The network latency of session replication introduces a delay that can cause the

session information of two IG instances to desynchronize.

Because the session is replicated on the clustered IG instances, it can be shared

between the instances, without configuring session stickiness.

When sessions are not shared, configure session stickiness to ensure that load

balancers serve requests to the same IG instance. For more information, refer to

Prepare for load balancing and failover.

To configure stateful sessions, update the session property of admin.json.

Stateless sessions are provided when a JwtSession object is configured in config.json

or in a route. For more information about configuring stateless sessions, refer to

JwtSession.

IG serializes stateless session information as JSON, stores it in a JWT that can be

encrypted and then signed, and places the JWT in a cookie. The cookie contains all of the

information about the session, including the session attributes as JSON, and a marker for

the session timeout.

Considerations for clustering IG

Configuring stateful sessions

Stateless sessions

file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#Session
file:///home/pptruser/Downloads/build/site/ig/installation-guide/load-balancing.html
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession

26 / 360

Only JSON-compatible object types can be stored in stateless sessions. These object types

include strings, numbers, booleans, null, structures such as arrays, and list and maps

containing only JSON-compatible types.

Stateless sessions are managed as follows:

When a request enters a route with a JwtSession object in the route or its ascending

configuration, IG creates the SessionContext, verifies the cookie signature, decrypts

the content of the cookie, and checks that the current date is before the session

timeout.

When the request passes through the filters and handlers in the route, the request

can read and modify the session content.

When the request returns to the the point where the session was created, for

example, at the entrance to a route or at config.json , IG updates the cookie as

follows:

If the session content has changed, IG serializes the session, creates a new

cookie with the new content, encrypts and then signs the new cookie, assigns it

an appropriate expiration time, and returns the cookie in the response.

If the session is empty, IG deletes the session, creates a new cookie with an

expiration time that has already passed, and returns the cookie in the response.

If the session content has not changed, IG does nothing.

Because the session content is stored in a cookie on the user agent, stateless sessions can

be shared easily between IG instances. The cookie is automatically carried over in

requests, and any IG instance can unpack and use the session content.

When IG processes simultaneous requests in stateless sessions, there is a high risk that

the data becomes inconsistent. This is because the session content is reconstructed for

each exchange, and concurrent exchanges don’t have the same content.

IG does not share sessions across requests. Instead, each request has its own session

objects that it modifies as necessary, writing its own session to the session cookie

regardless of what other requests do.

Session information is available in SessionContext to downstream handlers and filters.

For more information, refer to SessionContext.

IG uses the ForgeRock Commons Secrets API to manage secrets, such as passwords and

cryptographic keys.

Repositories of secrets are managed through secret stores, provided to the configuration

by the SecretsProvider object or secrets object. For more information about these

Secrets

file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#Session

27 / 360

objects and the types of secret stores provided in IG, refer to SecretsProvider and Secrets

object and secret stores.

IG uses two secret types:

GenericSecret : An opaque blob of bytes, such as a password or API key, without

any metadata. A GenericSecret cannot be used to perform cryptographic

operations.

CryptoKey : A secret that contains either a private or shared key, and/or a public

certificate. A CryptoKey contains the secret material itself and its metadata; for

example, the associated algorithm or key type. This secret type can be used for

cryptographic operations.

For example:

A Base64EncodedSecretStore can only serve secrets of the GenericSecret type.

An HsmSecretStore can only server secrets of the CryptoKey type.

A FileSystemSecretStore can serve secrets of both types.

To learn more about secret store specificities, refer to Secret Stores.

The following terms are used to describe secrets:

Secret ID: A label to indicate the purpose of a secret. A secret ID is generally

associated with one or more aliases of a key in a keystore or HSM.

Stable ID: A label to identify a secret. The stable ID corresponds to the following

values in each type of secret store:

Base64EncodedSecretStore: The value of secret-id in the "secret-id":

"string" pair.

FileSystemSecretStore: The filename of a file in the specified directory, without

the prefix/suffix defined in the store configuration.

HsmSecretStore: The value of an alias in a secret-id / aliases mapping.

JwkSetSecretStore: The value of the kid of a JWK stored in a JwkSetSecretStore.

KeyStoreSecretStore: The value of an alias in a secret-id / aliases

mapping.

SystemAndEnvSecretStore: The name of a system property or environment.

variable

Secret types

Secret terminology

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#SecretsProvider
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#SecretStore

28 / 360

Valid secret: A secret whose purpose matches the secret ID and any purpose

constraints. Constraints can include requirements for the following:

Secret type, such as signing key or encryption key

Cryptographic algorithm, such as Diffie-Hellman and RSA

Signature algorithm, such as ES256 and ES384

Constraints are defined when the secret is generated, and cannot be added after.

Named secret: A valid secret that a secret store can find by using a secret ID and

stable ID.

Active secret: One of the valid secrets that is considered eligible at the time of use.

The way that the active secret is chosen is determined by the type of secret store. For

more information, refer to Secrets object and secret stores,

The examples in this doc set use self-signed certificates, but your deployment is likely to

use certificates issued by a certificate authority (CA certificates).

The way to obtain CA certificates depends on the certificate authority that you are using,

and is not described in this document. As an example, refer to Let’s Encrypt .

Integrate CA certificates by using secret stores:

For PEM files, use a FileSystemSecretStore and PemPropertyFormat

For PKCS12 keystores, use a KeyStoreSecretStore

For examples, refer to Serve the same certificate for TLS connections to all server names.

Note the following points about using secrets:

When IG starts up, it listens for HTTPS connections, using the ServerTlsOptions

configuration in admin.json . The keys and certificates are fetched at startup.

Keys and certificates must be present at startup.

If keys or certificates change, you must to restart IG.

When the autoRefresh property of FileSystemSecretStore or KeyStoreSecretStore is

enabled, the secret store is automatically reloaded when the filesystem or keystore is

changed.

For information about secret stores provided in IG, refer to Secrets object and secret

stores.

IG validates the signature of signed tokens as follows:

Using keys and certificates



Validating the signature of signed tokens

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html
https://letsencrypt.org/getting-started.html
file:///home/pptruser/Downloads/build/site/ig/reference/FileSystemSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/reference/PemPropertyFormat.html
file:///home/pptruser/Downloads/build/site/ig/reference/KeyStoreSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https-keyManager
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html

29 / 360

Named secret resolution:

If the JWT contains a kid , IG queries the secret stores declared in

secretsProvider or secrets to find a named secret, identified by a secret ID

and stable ID.

If a named secret is found, IG then uses the named secret to try to validate the

signature. If the named secret can’t validate the signature, the token is

considered as invalid.

If a named secret isn’t found, IG tries valid secret resolution.

Valid secret resolution:

IG uses the value of verificationSecretId as the secret ID, and queries the

declared secret stores to find all secrets that match the provided secret ID.

All matching secrets are returned as valid secrets, in the order that the secret

stores are declared, and for KeyStoreSecretStore and HsmSecretStore, in the

order defined by the mappings.

IG tries to verify the signature with each valid secret, starting with the first valid

secret, and stopping when it succeeds.

If no valid secrets are returned, or if none of the valid secrets can verify the

signature, the token is considered as invalid.

For examples where a StatelessAccessTokenResolver uses a secret store to validate the

signature of signed tokens, see the example sections of JwkSetSecretStore and

KeyStoreSecretStore.

When multiple secrets stores are provided in a configuration, the secrets stores are

queried in the following order:

Locally in the route, starting with the first secret store in the list, up to the last.

In ascending parent routes, starting with the first secret store in each list, up to the

last.

In config.json , starting with the first secret store in the list, up to the last.

If a secrets store is not configured in config.json , the secret is queried in a default

SystemAndEnvSecretStore, and a base64-encoded value is expected.

If a secret is not resolved, an error is produced.

Secrets stores defined in admin.json can be accessed only by heap objects in

admin.json .

Using multiple secret stores in a configuration

Algorithms for elliptic curve digital signatures

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#JwkSetSecretStore-example
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#KeyStoreSecretStore-example

30 / 360

When the Elliptic Curve Digital Signature Algorithm (ECDSA) is used for signing, and both

of the following conditions are met, JWTs are signed with a deterministic ECDSA:

Bouncy Castle is installed.

The system property org.forgerock.secrets.preferDeterministicEcdsa is true ,

which is its default value.

Otherwise, when ECDSA is used for signing, JWTs are signed with a non-deterministic

ECDSA.

A non-deterministic ECDSA signature can be verified by the equivalent deterministic

algorithm.

For information about deterministic ECDSA, see RFC 6979 . For information about

Bouncy Castle, see The Legion of the Bouncy Castle .

The following sections provide an overview of how IG uses routers and routes to handle

requests and their context. For information about creating routes in Studio, refer to the

Studio guide.

The following config.json file configures a Router:





Routers and routes

Configure routers

{

"handler": {

"type": "Router",

"name": "_router",

"baseURI": "http://app.example.com:8081",

"capture": "all"

},

"heap": [

{

"name": "JwtSession",

"type": "JwtSession"

},

{

"name": "capture",

"type": "CaptureDecorator",

"config": {

"captureEntity": true,

"_captureContext": true

https://www.rfc-editor.org/rfc/rfc6979
https://www.bouncycastle.org/
file:///home/pptruser/Downloads/build/site/ig/studio-guide/preface.html#preface

31 / 360

In this configuration, all requests are passed with the default settings to the Router. The

Router scans $HOME/.openig/config/routes at startup, and rescans the directory every

10 seconds. If routes have been added, deleted, or changed, the router applies the

changes.

The main router and any subrouters are used to build the monitoring endpoints. For

information about monitoring endpoints, refer to Monitoring endpoints. For information

about the parameters of a router, refer to Router.

Routes are JSON configuration files that handle requests and their context, and then hand

off any request they accept to a handler. Another way to think of a route is like an

independent dispatch handler, as described in DispatchHandler.

Routes can have a base URI to change the scheme, host, and port of the request.

For information about the parameters of routes, refer to Route.

If you use an object only once in the configuration, you can declare it inline in the route

and do not need to name it. However, when you need use an object multiple times,

declare it in the heap, and then reference it by name in the route.

The following route shows an inline declaration for a handler. The handler is a router to

route requests to separate route configurations:

The following example shows a named router in the heap, and a handler references the

router by its name:

}

}

]

}

Configure routes

Configure objects inline or in the heap

{

"handler": {

"type": "Router"

}

}

{

"handler": "My Router",

"heap": [

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html#monitoring-metrics
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#DispatchHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Route

32 / 360

Notice that the heap takes an array. Because the heap holds all configuration objects at

the same level, you can impose any hierarchy or order when referencing objects. Note

that when you declare all objects in the heap and reference them by name, neither

hierarchy nor ordering are obvious from the structure of the configuration file alone.

When a route has a condition, it can handle only requests that meet the condition. When

a route has no condition, it can handle any request.

A condition can be based on a characteristic of the request, context, or IG runtime

environment, such as system properties or environment variables. Conditions are

defined using IG expressions, as described in Expressions.

Because routes define the conditions on which they accept a request, the router does not

have to know about specific routes in advance. In other words, you can configure the

router first and then add routes while IG is running.

The following example shows a route with no condition. This route accepts any request:

The following example shows the same route with a condition. This route accepts only

requests whose path starts with mycondition :

{

"name": "My Router",

"type": "Router"

}

]

}

Set route conditions

{

"name": "myroute",

"handler": {

"type": "ReverseProxyHandler"

}

}

{

"name": "myroute",

"handler": {

"type": "ReverseProxyHandler"

},

"condition": "${find(request.uri.path, '^/mycondition')}"

}

file:///home/pptruser/Downloads/build/site/ig/reference/Expressions.html#Expressions

33 / 360

The following table lists some of the conditions used in routes in this guide:

Example conditions and requests

Condition Requests that meet the condition

All requests, because this expression

always evaluates to true .

http://app.example.com/login , . . .

http://api.example.com/ ,

https://api.example.com/home ,

http://api.example.com:8080/home , . .

.

http://localhost:8080/keygen ,

http://127.0.0.1:8080/keygen , . . .

Where /keygen is not mandatory and

could be anything else.

http://ig.example.com:8080/login?

demo=simple , . . .

For information about URI query, refer to

query in URI.

http://ig.example.com:8080 , . . .

http://ig.example.com:8080/dispatch

,

http://ig.example.com:8080/mylogin ,

. . .

http://sp1.example.com:8080/ ,

http://sp1.example.com/mypath , . . .

Not

http://sp1.example.com:8080/saml ,

http://sp1.example.com/saml , . . .

"${true}"

"${find(request.uri.path,

'^/login')}"

"${request.uri.host ==

'api.example.com'}"

"${find(contexts.client.remoteAdd

ress, '127.0.0.1')}"

"${find(request.uri.query,

'demo=simple')}"

"${request.uri.scheme == 'http'}"

"${find(request.uri.path,

'^/dispatch') or

find(request.uri.path,

'^/mylogin')}"

"${request.uri.host ==

'sp1.example.com' and not

find(request.uri.path,

'^/saml')}"

file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#URI

34 / 360

Condition Requests that meet the condition

http://ig.example.com:8080/hello ,

when the following property is

configured:

For information about including

properties in the configuration, refer to

Route properties.

Requests with the header X-Forwarded-

Host , whose first value is

service.example.com .

The filenames of routes have the extension .json , in lowercase.

The Router scans the routes folder for files with the .json extension, and uses the

route’s name property to order the routes in the configuration. If the route does not have

a name property, the Router uses the route ID.

The route ID is managed as follows:

When you add a route manually to the routes folder, the route ID is the value of the

_id field. If there is no _id field, the route ID is the filename of the added route.

When you add a route through the Common REST endpoint, the route ID is the value

of the mandatory _id field.

When you add a route through Studio, you can edit the default route ID.

"condition": "${find

(request.uri.path, '&

{uriPath}')}"

{

"properties": {

"uriPath": "hello"

}

}

"condition":

"${request.headers['X-Forwarded-

Host'][0] ==

'service.example.com'}"

Configure route names, IDs, and filenames

The filename of a route cannot be default.json , and the route’s name property

and route ID cannot be default .

CAUTION

Create and edit routes through Common REST

NOTE

file:///home/pptruser/Downloads/build/site/ig/reference/Properties.html

35 / 360

Through Common REST, you can read, add, delete, and edit routes on IG without

manually accessing the file system. You can also list the routes in the order that they are

loaded in the configuration, and set fields to filter the information about the routes.

The following examples show some ways to manage routes through Common REST. For

more information, see About ForgeRock Common REST.

Manage routes through common REST

Before you start, prepare IG as described in the Getting started.

1. Add the following route to IG:

1. Linux

2. Windows

To check that the route is working, access the route on:

http://ig.example.com:8080/crest .

2. To read a route through Common REST:

When IG is in production mode, you cannot manage, list, or even read routes

through Common REST. For information about switching to development mode, see

Switching from production mode to development mode.

NOTE

$HOME/.openig/config/routes/00-crest.json

%appdata%\OpenIG\config\routes\00-crest.json

{

"name": "crest",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world!"

}

},

"condition": "${find(request.uri.path, '^/crest')}"

}



file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#sec-about-crest
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://ig.example.com:8080/crest
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch

36 / 360

a. Enter the following command in a terminal window:

The route is displayed. Note that the route _id is displayed in the JSON of

the route.

3. To add a route through Common REST:

a. Move $HOME/.openig/config/routes/00-crest.json to /tmp/00-crest

.json .

b. Check in $HOME/.openig/logs/route-system.log that the route has been

removed from the configuration, where $HOME/.openig is the instance

directory. To double check, go to http://ig.example.com:8080/crest . You

should get an HTTP 404 error.

c. Enter the following command in a terminal window:

This command posts the file in /tmp/00-crest.json to the routes

directory.

d. Check in $HOME/.openig/logs/route-system.log that the route has been

added to configuration, where $HOME/.openig is the instance directory. To

double-check, go to http://ig.example.com:8080/crest . You should see

the "Hello world!" message.

4. To edit a route through Common REST:

a. Edit /tmp/00-crest.json to change the message displayed by the

response handler in the route.

b. Enter the following command in a terminal window:

$ curl -v

http://ig.example.com:8080/openig/api/system/objects/_r

outer/routes/00-crest\?_prettyPrint\=true



$ curl -X PUT

http://ig.example.com:8080/openig/api/system/objects/_r

outer/routes/00-crest \

-d "@/tmp/00-crest.json" \

--header "Content-Type: application/json"



$ curl -X PUT

http://ig.example.com:8080/openig/api/system/objects/_r

outer/routes/00-crest \

-d "@/tmp/00-crest.json" \

--header "Content-Type: application/json" \

--header "If-Match: *"

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

37 / 360

This command deploys the route with the new configuration. Because the

changes are persisted into the configuration, the existing

$HOME/.openig/config/routes/00-crest.json is replaced with the edited

version in /tmp/00-crest.json .

c. Check in $HOME/.openig/logs/route-system.log that the route has been

updated, where $HOME/.openig is the instance directory. To double-check,

go to http://ig.example.com:8080/crest to confirm that the displayed

message has changed.

5. To delete a route through Common REST:

a. Enter the following command in a terminal window:

b. Check in $HOME/.openig/logs/route-system.log that the route has been

removed from the configuration, where $HOME/.openig is the instance

directory. To double-check, go to http://ig.example.com:8080/crest . You

should get an HTTP 404 error.

6. To list the routes deployed on the router, in the order that they are tried by the

router:

a. Enter the following command in a terminal window:

The list of loaded routes is displayed.

To prevent routes from being reloaded after startup, stop IG, edit the router

scanInterval , and restart IG. When the interval is set to disabled , routes are loaded

only at startup:



$ curl -X DELETE

http://ig.example.com:8080/openig/api/system/objects/_r

outer/routes/00-crest



$ curl

"http://ig.example.com:8080/openig/api/system/objects/_

router/routes?_queryFilter=true"

Prevent the reload of routes

{

"name": "Router",

"type": "Router",

"config": {

"scanInterval": "disabled"

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

38 / 360

The following example changes the location where the router looks for the routes:

IG uses an ApiProtectionFilter to protect the reserved routes. By default, the filter

allows access to reserved routes only from the loopback address. To override this

behavior, declare a custom ApiProtectionFilter in the top-level heap. For an example,

see the CORS filter described in Set up the UMA example.

The following sections describe how to set up SSO for requests in the same domain:

In SSO using the SingleSignOnFilter, IG processes a request using authentication provided

by AM. IG and the authentication provider must run on the same domain.

The following sequence diagram shows the flow of information during SSO between IG

and AM as the authentication provider.

}

}

{

"name": "Router",

"type": "Router",

"config": {

"directory": "/path/to/safe/routes",

"scanInterval": "disabled"

}

}

Access reserved routes

Authentication

Single sign-on (SSO)

To require users to authenticate in the correct realm for security reasons, configure

SSO or CDSSO with a PolicyEnforcementFilter, that refers to an AM policy where the

realm is enforced. For an example, see Require users to authenticate to a specific

realm.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/uma.html#uma-configuration
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso-realm

39 / 360

Browser

Browser

IG
ig.example.com

IG
ig.example.com

AM
am.example.com

AM
am.example.com

Sample App
app.example.com

Sample App
app.example.com

1 Request to access sample app

1. Unauthenticated browser redirected to AM for authentication

2 Redirect browser to AM

3 Authentication

4 Create SSO token

2. Authenticated browser redirect to original URI

5 Redirect to original URI, with cookie containing SSO token

3. Request forwarded to application

6 Follow redirect, with cookie

7
Request SessionInfo and add to request
Store SSO token in SsoTokenContext

8 Forward request

9 Return response

1 0 Return response

The browser sends an unauthenticated request to access the sample app.

IG intercepts the request, and redirects the browser to AM for authentication.

AM authenticates the user, creates an SSO token.

AM redirects the request back to the original URI with the token in a cookie, and the

browser follows the redirect to IG.

IG validates the token it gets from the cookie. It then adds the AM session info to the

request, and stores the SSO token in the context for use by downstream filters and

handlers.

IG forwards the request to the sample app, and the sample app returns the

requested resource to the browser.

This section gives an example of how to authenticate by using SSO and the default

authentication service provided in AM.

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

1. Set up AM:

SSO through the default AM authentication tree

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples

40 / 360

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

c. Select Configure > Global Services > Platform, and add example.com as

an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM,

requests can be redirected to AM instead of to the resource.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

41 / 360

c. Add the following route to IG:

1. Linux

2. Windows

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/sso.json

%appdata%\OpenIG\config\routes\sso.json

{

"name": "sso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/sso$')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

42 / 360

For information about how to set up the IG route in Studio, see Policy

enforcement in Structured Editor or Protecting a web app with Freeform

Designer.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/home/sso , and log in to AM as user

demo , password Ch4ng31t .

The SingleSignOnFilter passes the request to sample application, which

returns the sample application home page.

This section gives an example of how to authenticate by using SSO and the example

authentication tree provided in AM, instead of the default authentication tree.

1. Set up the example in Authenticate with SSO through the default authentication

service.

2. Add the following route to IG:

1. Linux

2. Windows

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



SSO through a specified AM authentication tree

$HOME/.openig/config/routes/sso-authservice.json

%appdata%\OpenIG\config\routes\sso-authservice.json

{

"name": "sso-authservice",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/sso-

authservice')}",

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-pep-sso-se
file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-ff.html#example-pep-sso-ff
http://ig.example.com:8080/home/sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#proc-sso

43 / 360

Notice the features of the route compared to sso.json :

The route matches requests to /home/sso-authservice .

The authenticationService property of SingleSignOnFilter refers to

Example , the name of the example authentication tree in AM. This

authentication tree is used for authentication instead of the AM admin UI.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1",

"authenticationService": "Example"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

44 / 360

b. Go to http://ig.example.com:8080/home/sso-authservice , and note that

the login page is different to that returned in Authenticate with SSO through

the default authentication service.

The following sections describe how to set up CDSSO for requests in a different domain:

The SSO mechanism described in Authenticating with SSO can be used when IG and AM

are running in the same domain. When IG and AM are running in different domains, AM

cookies are not visible to IG because of the same-origin policy.

CDSSO using the CrossDomainSingleSignOnFilter, provides a mechanism to push tokens

issued by AM to IG running in a different domain.

The following sequence diagram shows the flow of information between IG, AM, and the

sample app during CDSSO. In this example, AM is running on am.example.com , and IG is

running on ig.ext.com .



Cross-domain single sign-on (CDSSO)

To require users to authenticate in the correct realm for security reasons, configure

SSO or CDSSO with a PolicyEnforcementFilter, that refers to an AM policy where the

realm is enforced. For an example, see Require users to authenticate to a specific

realm.

IMPORTANT

http://ig.example.com:8080/home/sso-authservice
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#proc-sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#sso-auth
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso-realm

45 / 360

Browser

Browser

IG
ig.ext.com

IG
ig.ext.com

AM
am.example.com

AM
am.example.com

Sample App
app.example.com

Sample App
app.example.com

1 Request to access sample app

1. Unauthenticated browser redirected to AM for authentication

2
Create a nonce and store in session
Redirect browser to AM

3 Request authentication

4
Login user and request
Create CDSSO token

2. Authenticated browser redirect to original URI

5 Autosubmit form to redirectEndpoint, with CDSSO token as form parameter

6
Autosubmit form to redirectEndpoint,
with CDSSO token as form parameter

7 Validate CDSSO token

8
Check nonce to confirm that IG initiated
the authentication

9 Construct cookie containing CDSSO token

1 0 Redirect to original URI, with cookie

3. Request forwarded to applicat ion

1 1 Follow redirect, with cookie

1 2 Validate CDSSO token

1 3 Request SessionInfo and add to request

1 4 Store SSO token in SsoTokenContext

1 5 Store CDSSO token in CdSsoContext

1 6 Forward request

1 7 Return response

1 8 Return response

The browser sends an unauthenticated request to access the sample app.

IG intercepts the request, and redirects the browser to AM for authentication.

AM authenticates the user and creates a CDSSO token.

AM responds to a successful authentication with an HTML autosubmit form

containing the issued token.

The browser loads the HTML and autosubmit form parameters to the IG callback URL

for the redirect endpoint.

IG checks the nonce found inside the CDSSO token to confirm that the callback

comes from an authentication initiated by IG. IG then constructs a cookie, and fulfills

it with a cookie name, path, and domain, using the CrossDomainSingleSignOnFilter

property authCookie . The domain must match that set in the AM J2EE agent.

46 / 360

IG redirects the request back to the original URI, with the cookie, and the browser

follows the redirect back to IG.

IG validates the token it gets from the cookie. It adds the AM session info to the

request, and stores the SSO token and CDSSO token in the contexts for use by

downstream filters and handlers.

IG forwards the request to the sample app, and the sample app returns the

requested resource to the browser.

Before you start, prepare AM, IG, and the sample application, as described in

Download and start IG.

1. Set up AM:

a. Select Applications > Agents > Identity Gateway, add an agent with the

following values:

Agent ID: ig_agent_cdsso

Password: password

Redirect URL for CDSSO:

https://ig.ext.com:8443/home/cdsso/redirect

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

b. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

https://ig.ext.com:8443/*

https://ig.ext.com:8443/*?*

c. Select Configure > Global Services > Platform, and add example.com as

an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM,

requests can be redirected to AM instead of to the resource.

2. Set up IG:

a. Set up IG for HTTPS, as described in Configure IG for HTTPS (server-side).

b. Add the following session configuration to admin.json , to ensure that

the browser passes the session cookie in the form-POST to the redirect

endpoint (step 6 of Information flow during CDSSO):

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#figure-cdsso-auth

47 / 360

This step is required for the following reasons:

When sameSite is strict or lax , the browser does not send the

session cookie, which contains the nonce used in validation. If IG

doesn’t find the nonce, it assumes that the authentication failed.

When secure is false , the browser is likely to reject the session

cookie.

For more information, refer to admin.json.

c. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

d. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

{

"connectors": […​],

"session": {

"cookie": {

"sameSite": "none",

"secure": true

}

},

"heap": […​]

}

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

48 / 360

e. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/cdsso.json

%appdata%\OpenIG\config\routes\cdsso.json

{

"name": "cdsso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/cdsso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent_cdsso",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

49 / 360

Notice the following features of the route:

The route matches requests to /home/cdsso .

The agent password for AmService is provided by a

SystemAndEnvSecretStore in the heap.

The property verificationSecretId is configured with a value. If this

property is not configured, the filter does not verify the signature of

signed access tokens.

The JwkSetSecretStore specifies the URL to a JWK set on AM, that

contains signing keys identified by a kid .

The JwkSetSecretStore verifies the signature of the token when the

value of a kid in the JWK set matches a kid in the the signed access

token.

If the JWT doesn’t have a kid , or if the JWK set doesn’t contain a key

with the same value, the JwkSetSecretStore looks for valid secrets with

the same purpose as the value of verificationSecretId .

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to https://ig.ext.com:8443/home/cdsso .

"redirectEndpoint": "/home/cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1",

"verificationSecretId": "verify",

"secretsProvider": {

"type": "JwkSetSecretStore",

"config": {

"jwkUrl":

"http://am.example.com:8088/openam/oauth2/connect/jwk_u

ri"

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



https://ig.ext.com:8443/home/cdsso

50 / 360

If you see warnings that the site is not secure, respond to the warnings to

access the site.

The CrossDomainSingleSignOnFilter redirects the request to AM for

authentication.

c. Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM calls /home/cdsso/redirect , and

includes the CDSSO token. The CrossDomainSingleSignOnFilter passes the

request to sample app, which returns the home page.

Use IG with AM’s password capture and replay to bring SSO to legacy web applications,

without the need to edit, upgrade, or recode. This feature helps you to integrate legacy

web applications with other applications using the same user identity.

For an alternative configuration using an AM policy agent instead of IG’s

CapturedUserPasswordFilter, refer to the documentation for earlier versions of IG.

The following figure illustrates the flow of requests when an unauthenticated user

accesses a protected application. After authenticating with AM, the user is logged into the

application with the username and password from the AM login session.

Browser

Browser

IG

IG

AM

AM

Sample App

Sample App

1
Send an HTTP GET request to
http://ig.example.com:8080/replay

2
User not authenticated:
-redirect request to AM for authentication

3 Authenticate and capture credentials in AM session

4 Redirect browser back to the protected application

5
Resend the HTTP GET request to
http://ig.example.com:8080/replay

6

User authenticated:
-retrieve encrypted AM password
-decrypt it
-place it in the context

7 Replace request with an HTTP POST of login form

8 Validate login

9 Return response page showing user is logged in

1 0 Return the response page showing user is logged in

Figure 1. Data flow to log in to a protect appl

IG intercepts the browser’s HTTP GET request.

Because the user is not authenticated, the SingleSignOnFilter redirects the user to AM

for authentication.

Password replay from AM

51 / 360

AM authenticates the user, capturing the login credentials, and storing the encrypted

password in the user’s AM session.

AM redirects the browser back to the protected application.

IG intercepts the browser’s HTTP GET request again:

The user is now authenticated, so IG’s SingleSignOnFilter passes the request to

the CapturedUserPasswordFilter.

The CapturedUserPasswordFilter checks that the SessionInfoContext

${contexts.amSession.properties.sunIdentityUserPassword} is available

and not null . It then decrypts the password and stores it in the

CapturedUserPasswordContext, at ${contexts.capturedPassword} .

The PasswordReplayFilter uses the username and decrypted password in the context

to replace the request with an HTTP POST of the login form.

The sample application validates the credentials.

The sample application responds with the user’s profile page.

IG then passes the response from the sample application to the browser.

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

1. Generate an AES 256-bit key:

2. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

$ openssl rand -base64 32

loH...UFQ=

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

52 / 360

c. Update the Authentication Post Processing Classes for password replay:

i. Select  Authentication > Settings > Post Authentication

Processing.

ii. In Authentication Post Processing Classes, add

com.sun.identity.authentication.spi.JwtReplayPassword .

d. Add the AES 256-bit key to AM:

i. Select DEPLOYMENT >  Servers, and then select the AM server

name, http://am.example.com:8088/openam .

In earlier version of AM, select Configuration > Servers and Sites.

ii. Select  Advanced, and add the following property:

PROPERTY NAME : com.sun.am.replaypasswd.key

PROPERTY VALUE : The value of the AES 256-bit key from step 1.

e. Select Configure > Global Services > Platform, and add example.com as

an AM cookie domain.

By default, AM sets host-based cookies. After authentication with AM,

requests can be redirected to AM instead of to the resource.

3. Set up IG:

a. Set environment variables for the value of the AES 256-bit key in step 1,

and the IG agent password, and then restart IG:

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AES_KEY='AES 256-bit key'

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

53 / 360

c. Add the following route to IG:

1. Linux

2. Windows

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/04-replay.json

%appdata%\OpenIG\config\routes\04-replay.json

{

"name": "04-replay",

"condition": "${find(request.uri.path, '^/replay')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore",

"config": {

"mappings": [

{

"secretId": "aes.key",

"format": {

"type": "SecretKeyPropertyFormat",

"config": {

"format": "BASE64",

"algorithm": "AES"

}

}

}

]

}

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

54 / 360

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

},

{

"name": "CapturedUserPasswordFilter",

"type": "CapturedUserPasswordFilter",

"config": {

"ssoToken": "${contexts.ssoToken.value}",

"keySecretId": "aes.key",

"keyType": "AES",

"secretsProvider": "SystemAndEnvSecretStore-1",

"amService": "AmService-1"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${true}",

"credentials":

"CapturedUserPasswordFilter",

"request": {

"method": "POST",

"uri":

"http://app.example.com:8081/login",

"form": {

"username": [

"${contexts.ssoToken.info.uid}"

],

"password": [

"${contexts.capturedPassword.value}"

]

}

}

55 / 360

Notice the following features of the route:

The route matches requests to /replay .

The agent password for AmService is provided by a

SystemAndEnvSecretStore in the heap.

If the request does not have a valid AM session cookie, the

SingleSignOnFilter redirects the request to AM for authentication.

After authentication, the SingleSignOnFilter passes the request to the

next filter, storing the cookie value in an SsoTokenContext .

The PasswordReplayFilter uses the CapturedUserPasswordFilter

declared in the heap to retrieve the AM password from AM session

properties. The CapturedUserPasswordFilter uses the AES 256-bit key

to decrypt the password, and then makes it available in a

CapturedUserPasswordContext.

The value of the AES 256-bit key is provided by the

SystemAndEnvSecretStore.

The PasswordReplayFilter retrieves the username and password from

the context. It replaces the browser’s original HTTP GET request with

an HTTP POST login request containing the credentials to authenticate

to the sample application.

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/replay . The SingleSignOnFilter

redirects the request to AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t . The request is redirected

to the sample application.

This section describes how to configure IG to get credentials from a database. This

example is tested with Jetty and H2 1.4.197.

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



Password replay from a database

http://ig.example.com:8080/replay

56 / 360

The following figure illustrates the flow of requests when IG uses credentials from a

database to log a user in to the sample application:

IG

Browser

Browser

Database

Database

PasswordReplayFilter

PasswordReplayFilter

SqlAttributesFilter

SqlAttributesFilter

ReverseProxyHandler

ReverseProxyHandler

Application

Application

1
HTTP GET request to
http://ig.example.com:8080/profi le/george

2 Confirm login page is required

3 Request

4 Look up the record containing credentials

5 Credentials

6 Store credentials in the context

7 Retrieve credentials from context

8 Replace request with HTTP POST of login form

9 Relay request

1 0 Validate login & relay response

1 1 Relay response

IG intercepts the browser’s HTTP GET request.

The PasswordReplayFilter confirms that a login page is required, and passes the

request to the SqlAttributesFilter.

The SqlAttributesFilter uses the email address to look up credentials in H2, and

stores them in the request context attributes map.

The PasswordReplayFilter retrieves the credentials from the attributes map, builds

the login form, and performs the HTTP POST request to the sample app.

The sample application validates the credentials, and responds with a profile page.

Before you start, prepare IG and the sample application as described in the Getting

started.

1. Set up the database:

a. On your system, add the following data in a comma-separated value file:

1. Linux

2. Windows

/tmp/userfile.txt

C:\Temp\userfile.txt

username,password,fullname,email

george,C0stanza,George Costanza,george@example.com

kramer,N3wman12,Kramer,kramer@example.com

bjensen,H1falutin,Babs Jensen,bjensen@example.com

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

57 / 360

b. Download and unpack the H2 database , and then start H2:

H2 starts, listening on port 8082, and opens the H2 Console in a browser.

c. In the H2 Console, select the following options, and then select Connect to

access the console:

Saved Settings : Generic H2 (Server)

Setting Name : Generic H2 (Server)

Driver Class: org.h2.Driver

JDBC URL: jdbc:h2:~/ig-credentials

User Name: sa

Password : password

d. In the console, add the following text, and then run it to create the user

table:

e. In the console, add the following text, and then run it to verify that the table

contains the same users as the file:

f. Add the .jar file /path/to/h2/bin/h2-*.jar to the IG configuration:

Create the directory $HOME/.openig/extra , where $HOME/.openig is

the instance directory, and add .jar files to the directory.

2. Set up IG:

a. Set an environment variable for the database password, and then restart

IG:

demo,Ch4ng31t,Demo User,demo@example.com

kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com

scarter,S9rain12,Sam Carter,scarter@example.com



$ sh /path/to/h2/bin/h2.sh

If you have run this example before but can’t access the console

now, try deleting your local ~/ig-credentials files and starting

H2 again.

TIP

DROP TABLE IF EXISTS USERS;

CREATE TABLE USERS AS SELECT * FROM

CSVREAD('/tmp/userfile.txt');

SELECT * FROM users;

http://h2database.com/

58 / 360

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG:

1. Linux

2. Windows

$ export DATABASE_PASSWORD='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/03-sql.json

%appdata%\OpenIG\config\routes\03-sql.json

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "JdbcDataSource-1",

"type": "JdbcDataSource",

"config": {

"driverClassName": "org.h2.Driver",

59 / 360

"jdbcUrl": "jdbc:h2:tcp://localhost/~/test",

"username": "sa",

"passwordSecretId": "database.password",

"secretsProvider": "SystemAndEnvSecretStore-1"

}

}

],

"name": "sql",

"condition": "${find(request.uri.path,

'^/profile')}",

"handler": {

"type": "Chain",

"baseURI": "http://app.example.com:8081",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${find(request.uri.path,

'^/profile/george') and (request.method == 'GET')}",

"credentials": {

"type": "SqlAttributesFilter",

"config": {

"dataSource": "JdbcDataSource-1",

"preparedStatement":

"SELECT username, password FROM users

WHERE email = ?;",

"parameters": [

"george@example.com"

],

"target": "${attributes.sql}"

}

},

"request": {

"method": "POST",

"uri":

"http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.sql.USERNAME}"

],

"password": [

"${attributes.sql.PASSWORD}"

]

}

60 / 360

Notice the following features of the route:

The route matches requests to /profile .

The PasswordReplayFilter specifies a loginPage page property:

When a request is an HTTP GET, and the request URI path is

/profile/george , the expression resolves to true . The request is

directed to a login page.

The SqlAttributesFilter specifies the data source to access, a

prepared statement to look up the user’s record, a parameter to pass

into the statement, and where to store the search results in the request

context attributes map.

The request object retrieves the username and password from the

context, and replaces the browser’s original HTTP GET request with an

HTTP POST login request, containing the credentials to authenticate.

The request is for username, password , but H2 returns the fields as

USERNAME and PASSWORD . The configuration reflects this difference.

For other requests, the expression resolves to false . The request

passes to the ReverseProxyHandler, which directs it to the profile page

of the sample app.

3. Test the setup:

a. Go to http://ig.example.com:8080/profile .

Because the property loginPage resolves to false , the

PasswordReplayFilter passes the request directly to the

ReverseProxyHandler. The sample app returns the login page.

b. Go to http://ig.example.com:8080/profile/george .

Because the property loginPage resolves to true , the

PasswordReplayFilter processes the request to obtain the login credentials.

The sample app returns the profile page for George.

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}





Password replay from a file

http://ig.example.com:8080/profile
http://ig.example.com:8080/profile/george

61 / 360

The following figure illustrates the flow of requests when IG uses credentials in a file to

log a user in to the sample application:

IG

Browser

Browser

Userfile

Userfile

PasswordReplayFilter

PasswordReplayFilter

FileAttributesFilter

FileAttributesFilter

ReverseProxyHandler

ReverseProxyHandler

Application

Application

1
HTTP GET request to
http://ig.example.com:8080/profi le/george

2 Confirm login page is required

3 Request

4 Look up credentials in userfile.txt

5 Credentials

6 Store credentials in the context

7 Retrieve credentials from the context

8 Replace request with HTTP POST of login form

9 Relay request

1 0 Validate login & send response

1 1 Relay response

IG intercepts the browser’s HTTP GET request, which matches the route condition.

The PasswordReplayFilter confirms that a login page is required, and

The FileAttributesFilter uses the email address to look up the user credentials in a

file, and stores the credentials in the request context attributes map.

The PasswordReplayFilter retrieves the credentials from the attributes map, builds

the login form, and performs the HTTP POST request to the sample app.

The sample application validates the credentials, and responds with a profile page.

The ReverseProxyHandler passes the response to the browser.

Before you start, prepare IG and the sample application as described in the Getting

started.

1. On your system, add the following data in a comma-separated value file:

1. Linux

2. Windows

/tmp/userfile.txt

C:\Temp\userfile.txt

username,password,fullname,email

george,C0stanza,George Costanza,george@example.com

kramer,N3wman12,Kramer,kramer@example.com

bjensen,H1falutin,Babs Jensen,bjensen@example.com

demo,Ch4ng31t,Demo User,demo@example.com

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

62 / 360

2. Set up IG:

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

b. Add the following route to IG:

1. Linux

2. Windows

kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com

scarter,S9rain12,Sam Carter,scarter@example.com

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/02-file.json

%appdata%\OpenIG\config\routes\02-file.json

{

"name": "02-file",

"condition": "${find(request.uri.path,

'^/profile')}",

"capture": "all",

"handler": {

"type": "Chain",

"baseURI": "http://app.example.com:8081",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

63 / 360

Notice the following features of the route:

The route matches requests to /profile .

The PasswordReplayFilter specifies a loginPage page property:

When a request is an HTTP GET, and the request URI path is

/profile/george , the expression resolves to true . The request

is directed to a login page.

The FileAttributesFilter looks up the key and value in

/tmp/userfile.txt , and stores them in the context.

"config": {

"loginPage": "${find(request.uri.path,

'^/profile/george') and (request.method == 'GET')}",

"credentials": {

"type": "FileAttributesFilter",

"config": {

"file": "/tmp/userfile.txt",

"key": "email",

"value": "george@example.com",

"target": "${attributes.credentials}"

}

},

"request": {

"method": "POST",

"uri":

"http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.credentials.username}"

],

"password": [

"${attributes.credentials.password}"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

64 / 360

The request object retrieves the username and password from

the context, and replaces the browser’s original HTTP GET request

with an HTTP POST login request, containing the credentials to

authenticate.

For other requests, the expression resolves to false . The request

passes to the ReverseProxyHandler, which directs it to the profile

page of the sample app.

3. Test the setup:

a. Go to http://ig.example.com:8080/profile/george .

Because the property loginPage resolves to true , the

PasswordReplayFilter processes the request to obtain the login credentials.

The sample app returns the profile page for George.

b. Go to http://ig.example.com:8080/profile/bob , or to any other URI

starting with http://ig.example.com:8080/profile .

Because the property loginPage resolves to false , the

PasswordReplayFilter passes the request directly to the

ReverseProxyHandler. The sample app returns the login page.

When WebSocket notifications are enabled in IG, IG receives notifications when the

following events occur:

A user logs out of AM

An AM session is modified, closed, or times out

An AM admin forces logout of user sessions (from AM 7.3)

The following procedure gives an example of how to change the configurations in Single

sign-on and Cross-domain single sign-on to receive WebSocket notifications for session

logout, and to evict entries related to the session from the cache. For information about

WebSocket notifications, refer to WebSocket notifications.

Before you start, set up and test the example in Authenticating with SSO.

1. Websocket notifications are enabled by default. If they are disabled, enable

them by adding the following configuration to the AmService in your route:





Session cache eviction

"notifications": {

"enabled": true

}

http://ig.example.com:8080/profile/george
http://ig.example.com:8080/profile/bob
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#cdsso
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#amservice-websocket
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#sso-auth
file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html

65 / 360

2. Enable the session cache by adding the following configuration to the AmService

in your route:

3. In logback.xml add the following logger for WebSocket notifications, and then

restart IG:

For information, refer to Changing the log level for different object types.

4. Go to http://ig.example.com:8080/home/sso , and log in to AM as user demo ,

password Ch4ng31t .

5. On the AM console, log the demo user out of AM to end the AM session.

6. Note that the IG system logs are updated with Websocket notifications about the

logout. The following example uses AM 7.3:

The following sections describe how to set up single sign on for requests in the same

domain and in a different domain:

"sessionCache": {

"enabled": true

}

<logger name="org.forgerock.openig.tools.notifications.ws"

level="TRACE" />



... | TRACE | vert.x-eventloop-thread-2 |

o.f.o.t.n.w.SubscriptionService | @system | Received a

message: { "topic": "/agent/session.v2", "timestamp":

"...", "body": { "sessionuid": "58c...573", "eventType":

"LOGOUT" } }

... | TRACE | vert.x-eventloop-thread-2 |

o.f.o.t.n.w.SubscriptionService | @system | Received a

notification: { "topic": "/agent/session.v2", "timestamp":

"...", "body": { "sessionuid": "58c...573", "eventType":

"LOGOUT" } }

Policy enforcement

Enforce policy decisions from AM

About policy enforcement

file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html#logging-level-objects
http://ig.example.com:8080/home/sso

66 / 360

IG as a policy enforcement point (PEP) intercepts requests for a resource, and provides

information about the request to AM.

AM as a policy decision point (PDP) evaluates requests based on their context and the

configured policies. AM then returns decisions that indicate what actions are allowed or

denied, as well as any advices, subject attributes, or static attributes for the specified

resources.

After a policy decision, IG continues to process requests as follows:

If the request is allowed, processing continues.

If the request is denied with advices, IG checks whether it can respond to the advices.

If IG can respond, it sends a redirect and information about how to meet the

conditions in the advices.

By default, the request is redirected to AM. If the SingleSignOnFilter property

loginEndpoint is configured, the request is redirected to that endpoint.

If the request is denied without advice, or if IG cannot respond to the advice, IG

forwards the request to a failureHandler declared in the

PolicyEnforcementFilter . If there is no failureHandler , IG returns a 403

Forbidden.

If an error occurs during the process, IG returns 500 Internal Server Error.

For more information, refer to PolicyEnforcementFilter and AM’s Authentication and SSO

guide.

The following procedure gives an example of how to create a policy in AM and configure

an agent that can request policy decisions, when IG and AM are in the same domain.

Before you start, set up and test the example in Authenticate with SSO through the

default authentication service.

1. Set up AM:

a. In the AM admin UI, select  Authorization > Policy Sets > New Policy

Set, and add a policy set with the following values:

Id : PEP-SSO

Resource Types : URL

b. In the policy set, add a policy with the following values:

Name : PEP-SSO

Resource Type : URL

Enforce AM policy decisions in the same domain

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#PolicyEnforcementFilter
https://backstage.forgerock.com/docs/am/7.3/authentication-guide/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#proc-sso

67 / 360

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-sso*

This policy protects the home page of the sample application.

c. On the Actions tab, add an action to allow HTTP GET .

d. On the Subjects tab, remove any default subject conditions, add a subject

condition for all Authenticated Users .

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/04-pep.json

%appdata%\OpenIG\config\routes\04-pep.json

68 / 360

{

"name": "pep-sso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/pep-

sso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

"application": "PEP-SSO",

"ssoTokenSubject":

"${contexts.ssoToken.value}",

"amService": "AmService-1"

}

}

],

69 / 360

For information about how to set up the IG route in Studio, refer to Policy

enforcement in Structured Editor or Protecting a web app with Freeform

Designer.

For an example route that uses claimsSubject instead of

ssoTokenSubject to identify the subject, refer to Example policy

enforcement using claimsSubject.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/home/pep-sso .

Because you have not previously authenticated to AM, the request does not

contain a cookie with an SSO token. The SingleSignOnFilter redirects you to

AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM redirects you back to the request URL,

and IG requests a policy decision using the AM session cookie.

AM returns a policy decision that grants access to the sample application.

This example creates a policy that requires users to authenticate in a specific realm.

To reduce the attack surface on the top level realm, ForgeRock advises you to create

federation entities, agent profiles, authorizations, OAuth2/OIDC, and STS services in a

subrealm. For this reason, the AM policy, AM agent, and services are in a subrealm.

1. Set up AM:

a. In the AM admin UI, click Realms, and add a realm named alpha . Leave all

other values as default.

For the rest of the steps in this procedure, make sure you are managing the

alpha realm by checking that the  alpha icon is displayed on the top left.

b. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

"handler": "ReverseProxyHandler"

}

}

}



Require users to authenticate to a specific realm

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-pep-sso-se
file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-ff.html#example-pep-sso-ff
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#PEF-example
http://ig.example.com:8080/home/pep-sso

70 / 360

http://ig.example.com:8080/*?*

c. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

d. Add a policy:

i. Select  Authorization > Policy Sets > New Policy Set, and add a

policy set with the following values:

Id : PEP-SSO-REALM

Resource Types : URL

ii. In the policy set, add a policy with the following values:

Name : PEP-SSO-REALM

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-

sso-realm

This policy protects the home page of the sample application.

iii. On the Actions tab, add an action to allow HTTP GET .

iv. On the Subjects tab, remove any default subject conditions, add a

subject condition for all Authenticated Users .

v. On the Environments tab, add an environment condition that

requires the user to authenticate to the  alpha realm:

Type : Authentication to a Realm

Authenticate to a Realm : /alpha

2. Set up IG:

a. Add the following route to IG:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

71 / 360

$HOME/.openig/config/routes/04-pep-sso-realm.json

%appdata%\OpenIG\config\routes\04-pep-sso-realm.json

{

"name": "pep-sso-realm",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/pep-

sso-realm')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/",

"realm": "/alpha"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

72 / 360

Notice the following differences compared to 04-pep-sso.json :

The AmService is in the alpha realm. That means that the user

authenticates to AM in that realm.

The PolicyEnforcementFilter realm is not specified, so it takes the same

value as the AmService realm. If refers to a policy in the AM alpha

realm.

3. Test the setup:

a. In a private browser, go to http://ig.example.com:8080/home/pep-sso-

realm , and log in to AM as user demo , password Ch4ng31t .

Because you are authenticating in the alpha realm, AM returns a policy

decision that grants access to the sample application.

If you were to send the request from a different realm, AM would redirect

the request with an AuthenticateToRealmConditionAdvice .

The following procedure gives an example of how to create a policy in AM and configure

an agent that can request policy decisions, when IG and AM are in different domains.

Before you start, set up and test the example in Cross-domain single sign-on.

1. Set up AM:

a. In the AM admin UI, select Applications > Agents > Identity Gateway,

and change the redirect URL for ig_agent_cdsso :

Redirect URL for CDSSO : https://ig.ext.com:8443/home/pep-

cdsso/redirect

b. Select  Authorization > Policy Sets > New Policy Set, and add a policy

set with the following values:

"application": "PEP-SSO-REALM",

"ssoTokenSubject":

"${contexts.ssoToken.value}",

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



Enforce AM policy decisions in different domains

http://ig.example.com:8080/home/pep-sso-realm
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#cdsso

73 / 360

Id : PEP-CDSSO

Resource Types : URL

In the new policy set, add a policy with the following values:

Name : CDSSO

Resource Type : URL

Resource pattern : *://*:*/*

Resource value : http://app.example.com:8081/home/pep-cdsso*

This policy protects the home page of the sample application.

On the Actions tab, add an action to allow HTTP GET .

On the Subjects tab, remove any default subject conditions, add a

subject condition for all Authenticated Users .

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

74 / 360

$HOME/.openig/config/routes/04-pep-cdsso.json

%appdata%\OpenIG\config\routes\04-pep-cdsso.json

{

"name": "pep-cdsso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/pep-

cdsso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent_cdsso",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/home/pep-

cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1"

}

75 / 360

For an example of how to set up a similar route in Studio, refer to Policy

enforcement for CDSSO in Structured Editor.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to https://ig.ext.com:8443/home/pep-cdsso .

If you have warnings that the site is not secure respond to the warnings to

access the site.

IG redirects you to AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t .

When you have authenticated, AM redirects you back to the request URL,

and IG requests a policy decision. AM returns a policy decision that grants

access to the sample application.

When WebSocket notifications are enabled, IG receives notifications whenever AM

creates, deletes, or changes a policy.

The following procedure gives an example of how to change the configuration in Enforce

AM policy decisions in the same domain and Enforce AM policy decisions in different

domains to evict outdated entries from the policy cache. For information about

WebSocket notifications, refer to WebSocket notifications.

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

"application": "PEP-CDSSO",

"ssoTokenSubject":

"${contexts.cdsso.token}",

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



Using WebSocket notifications to evict the policy cache

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-pep-cdsso
https://ig.ext.com:8443/home/pep-cdsso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-cdsso
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#amservice-websocket

76 / 360

1. Set up and test the example in Enforce AM policy decisions in the same domain.

2. Websocket notifications are enabled by default. If they are disabled, enable

them by adding the following configuration to the AmService in your route:

3. Enable policy cache in the PolicyEnforcementFilter in your route:

4. In logback.xml add the following logger for WebSocket notifications, and then

restart IG:

For information, refer to Changing the log level for different object types.

5. Go to http://ig.example.com:8080/home/pep-sso , and log in to AM as user

demo , password Ch4ng31t .

6. In a seperate terminal, log on to AM as admin, and change the PEP-SSO policy.

For example, in the Actions tab, add an action to allow HTTP DELETE .

7. Note that the IG system logs are updated with Websocket notifications about the

change:

"notifications": {

"enabled": true

}

"cache": {

"enabled": true

}

<logger name="org.forgerock.openig.tools.notifications.ws"

level="TRACE" />



... | TRACE | vert.x-eventloop-thread-2 |

o.f.o.t.n.w.SubscriptionService | @system | Received a

message: { "topic": "/agent/policy", "timestamp": ...,

"body": { "realm": "/", "policy": "PEP-SSO", "policySet":

"PEP-SSO", "eventType": "UPDATE" } }

... | TRACE | vert.x-eventloop-thread-2 |

o.f.o.t.n.w.SubscriptionService | @system | Received a

notification: { "topic": "/agent/policy", "timestamp":

..., "body": { "realm": "/", "policy": "PEP-SSO",

"policySet": "PEP-SSO", "eventType": "UPDATE" } }

Harden authorization with advice from AM

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso
file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html
file:///home/pptruser/Downloads/build/site/ig/reference/PolicyEnforcementFilter.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html#logging-level-objects
http://ig.example.com:8080/home/pep-sso

77 / 360

To protect sensitive resources, AM policies can be configured with additional conditions

to harden the authorization. When AM communicates these policy decisions to IG, the

decision includes advices to indicate what extra conditions the user must meet.

Conditions can include requirements to access the resource over a secure channel, access

during working hours, or to authenticate again at a higher authentication level. For more

information, refer to AM’s Authorization guide.

The following sections build on the policies in Enforce policy decisions from AM to step

up the authentication level:

When you step up the authentication level for an AM session, the authorization is verified

and then captured as part of the AM session, and the user agent is authorized to that

authentication level for the duration of the AM session.

This section uses the policies you created in Enforce AM policy decisions in the same

domain and Enforce AM policy decisions in different domains, adding an authorization

policy with a Authentication by Service environment condition. Except for the paths

where noted, procedures for single domain and cross-domain are the same.

After the user agent redirects the user to AM, if the user is not already authenticated they

are presented with a login page. If the user is already authenticated, or after they

authenticate, they are presented with a second page asking for a verification code to meet

the AuthenticateToService environment condition.

Before you start, set up one of the following examples in Enforce AM policy decisions

in the same domain or Enforce AM policy decisions in different domains.

1. In the AM admin UI, add an environment condition to the policy:

a. Select a policy set:

For SSO, select  Authorization > Policy Sets > PEP-SSO.

For CDSSO, select  Authorization > Policy Sets > PEP-CDSSO.

b. In the policy, select Environments, and add the following environment

condition:

All of

Type : Authentication by Service

Authenticate to Service : VerificationCodeLevel1

2. Set up client-side and server-side scripts:

a. Select  Scripts > Scripted Module - Client Side, and replace the

default script with the following script:

Step up the authentication level for an AM session

https://backstage.forgerock.com/docs/am/7.3/authorization-guide/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-cdsso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-sso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#pep-cdsso

78 / 360

Leave all other values as default.

autoSubmitDelay = 60000;

function callback() {

var parent = document.createElement("div");

parent.className = "form-group";

var label = document.createElement("label");

label.className = "sr-only separator";

label.setAttribute("for", "answer");

label.innerText = "Verification Code";

parent.appendChild(label);

var input = document.createElement("input");

input.className = "form-control input-lg";

input.type = "text";

input.placeholder = "Enter your verification code";

input.name = "answer";

input.id = "answer";

input.value = "";

input.oninput = function(event) {

var element =

document.getElementById("clientScriptOutputData");

if (!element.value || element.value ==

"clientScriptOutputData") element.value = "{}";

var json = JSON.parse(element.value);

json["answer"] = event.target.value;

element.value = JSON.stringify(json);

};

parent.appendChild(input);

var fieldset =

document.forms[0].getElementsByTagName("fieldset")[0];

fieldset.prepend(parent);

}

if (document.readyState !== 'loading') {

callback();

} else {

document.addEventListener("DOMContentLoaded",

callback);

}

79 / 360

This client-side script adds a field to the AM form, in which the user is

required to enter a verification code. The script formats the entered code as

a JSON object, as required by the server-side script.

b. Select  Scripts > Scripted Module - Server Side, and replace the

default script with the following script:

Leave all other values as default.

This server-side script tests that the user demo has entered 123456 as the

verification code.

3. Add an authentication module:

a. Select  Authentication > Modules, and add a module with the following

settings:

Name : VerificationCodeLevel1

Type : Scripted Module

b. In the authentication module, enable the option for client-side script, and

select the following options:

Client-side Script : Scripted Module - Client Side

Server-side Script : Scripted Module - Server Side

Authentication Level : 1

c. Add the authentication module to an authentication chain:

i. Select  Authentication > Chains, and add a chain called

VerificationCodeLevel1 .

ii. Add a module with the following settings:

username = 'demo'

logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct

validation code

data = JSON.parse(clientScriptOutputData);

answer = data.answer;

if (answer !== '123456') {

logger.error('Authentication Failed !!')

authState = FAILED;

} else {

logger.error('Authenticated !!')

authState = SUCCESS;

}

80 / 360

Select Module : VerificationCodeLevel1

Select Criteria : Required

4. Test the setup:

a. Log out of AM.

b. Access the route:

For SSO, go to https://ig.example.com:8080/home/pep-sso .

For CDSSO, go to https://ig.ext.com:8443/home/pep-cdsso .

If you have not previously authenticated to AM, the SingleSignOnFilter

redirects the request to AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t .

AM creates a session with the default authentication level 0 , and IG

requests a policy decision.

The updated policy requires authentication level 1 , which is higher than

the AM session’s current authentication level. AM issues a redirect with a

AuthenticateToServiceConditionAdvice to authenticate at level 1 .

d. In the session upgrade window, enter the verification code 123456 .

AM upgrades the authentication level for the session to 1, and grants access

to the sample application. If you try to access the sample application again

in the same session, you don’t need to provide the verification code.

Transactional authorization improves security by requiring a user to perform additional

actions when trying to access a resource protected by an AM policy. For example, they

must reauthenticate to an authentication module or respond to a push notification on

their mobile device.

Performing the additional action successfully grants access to the protected resource, but

only once. Additional attempts to access the resource require the user to perform the

configured actions again.

This section builds on the example in Step up the authentication level for an AM session,

adding a simple authorization policy with a Transaction environment condition. Each

time the user agent tries to access the protected resource, the user must reauthenticate to

an authentication module by providing a verification code.

Before you start, configure AM as described in Step up the authentication level for an

AM session. The IG configuration is not changed.





Increase authorization for a single transaction

https://ig.example.com:8080/home/pep-sso
https://ig.ext.com:8443/home/pep-cdsso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#stepup-sso-session
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/policy-enforcement.html#stepup-sso-session

81 / 360

1. In the AM admin UI, add a new environment condition:

a. Select the policy set:

For SSO, select Authorization > Policy Sets > PEP-SSO.

For CDSSO, select Authorization > Policy Sets > PEP-CDSSO.

b. In the IG policy, select Environments and add another environment

condition:

All of

Type : Transaction

Authentication strategy : Authenticate To Module

Strategy specifier : TxVerificationCodeLevel5

2. Set up client-side and server-side scripts:

a. Select  Scripts > New Script, and add the following client-side script:

Name : Tx Scripted Module - Client Side

Script Type : Client-side Authentication

autoSubmitDelay = 60000;

function callback() {

var parent = document.createElement("div");

parent.className = "form-group";

var label = document.createElement("label");

label.className = "sr-only separator";

label.setAttribute("for", "answer");

label.innerText = "Verification Code";

parent.appendChild(label);

var input = document.createElement("input");

input.className = "form-control input-lg";

input.type = "text";

input.placeholder = "Enter your TX code";

input.name = "answer";

input.id = "answer";

input.value = "";

input.oninput = function(event) {

var element =

document.getElementById("clientScriptOutputData");

if (!element.value || element.value ==

"clientScriptOutputData") element.value = "{}";

var json = JSON.parse(element.value);

json["answer"] = event.target.value;

82 / 360

This client-side script adds a field to the AM form, in which the user is

required to enter a TX code. The script formats the entered code as a

JSON object, as required by the server-side script.

b. Select  Scripts > New Script, and add the following server-side script:

Name : Tx Scripted Module - Server Side

Script Type : Server-side Authentication

This server-side script tests that the user demo has entered 789 as the

verification code.

3. Add an authentication module:

element.value = JSON.stringify(json);

};

parent.appendChild(input);

var fieldset =

document.forms[0].getElementsByTagName("fieldset")

[0];

fieldset.prepend(parent);

}

if (document.readyState !== 'loading') {

callback();

} else {

document.addEventListener("DOMContentLoaded",

callback);

}

username = 'demo'

logger.error('username: ' + username)

// Test whether the user 'demo' enters the correct

validation code

data = JSON.parse(clientScriptOutputData);

answer = data.answer;

if (answer !== '789') {

logger.error('Authentication Failed !!')

authState = FAILED;

} else {

logger.error('Authenticated !!')

authState = SUCCESS;

}

83 / 360

a. Select  Authentication > Modules, and add a module with the following

settings:

Name : TxVerificationCodeLevel5

Type : Scripted Module

b. In the authentication module, enable the option for client-side script, and

select the following options:

Client-side Script : Tx Scripted Module - Client Side

Server-side Script : Tx Scripted Module - Server Side

Authentication Level : 5

4. Test the setup:

a. Log out of AM.

b. Access your route:

For SSO, go to http://ig.example.com:8080/home/pep-sso .

For CDSSO, go to https://ig.ext.com:8443/home/pep-cdsso .

If you have not previously authenticated to AM, the SingleSignOnFilter

redirects the request to AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t .

AM creates a session with the default authentication level 0 , and IG

requests a policy decision.

d. Enter the verification code 123456 to upgrade the authorization level for

the session to 1 .

The authentication module you configured for transactional authorization

requires authentication level 5 , so AM issues a

TransactionConditionAdvice .

e. In the transaction upgrade window, enter the verification code 789 .

AM upgrades the authentication level for this policy evaluation to 5 , and

then returns a policy decision that grants a one-time access to the sample

application. If you try to access the sample application again, you must

enter the code again.

OAuth 2.0 includes the following entities:

Resource owner : A user who owns protected resources on a resource server. For

example, a resource owner can store photos in a web service.





OAuth 2.0

http://ig.example.com:8080/home/pep-sso
https://ig.ext.com:8443/home/pep-cdsso

84 / 360

Resource server : A service that gives authorized client applications access to the

resource owner’s protected resources. In OAuth 2.0, an authorization server grants

authorization to a client application, based on the resource owner’s consent. For

example, a resource server can be a web service that holds a user’s photos.

Client : An application that requests access to the resource owner’s protected

resources, on behalf of the resource owner. For example, a client can be a photo

printing service requesting access to a resource owner’s photos stored on a web

service, after the resource owner gives the client consent to download the photos.

Authorization server : A service responsible for authenticating resource owners, and

obtaining their consent to allow client applications to access their resources. For

example, AM can act as the OAuth 2.0 authorization server to authenticate resource

owners and obtain their consent. Other services, such as Google and Facebook can

provide OAuth 2.0 authorization services.

IG as an OAuth 2.0 client supports the OAuth 2.0 filters and flows in the following table:

Filter OAuth 2.0 flow Description

AuthorizationCode

OAuth2ClientFilter

(previously named

OAuth2ClientFilter)

Authorization Code

Grant

This filter requires the user agent to

authorize the request interactively to

obtain an access token and optional ID

token.

The access token is maintained only for

the OAuth 2.0 session, and is valid only

for the configured scopes.

This filter can act as an OpenID Connect

relying party or as an OAuth 2.0 client.

Use for Web applications running on a

server.

IG as an OAuth 2.0 client



file:///home/pptruser/Downloads/build/site/ig/reference/AuthorizationCodeOAuth2ClientFilter.html
https://datatracker.ietf.org/doc/html/rfc6749#section-4.1

85 / 360

Filter OAuth 2.0 flow Description

ResourceOwnerOA

uth2ClientFilter

Resource Owner

Password

Credentials Grant

According to information in the The

OAuth 2.0 Authorization Framework ,

minimize use of this grant type and use

other grant types when possible.

This filter supports the transformation of

client credentials and user credentials to

obtain an access token from the

authorization server. It injects the access

token into the inbound request as a

Bearer Authorization header. The access

token is valid only for the configured

scopes.

Use for clients trusted with the resource

owner credentials.

ClientCredentialsOA

uth2ClientFilter

Client Credentials

Grant

This filter is similar to the Resource

Owner Password Credentials grant type,

but the resource owner is not part of the

flow and the client accesses only

information relevant to itself.

Use when the client is the resource

owner, or the client does not act on behalf

of the resource owner.

The following image illustrates the steps for a client application to access a user’s

protected resources, with AM as the authorization server and IG as the resource server:







IG as an OAuth 2.0 resource server

file:///home/pptruser/Downloads/build/site/ig/reference/ResourceOwnerOAuth2ClientFilter.html
https://datatracker.ietf.org/doc/html/rfc6749#section-4.3
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7
file:///home/pptruser/Downloads/build/site/ig/reference/ClientCredentialsOAuth2ClientFilter.html
https://datatracker.ietf.org/doc/html/rfc6749#section-4.4

86 / 360

Resource
Owner

Resource
Owner

Client
Application

Client
Application

Authorization Server
AM

Authorization Server
AM

Resource Server
IG

Resource Server
IG

1 Authorization request

2 Authorization grant

3 Authorization grant

4 Access token

5 Access token

6
Grab the token from the
request header

7
Request token validation
and information

8
If the token is valid,
respond with information

9
Validate that the token is
active and has sufficient scopes

1 0
Create new context for the
authorization server response,
at ${contexts.oauth2}

1 1 Protected resources

Figure 2. IG as an OAuth 2.0 resource server handling OAuth 2.0 requests

The application obtains an authorization grant, representing the resource owner’s

consent. For information about the different OAuth 2.0 grant mechanisms supported

by AM, refer to OAuth 2.0 grant flows in AM’s OAuth 2.0 guide.

The application authenticates to the authorization server and requests an access

token. The authorization server returns an access token to the application.

An OAuth 2.0 access token is an opaque string issued by the authorization server.

When the client interacts with the resource server, the client presents the access

token in the Authorization header. For example:

Access tokens are the credentials to access protected resources. The advantage of

access tokens over passwords or other credentials is that access tokens can be

granted and revoked without exposing the user’s credentials.

The access token represents the authorization to access protected resources.

Because an access token is a bearer token, anyone who has the access token can use

it to get the resources. Access tokens must therefore be protected, so that requests

involving them go over HTTPS.

In OAuth 2.0, the token scopes are strings that identify the scope of access

authorized to the client, but can also be used for other purposes.

Authorization: Bearer 7af...da9

https://backstage.forgerock.com/docs/am/7.3/oauth2-guide/oauth2-implementing-flows.html

87 / 360

The application supplies the access token to the resource server, which then resolves

and validates the access token by using an access token resolver, as described in

Access token resolvers.

If the access token is valid, the resource server permits the client access to the

requested resource.

The OAuth2ResourceServerFilter grants access to a resource by using an OAuth 2.0

access token from the HTTP Authorization header of a request.

When auditing is enabled, OAuth 2.0 token tracking IDs can be logged in access audit

events for routes that contain an OAuth2ResourceServerFilter. For information, refer to

Auditing your deployment and Audit framework.

This section sets up IG as an OAuth 2.0 resource server, using the introspection endpoint.

For more information about configuring AM as an OAuth 2.0 authorization service, see

AM’s OAuth 2.0 guide.

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

1. Set up AM:

a. Select Applications > Agents > Identity Gateway, add an agent with the

following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

b. Create an OAuth 2.0 Authorization Server:

i. Select Services > Add a Service > OAuth2 Provider.

Validate stateful or stateless access tokens through the

introspection endpoint

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/reference/AccessTokenResolvers.html
file:///home/pptruser/Downloads/build/site/ig/reference/OAuth2ResourceServerFilter.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
https://backstage.forgerock.com/docs/am/7.3/oauth2-guide/index.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

88 / 360

ii. Add a service with the default values.

c. Create an OAuth 2.0 Client to request OAuth 2.0 access tokens:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID: client-application

Client secret: password

Scope(s): mail , employeenumber

ii. (From AM 6.5) On the Advanced tab, select the following value:

Grant Types: Resource Owner Password Credentials

2. Set up IG

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/rs-introspect.json

%appdata%\OpenIG\config\routes\rs-introspect.json

{

"name": "rs-introspect",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-

introspect$')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

89 / 360

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

90 / 360

For information about how to set up the IG route in Studio, see Token

validation using the introspection endpoint in Structured Editor.

Notice the following features of the route:

The route matches requests to /rs-introspect .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token

in the header of the incoming authorization request, with the scopes

mail and employeenumber .

The accessTokenResolver uses the AM server declared in the heap.

The introspection endpoint to validate the access token is extrapolated

from the URL of the AM server.

For convenience in this test, requireHttps is false. In production

environments, set it to true.

After the filter validates the access token, it creates a new context from

the authorization server response. The context is named oauth2 , and

can be reached at contexts.oauth2 or contexts['oauth2'] .

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-rsintrospect-se

91 / 360

The context contains information about the access token, which can be

reached at contexts.oauth2.accessToken.info . Filters and handlers

further down the chain can access the token info through the context.

If there is no access token in the request, or token validation does not

complete successfully, the filter returns an HTTP error status to the

user agent, and IG does not continue processing the request. This is

done as specified in the RFC, The OAuth 2.0 Authorization Framework:

Bearer Token Usage .

The HttpBasicAuthenticationClientFilter adds the credentials to the

outgoing token introspection request.

The StaticResponseHandler returns the content of the access token

from the context ${contexts.oauth2.accessToken.info} .

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

b. Validate the access token returned in the previous step:



$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/rs-introspect --

header "Authorization: Bearer ${mytoken}"

{

active = true,

scope = employeenumber mail,

realm=/,

client_id = client - application,

user_id = demo,

token_type = Bearer,

exp = 158...907,

...

}

Define required scopes with a script

https://www.rfc-editor.org/rfc/rfc6750

92 / 360

This example builds on the example in Validate access tokens through the introspection

endpoint to use a script to define the scopes that a request requires in an access token.

If the request path is /rs-tokeninfo , the request requires only the scope mail .

If the request path is /rs-tokeninfo/employee , the request requires the scopes

mail and employeenumber .

1. Set up and test the example in Validate access tokens through the introspection

endpoint.

2. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/rs-dynamicscope.json

%appdata%\OpenIG\rs-dynamicscope.json

{

"name": "rs-dynamicscope",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-

dynamicscope')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

93 / 360

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": {

"name": "myscript",

"type": "ScriptableResourceAccess",

"config": {

"type": "application/x-groovy",

"source": [

"// Minimal set of required scopes",

"def scopes = ['mail'] as Set",

"if (request.uri.path =~ /employee$/)

{",

" // Require another scope to access

this resource",

" scopes += 'employeenumber'",

"}",

"return scopes"

]

}

},

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

94 / 360

3. Test the setup with the mail scope only:

a. In a terminal, use a curl command to retrieve an access token with the

scope mail :

b. Confirm that the access token is returned for the /rs-dynamicscope path:

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><h2>Decoded access_token:

${contexts.oauth2.accessToken.info}</h2></body></html>"

}

}

}

}

}

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/rs-dynamicscope --

header "Authorization: Bearer ${mytoken}"

95 / 360

c. Confirm that the access token is not returned for the /rs-

dynamicscope/employee path:

4. Test the setup with the scopes mail and employeenumber :

a. In a terminal window, use a curl command similar to the following to

retrieve an access token with the scopes mail and employeenumber :

b. Confirm that the access token is returned for the /rs-

dynamicscope/employee path:

The StatelessAccessTokenResolver confirms that stateless access tokens provided by AM

are well-formed, have a valid issuer, have the expected access token name, and have a

{

active = true,

scope = mail,

client_id = client-application,

user_id = demo,

token_type = Bearer,

exp = 158...907,

sub = demo,

iss = http://am.example.com:8088/openam/oauth2, ...

...

}

$ curl -v http://ig.example.com:8080/rs-

dynamicscope/employee --header "Authorization: Bearer

${mytoken}"

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/rs-

dynamicscope/employee --header "Authorization: Bearer

${mytoken}"

Validate stateless access tokens with the

StatelessAccessTokenResolver

96 / 360

valid signature.

After the StatelessAccessTokenResolver resolves an access token, the

OAuth2ResourceServerFilter checks that the token is within the expiry time, and that it

provides the required scopes. For more information, refer to

StatelessAccessTokenResolver.

The following sections provide examples of how to validate signed and encrypted access

tokens:

This section provides examples of how to validate signed access tokens with the

StatelessAccessTokenResolver, using a JwkSetSecretStore. For more information about

JwkSetSecretStore, refer to JwkSetSecretStore.

1. Set up AM:

a. Configure an OAuth 2.0 Authorization Provider:

i. Select Services, and add an OAuth 2.0 Provider.

ii. Accept all of the default values, and select Create. The service is added

to the Services list.

iii. On the Core tab, select the following option:

Use Client-Based Access & Refresh Tokens : on

iv. On the Advanced tab, select the following options:

Client Registration Scope Whitelist : myscope

OAuth2 Token Signing Algorithm : RS256

Encrypt Client-Based Tokens : Deselected

b. Create an OAuth2 Client to request OAuth 2.0 access tokens:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : client-application

Client secret : password

Scope(s) : myscope

Validate signed access tokens with the StatelessAccessTokenResolver and

JwkSetSecretStore

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



file:///home/pptruser/Downloads/build/site/ig/reference/AccessTokenResolvers.html#StatelessAccessTokenResolver
file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#JwkSetSecretStore
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

97 / 360

ii. (From AM 6.5) On the Advanced tab, select the following values:

Grant Types : Resource Owner Password Credentials

Response Types : code token

iii. On the Signing and Encryption tab, include the following setting:

ID Token Signing Algorithm : RS256

2. Set up IG:

a. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/rs-stateless-signed.json

%appdata%\OpenIG\config\routes\rs-stateless-

signed.json

{

"name": "rs-stateless-signed",

"condition": "${find(request.uri.path, '/rs-

stateless-signed')}",

"heap": [

{

"name": "SecretsProvider-1",

"type": "SecretsProvider",

"config": {

"stores": [

{

"type": "JwkSetSecretStore",

"config": {

"jwkUrl":

"http://am.example.com:8088/openam/oauth2/connect/jwk_u

ri"

}

}

]

}

}

],

"handler": {

"type": "Chain",

"capture": "all",

98 / 360

Notice the following features of the route:

The route matches requests to /rs-stateless-signed .

A SecretsProvider in the heap declares a JwkSetSecretStore to manage

secrets for signed access tokens.

The JwkSetSecretStore specifies the URL to a JWK set on AM, that

contains the signing keys.

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": ["myscope"],

"requireHttps": false,

"accessTokenResolver": {

"type": "StatelessAccessTokenResolver",

"config": {

"secretsProvider": "SecretsProvider-1",

"issuer":

"http://am.example.com:8088/openam/oauth2",

"verificationSecretId":

"any.value.in.regex.format"

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

99 / 360

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in

the header of the incoming authorization request, with the scope

myscope .

The StatelessAccessTokenResolver uses the SecretsProvider to

verify the signature of the provided access token.

After the OAuth2ResourceServerFilter validates the access token, it

creates the OAuth2Context context. For more information, refer to

OAuth2Context.

If there is no access token in a request, or token validation does not

complete successfully, the filter returns an HTTP error status to the

user agent, and IG does not continue processing the request. This is

done as specified in the RFC The OAuth 2.0 Authorization Framework:

Bearer Token Usage .

The StaticResponseHandler returns the content of the access token

from the context.

3. Test the setup for a signed access token:

a. Get an access token for the demo user, using the scope myscope :

b. Display the token:

Note that the token is structured as a signed token.

c. Access the route by providing the token returned in the previous step:



$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=myscope" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ echo ${mytoken}

$ curl -v http://ig.example.com:8080/rs-stateless-

signed --header "Authorization: Bearer ${mytoken}"

...

Decoded access_token: {

sub=(usr!demo),

cts=OAUTH2_STATELESS_GRANT,

...

file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#OAuth2Context
https://www.rfc-editor.org/rfc/rfc6750

100 / 360

This section provides examples of how to validate signed access tokens with the

StatelessAccessTokenResolver, using a KeyStoreSecretStore. For more information about

KeyStoreSecretStore, refer to KeyStoreSecretStore.

Set Up Keys for Signing

1. Locate the following directories for keys, keystores, and certificates, and in a

terminal create variables for them:

Directory where the keystore is created: keystore_directory

AM keystore directory: am_keystore_directory

IG keystore directory: ig_keystore_directory

2. Set up the keystore for signing keys:

a. Generate a private key called signature-key , and a corresponding public

certificate called x509certificate.pem :

b. Convert the private key and certificate files into a PKCS#12 file, called

signature-key , and store them in a keystore named keystore.p12 :

c. List the keys in keystore.p12 :

Validate signed access tokens with the StatelessAccessTokenResolver and

KeyStoreSecretStore

$ openssl req -x509 \

-newkey rsa:2048 \

-nodes \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout $keystore_directory/signature-key.key \

-out $keystore_directory/x509certificate.pem \

-days 365

...

writing new private key to

'$keystore_directory/signature-key.key'

$ openssl pkcs12 \

-export \

-in $keystore_directory/x509certificate.pem \

-inkey $keystore_directory/signature-key.key \

-out $keystore_directory/keystore.p12 \

-passout pass:password \

-name signature-key

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html#KeyStoreSecretStore

101 / 360

3. Set up keys for AM:

a. Copy the signing key keystore.p12 to AM:

b. List the keys in the AM keystore:

c. Add a file called keystore.pass , containing the store password password :

The filename corresponds to the secret ID of the store password and entry

password for the KeyStoreSecretStore.

d. Restart AM.

4. Set up keys for IG:

$ keytool -list \

-v \

-keystore "$keystore_directory/keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: signature-key

$ cp $keystore_directory/keystore.p12

$am_keystore_directory/AM_keystore.p12

$ keytool -list \

-v \

-keystore "$am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: signature-key

$ cd $am_keystore_directory

$ echo -n 'password' > keystore.pass

Make sure the password file contains only the password, with no

trailing spaces or carriage returns.

NOTE

102 / 360

a. Import the public certificate to the IG keystore, with the alias

verification-key :

b. List the keys in the IG keystore:

c. In the IG configuration, set an environment variable for the keystore

password:

d. Restart IG.

Validate signed access tokens with the

StatelessAccessTokenResolver and KeyStoreSecretStore

1. Set up AM:

$ keytool -import \

-trustcacerts \

-rfc \

-alias verification-key \

-file "$keystore_directory/x509certificate.pem" \

-keystore "$ig_keystore_directory/IG_keystore.p12" \

-storetype PKCS12 \

-storepass "password"

...

Trust this certificate? [no]: yes

Certificate was added to keystore

$ keytool -list \

-v \

-keystore "$ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: verification-key

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

103 / 360

a. Create a KeyStoreSecretStore to manage the new AM keystore:

i. In AM, select  Secret Stores, and then add a secret store with the

following values:

Secret Store ID : keystoresecretstore

Store Type : Keystore

File : am_keystore_directory/AM_keystore.p12

Keystore type : PKCS12

Store password secret ID : keystore.pass

Entry password secret ID : keystore.pass

ii. Select the Mappings tab, and add a mapping with the following

values:

Secret ID : am.services.oauth2.stateless.signing.RSA

Aliases : signature-key

The mapping sets signature-key as the active alias to use for

signature generation.

b. Create a FileSystemSecretStore to manage secrets for the

KeyStoreSecretStore:

i. Select  Secret Stores, and then create a secret store with the

following configuration:

Secret Store ID : filesystemsecretstore

Store Type : File System Secret Volumes

Directory : am_keystore_directory

File format : Plain text

c. Configure an OAuth 2.0 Authorization Provider:

i. Select Services, and add an OAuth 2.0 Provider.

ii. Accept all of the default values, and select Create. The service is added

to the Services list.

iii. On the Core tab, select the following option:

Use Client-Based Access & Refresh Tokens : on

iv. On the Advanced tab, select the following options:

Client Registration Scope Whitelist : myscope

OAuth2 Token Signing Algorithm : RS256

Encrypt Client-Based Tokens : Deselected

d. Create an OAuth2 Client to request OAuth 2.0 access tokens:

104 / 360

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : client-application

Client secret : password

Scope(s) : myscope

ii. (From AM 6.5) On the Advanced tab, select the following values:

Grant Types : Resource Owner Password Credentials

Response Types : code token

iii. On the Signing and Encryption tab, include the following setting:

ID Token Signing Algorithm : RS256

2. Set up IG:

a. Add the following route to IG, and replace the path to IG_keystore.p12:

1. Linux

2. Windows

$HOME/.openig/config/routes/rs-stateless-signed-

ksss.json

%appdata%\OpenIG\config\routes\rs-stateless-signed-

ksss.json

{

"name": "rs-stateless-signed-ksss",

"condition" : "${find(request.uri.path, '/rs-

stateless-signed-ksss')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "

<ig_keystore_directory>/IG_keystore.p12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"entryPasswordSecretId": "keystore.secret.id",

105 / 360

"secretsProvider": "SystemAndEnvSecretStore-1",

"mappings": [

{

"secretId":

"stateless.access.token.verification.key",

"aliases": ["verification-key"]

}

]

}

}

],

"handler" : {

"type" : "Chain",

"capture" : "all",

"config" : {

"filters" : [{

"name" : "OAuth2ResourceServerFilter-1",

"type" : "OAuth2ResourceServerFilter",

"config" : {

"scopes" : ["myscope"],

"requireHttps" : false,

"accessTokenResolver": {

"type": "StatelessAccessTokenResolver",

"config": {

"secretsProvider": "KeyStoreSecretStore-

1",

"issuer":

"http://am.example.com:8088/openam/oauth2",

"verificationSecretId":

"stateless.access.token.verification.key"

}

}

}

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

106 / 360

Notice the following features of the route:

The route matches requests to /rs-stateless-signed-ksss .

The keystore password is provided by the SystemAndEnvSecretStore in

the heap.

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in

the header of the incoming authorization request, with the scope

myscope .

The accessTokenResolver uses a StatelessAccessTokenResolver to

resolve and verify the authenticity of the access token. The secret is

provided by the KeyStoreSecretStore in the heap.

After the OAuth2ResourceServerFilter validates the access token, it

creates the OAuth2Context context. For more information, refer to

OAuth2Context.

If there is no access token in a request, or if the token validation does

not complete successfully, the filter returns an HTTP error status to the

user agent, and IG stops processing the request, as specified in the

RFC, The OAuth 2.0 Authorization Framework: Bearer Token Usage .

The StaticResponseHandler returns the content of the access token

from the context.

3. Test the setup for a signed access token:

a. Get an access token for the demo user, using the scope myscope :

b. Display the token:

c. Access the route by providing the token returned in the previous step:

}

}

}

}

}



$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=myscope" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ echo ${mytoken}

file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#OAuth2Context
https://www.rfc-editor.org/rfc/rfc6750

107 / 360

Set up keys for encryption

1. Locate the following directories for keys, keystores, and certificates, and in a

terminal create variables for them:

Directory where the keystore is created: keystore_directory

AM keystore directory: am_keystore_directory

IG keystore directory: ig_keystore_directory

2. Set up keys for AM:

a. Generate the encryption key:

b. List the keys in the AM keystore:

$ curl -v http://ig.example.com:8080/rs-stateless-

signed-ksss --header "Authorization: Bearer ${mytoken}"

...

Decoded access_token: {

sub=(usr!demo),

cts=OAUTH2_STATELESS_GRANT,

...

Validating encrypted access tokens with the StatelessAccessTokenResolver

and KeyStoreSecretStore

$ keytool -genseckey \

-alias encryption-key \

-dname "CN=ig.example.com, OU=example, O=com, L=fr,

ST=fr, C=fr" \

-keystore "$am_keystore_directory/AM_keystore.p12" \

-storetype PKCS12 \

-storepass "password" \

-keyalg AES \

-keysize 256

$ keytool -list \

-v \

-keystore "$am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

108 / 360

c. Add a file called keystore.pass , with the content password :

The filename corresponds to the secret ID of the store password and entry

password for the KeyStoreSecretStore.

d. Restart AM.

3. Set up keys for IG:

a. Import encryption-key into the IG keystore, with the alias decryption-

key :

b. List the keys in the IG keystore:

Your keystore contains 1 entry

Alias name: encryption-key

$ cd $am_keystore_directory

$ echo -n 'password' > keystore.pass

Make sure the password file contains only the password, with no

trailing spaces or carriage returns.

NOTE

$ keytool -importkeystore \

-srcalias encryption-key \

-srckeystore "$am_keystore_directory/AM_keystore.p12" \

-srcstoretype PKCS12 \

-srcstorepass "password" \

-destkeystore "$ig_keystore_directory/IG_keystore.p12"

\

-deststoretype PKCS12 \

-destalias decryption-key \

-deststorepass "password" \

-destkeypass "password"

$ keytool -list \

-v \

-keystore "$ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: decryption-key

109 / 360

c. In the IG configuration, set an environment variable for the keystore

password:

d. Restart IG.

Validate encrypted access tokens with the

StatelessAccessTokenResolver and KeyStoreSecretStore

1. Set up AM:

a. Set up AM as described in Validate signed access tokens with the

StatelessAccessTokenResolver and KeyStoreSecretStore.

b. Add a mapping for the encryption keystore:

i. Select  Secret Stores > keystoresecretstore .

ii. Select the Mappings tab, and add a mapping with the following

values:

Secret ID : am.services.oauth2.stateless.token.encryption

Alias : encryption-key

c. Enable token encryption on the OAuth 2.0 Authorization Provider:

i. Select Services > OAuth2 Provider.

ii. On the Advanced tab, select Encrypt Client-Based Tokens.

2. Set up IG:

a. Add the following route to IG, and replace ig_keystore_directory:

1. Linux

2. Windows

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/rs-stateless-encrypted.json

%appdata%\OpenIG\config\routes\rs-stateless-

encrypted.json

{

"name": "rs-stateless-encrypted",

"condition": "${find(request.uri.path, '/rs-

stateless-encrypted')}",

"heap": [

{

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#proc-oauth2-rs-stateless-signed-ksss

110 / 360

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "

<ig_keystore_directory>/IG_keystore.p12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"entryPasswordSecretId": "keystore.secret.id",

"secretsProvider": "SystemAndEnvSecretStore-1",

"mappings": [

{

"secretId":

"stateless.access.token.decryption.key",

"aliases": ["decryption-key"]

}

]

}

}

],

"handler": {

"type": "Chain",

"capture": "all",

"config": {

"filters": [{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": ["myscope"],

"requireHttps": false,

"accessTokenResolver": {

"type": "StatelessAccessTokenResolver",

"config": {

"secretsProvider": "KeyStoreSecretStore-

1",

"issuer":

"http://am.example.com:8088/openam/oauth2",

"decryptionSecretId":

"stateless.access.token.decryption.key"

}

}

}

111 / 360

Notice the following features of the route compared to rs-stateless-

signed.json , used in: Validate signed access tokens with the

StatelessAccessTokenResolver and KeyStoreSecretStore:

The route matches requests to /rs-stateless-encrypted .

The OAuth2ResourceServerFilter and KeyStoreSecretStore refer to the

configuration for a decryption key instead of a verification key.

Test the setup for an encrypted access token

1. Get an access token for the demo user, using the scope myscope :

2. Display the token:

Note that the token is structured as an encrypted token.

3. Access the route by providing the token returned in the previous step:

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&scope

=myscope" \

http://am.example.com:8088/openam/oauth2/access_token | jq

-r ".access_token")

$ echo ${mytoken}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-stateless-signed-ksss

112 / 360

Clients can authenticate to AM through mutual TLS (mTLS) and X.509 certificates.

Certificates must be self-signed or use public key infrastructure (PKI), as described in

version 12 of the draft OAuth 2.0 Mutual TLS Client Authentication and Certificate Bound

Access Tokens .

When a client requests an access token from AM through mTLS, AM can use a

confirmation key to bind the access token to the presented client certificate. The

confirmation key is the certificate thumbprint, computed as base64url-

encode(sha256(der(certificate))) . The access token is then certificate-bound. For

more information, refer to Authenticating clients using mutual TLS in AM’s OAuth 2.0

guide.

When the client connects to IG by using that certificate, IG can verify that the confirmation

key corresponds to the presented certificate. This proof-of-possession interaction ensures

that only the client in possession of the key corresponding to the certificate can use the

access token to access protected resources.

IG can validate the thumbprint of certificate-bound access tokens by reading the client

certificate from the TLS connection.

For this example, the client must be connected directly to IG through a TLS connection,

for which IG is the TLS termination point. If TLS is terminated at a reverse proxy or load

balancer before IG, use the example in mTLS Using Trusted Headers.

$ curl -v http://ig.example.com:8080/rs-stateless-

encrypted --header "Authorization: Bearer ${mytoken}"

...

Decoded access_token: {

sub=demo,

cts=OAUTH2_STATELESS_GRANT,

...

Validate certificate-bound access tokens



mTLS using standard TLS client certificate authentication

https://tools.ietf.org/html/draft-ietf-oauth-mtls
https://backstage.forgerock.com/docs/am/7.3/oauth2-guide/client-auth-mtls.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect-mtls-header

113 / 360

Client

AM
Bind client certificate to
token with confirmation

key

IG
Verify confirmation key

matches client certificate

Client registration

Token bound to certificate

Introspection

TLS connection
- Client authentication
- No certificate validation
- Same client certificate presented

TLSTLS

TLS

Certificate

Token bound to certificate

Token bound to certificate

Certificate

Certificate

Client

Client

Authorization Server
AM

Authorization Server
AM

Resource Server
IG

Resource Server
IG

Obtain Access Token

1 (TLS) Request access token

2
Bind the client certificate
thumbprint to the access token

3 (TLS) Return access token

Access a Resource

4
(TLS) Send request with access token on mutual TLS connection
(client is trusted by the resource server)

5
Read client certificate from incoming
TLS connection, and compute its thumbprint

6
Read client certificate bound to token by AM,
through introspection, and find its thumbprint

7 Confirm that the two thumbprints match

8 Continue standard OAuth 2.0 flow

9 (TLS) Allow access to protected resources

Perform the procedures in this section to set up and test mTLS using standard TLS client

certificate authentication:

1. Locate the following keystore directories, and in a terminal create variables for

them:

Set up keystores and truststores

114 / 360

oauth2_client_keystore_directory

am_keystore_directory

ig_keystore_directory

2. Create self-signed RSA key pairs for AM, IG, and the client:

3. Export the certificates to .pem so that the curl client can verify the identity of

the AM and IG servers:

$ keytool -genkeypair \

-alias openam-server \

-keyalg RSA \

-keysize 2048 \

-keystore $am_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-keypass changeit \

-validity 360 \

-dname CN=am.example.com,O=Example,C=FR

$ keytool -genkeypair \

-alias openig-server \

-keyalg RSA \

-keysize 2048 \

-keystore $ig_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-keypass changeit \

-validity 360 \

-dname CN=ig.example.com,O=Example,C=FR

$ keytool -genkeypair \

-alias oauth2-client \

-keyalg RSA \

-keysize 2048 \

-keystore $oauth2_client_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-keypass changeit \

-validity 360 \

-dname CN=test

115 / 360

4. Extract the certificate and client private key to .pem so that the curl command

can identity itself as the client for the HTTPS connection:

You can now delete the client keystore.

$ keytool -export \

-rfc \

-alias openam-server \

-keystore $am_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-file $am_keystore_directory/openam-server.cert.pem

Certificate stored in file .../openam-server.cert.pem

$ keytool -export \

-rfc \

-alias openig-server \

-keystore $ig_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-file $ig_keystore_directory/openig-server.cert.pem

Certificate stored in file openig-server.cert.pem

$ keytool -export \

-rfc \

-alias oauth2-client \

-keystore $oauth2_client_keystore_directory/keystore.p12 \

-storepass changeit \

-storetype PKCS12 \

-file $oauth2_client_keystore_directory/client.cert.pem

Certificate stored in file .../client.cert.pem

$ openssl pkcs12 \

-in $oauth2_client_keystore_directory/keystore.p12 \

-nocerts \

-nodes \

-passin pass:changeit \

-out $oauth2_client_keystore_directory/client.key.pem

...verified OK

116 / 360

5. Create the CACerts truststore so that AM can validate the client identity:

This procedure sets up AM for HTTPS in Tomcat. For more information, see

Configuring AM’s container for HTTPS in AM’s Installation guide.

1. Add a connector configuration for port 8445 to AM’s Tomcat server.xml ,

replacing the values for the keystore directories with your path. If the file

already contains a connector for the port, edit that connector or replace it:

The optionalNoCA property allows the presentation of client certificates to be

optional. Tomcat does not check them against the list of trusted CAs.

$ keytool -import \

-noprompt \

-trustcacerts \

-file $oauth2_client_keystore_directory/client.cert.pem \

-keystore $oauth2_client_keystore_directory/cacerts.p12 \

-storepass changeit \

-storetype PKCS12 \

-alias client-cert

Certificate was added to keystore

Set up AM for HTTPS (server-side) in Tomcat

<Connector port="8445" protocol="HTTP/1.1"

SSLEnabled="true" scheme="https" secure="true">

<SSLHostConfig protocols="+TLSv1.2,-TLSv1.1,-TLSv1,-

SSLv2Hello,-SSLv3"

certificateVerification="optionalNoCA"

truststoreFile="oauth2_client_keystore_directory/cacerts.p

12"

truststorePassword="changeit"

truststoreType="PKCS12">

<Certificate

certificateKeystoreFile="am_keystore_directory/keystore.p1

2"

certificateKeystorePassword="changeit"

certificateKeystoreType="PKCS12"/>

</SSLHostConfig>

</Connector>

https://backstage.forgerock.com/docs/am/7.3/install-guide/configure-container-HTTPS.html

117 / 360

2. In AM, export an environment variable for the base64-encoded value of the

password (changeit) for the cacerts.p12 truststore:

3. Restart AM, and make sure you can access it on the secure port

https://am.example.com:8445/openam .

This procedure sets up IG for HTTPS. Before you start, install IG as described in

Download and start IG.

1. In ig_keystore_directory, add a file called keystore.pass containing the

keystore password:

2. Add the following configuration to IG, replacing instances of

ig_keystore_directory and oauth2_client_keystore_directory with your path:

1. Linux

2. Windows

$ export PASSWORDSECRETID='Y2hhbmdlaXQ='

Set up IG for HTTPS (server-side)

$ cd $ig_keystore_directory

$ echo -n 'changeit' > keystore.pass

Make sure the password file contains only the password, with no trailing

spaces or carriage returns.

NOTE

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

{

"mode": "DEVELOPMENT",

"connectors": [

{

"port": 8080

},

{

"port": 8443,

file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone

118 / 360

"tls": {

"type": "ServerTlsOptions",

"config": {

"alpn": {

"enabled": true

},

"clientAuth": "REQUEST",

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": {

"type": "KeyStoreSecretStore",

"config": {

"file": "

<ig_keystore_directory>/keystore.p12",

"storePasswordSecretId":

"keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

{

"secretId": "key.manager.secret.id",

"aliases": [

"openig-server"

]

}

]

}

}

}

},

"trustManager": {

"type": "SecretsTrustManager",

"config": {

"verificationSecretId":

"trust.manager.secret.id",

"secretsProvider": {

"type": "KeyStoreSecretStore",

"config": {

"file": "

<oauth2_client_keystore_directory>/cacerts.p12",

"storePasswordSecretId":

"keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

119 / 360

Notice the following features of the configuration:

IG starts on port 8080 , and on 8443 over TLS.

IG’s private keys for TLS are managed by the SecretsKeyManager, which

references the KeyStoreSecretStore that holds the keys.

The password of the KeyStoreSecretStore is provided by the

FileSystemSecretStore.

The KeyStoreSecretStore maps the keystore alias to the secret ID for

retrieving the private signing keys.

3. Start IG:

1. Linux

2. Windows

{

"secretId":

"trust.manager.secret.id",

"aliases": [

"client-cert"

]

}

]

}

}

}

}

}

}

}

],

"heap": [

{

"name": "SecretsPasswords",

"type": "FileSystemSecretStore",

"config": {

"directory": "<ig_keystore_directory>",

"format": "PLAIN"

}

}

]

}

$ /path/to/identity-gateway/bin/start.sh

120 / 360

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

1. In a the AM admin UI, select Applications > Agents > Identity Gateway, and

add an agent with the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

2. Configure an OAuth 2.0 Authorization Server:

a. Select Services > Add a Service > OAuth2 Provider, and add a service

with the default values.

b. On the Advanced tab, select the following value:

Support TLS Certificate-Bound Access Tokens: enabled

3. Configure an OAuth 2.0 client to request access tokens:

a. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID: client-application

Client secret: password

Scope(s): test

b. On the Advanced tab, select the following values:

Grant Types: Client Credentials

The password is the only grant type used by the client in the example.

Token Endpoint Authentication Method: tls_client_auth

...

... started in 1234ms on ports : [8080 8443]

C:\path\to\identity-gateway\bin\start.bat

Set up AM as an authorization server with mTLS

Use secure passwords in a production environment. Consider using a

password manager to generate secure passwords.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location

121 / 360

c. On the signing and Encryption tab, select the following values:

mTLS Subject DN: CN=test

When this option is set, AM requires the subject DN in the client

certificate to have the same value. This ensures that the certificate is

from the client, and not just any valid certificate trusted by the trust

manager.

Use Certificate-Bound Access Tokens: Enabled

4. Set up AM secret stores to trust the client certificate:

a. Select  Secret Stores, and add a store with the following values:

Secret Store ID: trusted-ca-certs

Store Type: Keystore

File: $oauth2_client_keystore_directory/cacerts.p12

Keystore type: PKCS12

Store password secret ID: passwordSecretId

b. Select Mappings and add the following mapping:

Secret ID: am.services.oauth2.tls.client.cert.authentication

Aliases: client-cert

When the token endpoint authentication method is tls_client_auth , this

secret is used to validate the client certificate. Add an alias in this list for each

client that uses tls_client_auth . For certificates signed by a CA, add the CA

certificate to the list.

1. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-

encoded.

2. Add the following route to IG:

1. Linux

2. Windows

Set up IG as a resource server with mTLS

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/mtls-certificate.json

122 / 360

%appdata%\OpenIG\config\routes\mtls-certificate.json

{

"name": "mtls-certificate",

"condition": "${find(request.uri.path, '/mtls-

certificate')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"capture": "all",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"test"

],

"requireHttps": false,

"accessTokenResolver": {

"type":

"ConfirmationKeyVerifierAccessTokenResolver",

"config": {

"delegate": {

"name": "token-resolver-1",

"type":

123 / 360

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler":

"ForgeRockClientHandler"

}

}

}

}

}

}

}

}

],

"handler": {

"name": "StaticResponseHandler-1",

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"

]

},

"entity": "mTLS\n Valid token:

${contexts.oauth2.accessToken.token}\n Confirmation keys:

${contexts.oauth2}"

}

}

}

124 / 360

Notice the following features of the route:

The route matches requests to /mtls-certificate .

The OAuth2ResourceServerFilter uses the

ConfirmationKeyVerifierAccessTokenResolver to validate the certificate

thumbprint against the thumbprint from the resolved access token,

provided by AM.

The ConfirmationKeyVerifierAccessTokenResolver then delegates token

resolution to the TokenIntrospectionAccessTokenResolver.

The providerHandler adds an authorization header to the request,

containing the username and password of the OAuth 2.0 client with the

scope to examine (introspect) access tokens.

The OAuth2ResourceServerFilter checks that the resolved token has the

required scopes, and injects the token info into the context.

The StaticResponseHandler returns the content of the access token from

the context.

1. Get an access token from AM, over TLS:

2. Introspect the access token on AM:

}

}

Test the setup

$ mytoken=$(curl --request POST \

--cacert $am_keystore_directory/openam-server.cert.pem \

--cert $oauth2_client_keystore_directory/client.cert.pem \

--key $oauth2_client_keystore_directory/client.key.pem \

--header 'cache-control: no-cache' \

--header 'content-type: application/x-www-form-urlencoded'

\

--data 'client_id=client-

application&grant_type=client_credentials&scope=test' \

https://am.example.com:8445/openam/oauth2/access_token |

jq -r .access_token)

$ curl --request POST \

-u ig_agent:password \

--header 'content-type: application/x-www-form-urlencoded'

125 / 360

The cnf property indicates the value of the confirmation code, as follows:

x5 : X509 certificate

t : thumbprint

: separator

S256 : algorithm used to hash the raw certificate bytes

3. Access the IG route to validate the token’s confirmation thumbprint with the

ConfirmationKeyVerifierAccessTokenResolver:

\

--data token=${mytoken} \

http://am.example.com:8088/openam/oauth2/realms/root/intro

spect | jq

{

"active": true,

"scope": "test",

"realm": "/",

"client_id": "client-application",

"user_id": "client-application",

"token_type": "Bearer",

"exp": 155...833,

"sub": "(age!client-application)",

"subname": "client-application",

"iss": "http://am.example.com:8088/openam/oauth2",

"cnf": {

"x51...156": "T4u...R9Q"

},

"authGrantId": "dfE...2vk",

"auditTrackingId": "e36...524"

}

$ curl --request POST \

--cacert $ig_keystore_directory/openig-server.cert.pem \

--cert $oauth2_client_keystore_directory/client.cert.pem \

--key $oauth2_client_keystore_directory/client.key.pem \

--header "authorization: Bearer ${mytoken}" \

https://ig.example.com:8443/mtls-certificate

mTLS

Valid token: 2Bp...s_k

Confirmation keys: {

126 / 360

The validated token and confirmation keys are displayed.

IG can validate the thumbprint of certificate-bound access tokens by reading the client

certificate from a configured, trusted HTTP header.

Use this method when TLS is terminated at a reverse proxy or load balancer before IG. IG

cannot authenticate the client through the TLS connection’s client certificate because:

If the connection is over TLS, the connection presents the certificate of the TLS

termination point before IG.

If the connection is not over TLS, the connection presents no client certificate.

If the client is connected directly to IG through a TLS connection, for which IG is the TLS

termination point, use the example in mTLS Using Standard TLS Client Certificate

Authentication.

Configure the proxy or load balancer to:

Forward the encoded certificate to IG in the trusted header. Encode the certificate in

an HTTP-header compatible format that can convey a full certificate, so that IG can

rebuild the certificate.

Strip the trusted header from incoming requests, and change the default header

name to something an attacker can’t guess.

Because there is a trust relationship between IG and the TLS termination point, IG

doesn’t authenticate the contents of the trusted header. IG accepts any value in a

header from a trusted TLS termination point.

Use this example when the IG instance is running behind a load balancer or other ingress

point. If the IG instance is running behind the TLS termination point, consider the

example in mTLS Using Standard TLS Client Certificate Authentication.

The following image illustrates the connections and certificates required by the example:

...

}

mTLS using trusted headers

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect-mtls-certificate
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect-mtls-certificate

127 / 360

Client

AM
Bind client certificate to
token with confirmation

key

IG
Verify confirmation key

matches client certificate

Client registration

Token bound to certificate

Introspection

TLS connection
- Client authentication
- No certificate validation
- Same client certificate presented

TLSTLS

TLS

Token bound to certificate

Proxy
(Ex, NGNIX)

Certificate

Certificate

Certificate

Client

Client

Authorization Server
AM

Authorization Server
AM

Load Balancer
or Reverse Proxy

Load Balancer
or Reverse Proxy

Resource Server
IG

Resource Server
IG

Obtain Access Token

1 (TLS) Request access token

2
Bind the client certificate
thumbprint to the access token

3 (TLS) Return access token

Access a Resource

4 (TLS) Send request with access token

5
Strip the trusted header from
the request, to prevent forgery

6
Read client certificate from the
incoming TLS connection

7
Add a named header to request,
containing the client certificate

8
Forward incoming request, containing
access token and client certificate

9
Read client certificate from named HTTP
header, and compute its thumbprint

1 0
Read client certificate bound to token by AM,
through introspection, and find its thumbprint

1 1 Confirm that the two thumbprints match

1 2 Continue standard OAuth 2.0 flow

1 3 Allow access to protected resources

1 4 (TLS) Allow access to protected resources

Set up mTLS using trusted headers

1. Set up the keystores, truststores, AM, and IG as described in mTLS Using

Standard TLS Client Certificate Authentication.

2. Base64-encode the value of

$oauth2_client_keystore_directory/client.cert.pem . The value is used in

the final POST.

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect-mtls-certificate

128 / 360

3. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/mtls-header.json

%appdata%\OpenIG\config\routes\mtls-header.json

{

"name": "mtls-header",

"condition": "${find(request.uri.path, '/mtls-

header')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"capture": "all",

"config": {

"filters": [

{

"name": "CertificateThumbprintFilter-1",

"type": "CertificateThumbprintFilter",

"config": {

"certificate":

"${pemCertificate(decodeBase64(request.headers['ssl_client

_cert'][0]))}",

"failureHandler": {

129 / 360

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"source": [

"def response = new

Response(Status.TEAPOT);",

"response.entity = 'Failure in

CertificateThumbprintFilter'",

"return response"

]

}

}

}

},

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"test"

],

"requireHttps": false,

"accessTokenResolver": {

"type":

"ConfirmationKeyVerifierAccessTokenResolver",

"config": {

"delegate": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

130 / 360

Notice the following features of the route compared to mtls-

certificate.json :

The route matches requests to /mtls-header .

The CertificateThumbprintFilter extracts a Java certificate from the trusted

header, computes the SHA-256 thumbprint of that certificate, and makes

the thumbprint available for the

ConfirmationKeyVerifierAccessTokenResolver.

4. Test the setup:

a. Get an access token from AM, over TLS:

}

}

],

"handler":

"ForgeRockClientHandler"

}

}

}

}

}

}

}

}

],

"handler": {

"name": "StaticResponseHandler-1",

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"

]

},

"entity": "mTLS\n Valid token:

${contexts.oauth2.accessToken.token}\n Confirmation keys:

${contexts.oauth2}"

}

}

}

}

}

131 / 360

b. Introspect the access_token on AM:

The cnf property indicates the value of the confirmation code, as follows:

$ mytoken=$(curl --request POST \

--cacert $am_keystore_directory/openam-server.cert.pem

\

--cert

$oauth2_client_keystore_directory/client.cert.pem \

--key $oauth2_client_keystore_directory/client.key.pem

\

--header 'cache-control: no-cache' \

--header 'content-type: application/x-www-form-

urlencoded' \

--data 'client_id=client-

application&grant_type=client_credentials&scope=test' \

https://am.example.com:8445/openam/oauth2/access_token

| jq -r .access_token)

$ curl --request POST \

-u ig_agent:password \

--header 'content-type: application/x-www-form-

urlencoded' \

--data token=${mytoken} \

http://am.example.com:8088/openam/oauth2/realms/root/in

trospect | jq

{

"active": true,

"scope": "test",

"realm": "/",

"client_id": "client-application",

"user_id": "client-application",

"token_type": "Bearer",

"exp": 157...994,

"sub": "(age!client-application)",

"subname": "client-application",

"iss": "http://am.example.com:8088/openam/oauth2",

"cnf": {

"x51...156": "1QG...Wgc"

},

"authGrantId": "lto...8vw",

"auditTrackingId": "119...480"

}

132 / 360

x5 : X509 certificate

t : thumbprint

: separator

S256 : algorithm used to hash the raw certificate bytes

c. Access the IG route to validate the confirmation key, using the base64-

encoded value of

$oauth2_client_keystore_directory/client.cert.pem :

The validated token and confirmation keys are displayed.

The introspection returns scopes in the context. This section contains an example route

that retrieves the scopes, assigns them as the IG session username and password, and

uses them to log the user directly in to the sample application.

For information about the context, see OAuth2Context.

1. Set up AM:

a. Set up AM as described in Validate access tokens through the introspection

endpoint.

b. Select  Identities, and change the email address of the demo user to

demo .

c. Select  Scripts > OAuth2 Access Token Modification Script, and

replace the default script as follows:

$ curl --request POST \

--header "authorization:Bearer $mytoken" \

--header 'ssl_client_cert:base64-encoded-cert'

http://ig.example.com:8080/mtls-header

Valid token: zw5...Sj1

Confirmation keys: {

...

}

Use the OAuth 2.0 context to log in to the sample application

import org.forgerock.http.protocol.Request

import org.forgerock.http.protocol.Response

import com.iplanet.sso.SSOException

import groovy.json.JsonSlurper

file:///home/pptruser/Downloads/build/site/ig/reference/RequestsResponsesContexts.html#OAuth2Context
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

133 / 360

The AM script adds user profile information to the access token, and adds a

password field with the value Ch4ng31t .

Do not use this example in production! If the token is stateless and

unencrypted, the password value is easily accessible when you have the

token.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

def attributes =

identity.getAttributes(["mail"].toSet())

accessToken.setField("mail", attributes["mail"][0])

accessToken.setField("password", "{amDemoPw}")

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/rs-pwreplay.json

%appdata%\OpenIG\config\routes\rs-pwreplay.json

{

"name" : "rs-pwreplay",

"baseURI" : "http://app.example.com:8081",

"condition" : "${find(request.uri.path, '^/rs-

pwreplay')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

134 / 360

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler" : {

"type" : "Chain",

"config" : {

"filters" : [

{

"name" : "OAuth2ResourceServerFilter-1",

"type" : "OAuth2ResourceServerFilter",

"config" : {

"scopes" : ["mail", "employeenumber"],

"requireHttps" : false,

"realm" : "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

135 / 360

Notice the following features of the route compared to rs-

introspect.json :

The route matches requests to /rs-pwreplay .

}

}

}

},

{

"type": "AssignmentFilter",

"config": {

"onRequest": [{

"target": "${session.username}",

"value":

"${contexts.oauth2.accessToken.info.mail}"

},

{

"target": "${session.password}",

"value":

"${contexts.oauth2.accessToken.info.password}"

}

]

}

},

{

"type": "StaticRequestFilter",

"config": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${session.username}"

],

"password": [

"${session.password}"

]

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

136 / 360

The AssignmentFilter accesses the context, and injects the username

and password into the SessionContext, ${session} .

The StaticRequestFilter retrieves the username and password from

session , and replaces the original HTTP GET request with an HTTP

POST login request that contains the credentials to authenticate.

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

b. Validate the access token returned in the previous step:

HTML for the sample application is displayed.

This section builds on the example in Validate access tokens through the introspection

endpoint to cache and then revoke access tokens.

When the access token is not cached, IG calls AM to validate the access token. When the

access token is cached, IG doesn’t validate the access token with AM.

(From AM 6.5.3.) When an access token is revoked on AM, the CacheAccessTokenResolver

can delete the token from the cache when both of the following conditions are true:

The notification property of AmService is enabled.

The delegate AccessTokenResolver provides the token metadata required to update

the cache.

When a refresh_token is revoked on AM, all associated access tokens are automatically

and immediately revoked.

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/rs-pwreplay --

header "Authorization: Bearer ${mytoken}"

Cache access tokens

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

137 / 360

1. Set up AM as described in Validate access tokens through the introspection

endpoint.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/rs-introspect-cache.json

%appdata%\OpenIG\config\routes\rs-introspect-

cache.json

{

"name": "rs-introspect-cache",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-

introspect-cache$')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1"

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

138 / 360

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "CacheAccessTokenResolver-1",

"type": "CacheAccessTokenResolver",

"config": {

"enabled": true,

"defaultTimeout ": "1 hour",

"maximumTimeToCache": "1 day",

"amService":"AmService-1",

"delegate": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

139 / 360

Notice the following features of the route compared to rs-

introspect.json , in Validate access tokens through the introspection

endpoint:

The OAuth2ResourceServerFilter uses a CacheAccessTokenResolver to

cache the access token, and then delegate token resolution to the

TokenIntrospectionAccessTokenResolver.

The amService property in CacheAccessTokenResolver enables

WebSocket notifications from AM, for events such as token revocation.

}

],

"handler": {

"type": "Delegate",

"capture": "all",

"config": {

"delegate":

"ForgeRockClientHandler"

}

}

}

}

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Decoded

access_token: ${contexts.oauth2.accessToken.info}</h2>

</body></html>"

}

}

}

}

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

140 / 360

The TokenIntrospectionAccessTokenResolver uses a

ForgeRockClientHandler and a capture decorator to capture IG’s

interactions with AM.

3. Test token caching:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

b. Access the route, using the access token returned in the previous step:

c. In the route log, note that IG calls AM to introspect the access token:

d. Access the route again, and in the route log note that this time IG doesn’t

call AM, because the token is cached.

e. Disable the cache and repeat the previous steps to cause IG to call AM to

validate the access token for each request.

4. Test token revocation:

a. In a terminal window, use a curl command similar to the following to

revoke the access token obtained in the previous step:

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl http://ig.example.com:8080/rs-introspect-cache -

-header "Authorization: Bearer ${mytoken}"

{

active = true,

scope = employeenumber mail,

client_id = client - application,

user_id = demo,

token_type = Bearer,

exp = 158...907,

...

}

POST

http://am.example.com:8088/openam/oauth2/realms/root/in

trospect HTTP/1.1

http://am.example.com:8088/openam/oauth2/realms/root/introspect

141 / 360

b. Access the route, using the access token returned in the previous step, and

and note that the request is not authorized because the token is revoked:

This example shows how a client service accesses an OAuth 2.0-protected resource by

using its OAuth 2.0 client credentials.

Accessing an OAuth 2.0 protected resource, using OAuth 2.0 client credentials

IG route client-credentials.json IG route oauth2-protected-resource.json

Client Service

Client Service

ScriptableHandler

ScriptableHandler

ClientCredentialsOAuth2ClientFilter

ClientCredentialsOAuth2ClientFilter

AM Authorization Server

AM Authorization Server

OAuth2ResourceServerFilter

OAuth2ResourceServerFilter

TokenIntrospectionAccessTokenResolver

TokenIntrospectionAccessTokenResolver

Resource

Resource

1 Client request

2 Rewrite request to new target

3 Send request

4
Request access token, using
client's OAuth 2.0 credentials

5 Return access token

6
Inject access token into request
as a Bearer Authorization header

7 Forward request

8 Resolve access token

9 Resolve access token

1 0 Send access token info

1 1 Send access token info

1 2 Forward request

1 3 Forward response

1. Set up the AM as an authorization server:

a. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

$ curl --request POST \

--data "token=${mytoken}" \

--data "client_id=client-application" \

--data "client_secret=password" \

"http://am.example.com:8088/openam/oauth2/realms/root/t

oken/revoke"

$ curl -v http://ig.example.com:8080/rs-introspect-

cache --header "Authorization: Bearer ${mytoken}"

...

HTTP/1.1 401 Unauthorized

Using OAuth 2.0 client credentials

IMPORTANT

142 / 360

b. Create an OAuth 2.0 Authorization Server:

i. Select Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

c. Create an OAuth 2.0 client to request access tokens, using client credentials

for authentication:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : client-service

Client secret : password

Scope(s) : client-scope

ii. (From AM 6.5) On the Advanced tab, select the following value:

Grant Types : Client Credentials

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/oauth2-protected-

resource.json

%appdata%\OpenIG\config\routes\oauth2-protected-

resource.json

{

"name": "oauth2-protected-resource",

"condition": "${find(request.uri.path, '^/oauth2-

protected-resource')}",

"heap": [

143 / 360

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": ["client-scope"],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

144 / 360

Notice the following features of the route:

The route matches requests to /oauth2-protected-resource .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token

in the header of the incoming request, with the scope client-scope .

The filter uses a TokenIntrospectionAccessTokenResolver to resolve the

access token. The introspect endpoint is protected with HTTP Basic

Authentication, and the providerHandler uses an

HttpBasicAuthenticationClientFilter to provide the resource server

credentials.

For convenience in this test, "requireHttps" is false. In production

environments, set it to true.

After the filter successfully validates the access token, it creates a new

context from the authorization server response, containing

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Access

Granted</h2></body></html>"

}

}

}

}

}

145 / 360

information about the access token.

The StaticResponseHandler returns a message that access is granted.

c. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/client-credentials.json

%appdata%\OpenIG\config\routes\client-credentials.json

{

"name": "client-credentials",

"baseURI": "http://ig.example.com:8080",

"condition" : "${find(request.uri.path, '^/client-

credentials')}",

"heap" : [{

"name" : "clientSecretAccessTokenExchangeHandler",

"type" : "Chain",

"capture" : "all",

"config" : {

"filters" : [{

"type" :

"ClientSecretBasicAuthenticationFilter",

"config" : {

"clientId" : "client-service",

"clientSecretId" : "client.secret.id",

"secretsProvider" : {

"type" : "Base64EncodedSecretStore",

"config" : {

"secrets" : {

"client.secret.id" : "cGFzc3dvcmQ="

}

}

}

}

}],

"handler" : "ForgeRockClientHandler"

}

}, {

"name" : "oauth2EnabledClientHandler",

"type" : "Chain",

"capture" : "all",

146 / 360

Note the following features of the route:

The route matches requests to /client-credentials .

The ScriptableHandler rewrites the request to target it to /oauth2-

protected-resource , and then calls the HTTP client, that has been

redefined to use the oauth2EnabledClientHandler.

The oauth2EnabledClientHandler calls the

ClientCredentialsOAuth2ClientFilter to obtain an access token from AM.

The ClientCredentialsOAuth2ClientFilter calls the

clientSecretAccessTokenExchangeHandler to exchange tokens on the

authorization endpoint.

The clientSecretAccessTokenExchangeHandler calls a

ClientSecretBasicAuthenticationFilter to authenticate the client through

the HTTP basic access authentication scheme, and a

ForgeRockClientHandler to propagate the request.

The route oauth2-protected-resource.json uses the AM

introspection endpoint to resolve the access token and display its

"config" : {

"filters" : [{

"type" : "ClientCredentialsOAuth2ClientFilter",

"config" : {

"tokenEndpoint" :

"http://am.example.com:8088/openam/oauth2/access_token"

,

"endpointHandler":

"clientSecretAccessTokenExchangeHandler",

"scopes" : ["client-scope"]

}

}],

"handler" : "ForgeRockClientHandler"

}

}],

"handler" : {

"type" : "ScriptableHandler",

"config" : {

"type" : "application/x-groovy",

"clientHandler" : "oauth2EnabledClientHandler",

"source" : ["request.uri.path = '/oauth2-

protected-resource'", "return http.send(context,

request);"]

}

}

}

147 / 360

contents.

3. Test the setup by accessing the route on http://ig.example.com:8080/client-

credentials . A message shows that access is granted.

This example shows how a client service accesses an OAuth 2.0-protected resource by

using resource owner password credentials.

Accessing an OAuth 2.0 protected resource, using resource owner's credentials

IG route resource-owner.json IG route oauth2-protected-resource.json

Client Service

Client Service

ScriptableHandler

ScriptableHandler

ResourceOwnerOAuth2ClientFilter

ResourceOwnerOAuth2ClientFilter

AM Authorization Server

AM Authorization Server

OAuth2ResourceServerFilter

OAuth2ResourceServerFilter

TokenIntrospectionAccessTokenResolver

TokenIntrospectionAccessTokenResolver

Resource

Resource

1 Client request

2 Rewrite request to new target

3 Send request

4
Request access token, using resource
owner's password as credentials

5 Return access token

6
Inject access token into request
as a Bearer Authorization header

7 Forward request

8 Resolve access token

9 Resolve access token

1 0 Send access token info

1 1 Send access token info

1 2 Forward request

1 3 Forward response

1. Set up the AM as an authorization server:

a. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

b. Create an OAuth 2.0 Authorization Server:

i. Select Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.



Using OAuth 2.0 resource owner password credentials

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

http://ig.example.com:8080/client-credentials
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

148 / 360

c. Create an OAuth 2.0 client to request access tokens, using the resource

owner’s password for authentication:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : resource-owner-client

Client secret : password

Scope(s) : client-scope

ii. (From AM 6.5) On the Advanced tab, select the following value:

Grant Types : Resource Owner Password Credentials

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/oauth2-protected-

resource.json

%appdata%\OpenIG\config\routes\oauth2-protected-

resource.json

{

"name": "oauth2-protected-resource",

"condition": "${find(request.uri.path, '^/oauth2-

protected-resource')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

149 / 360

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": ["client-scope"],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

150 / 360

Notice the following features of the route:

The route matches requests to /oauth2-protected-resource .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token

in the header of the incoming request, with the scope client-scope .

The filter uses a TokenIntrospectionAccessTokenResolver to resolve the

access token. The introspect endpoint is protected with HTTP Basic

Authentication, and the providerHandler uses an

HttpBasicAuthenticationClientFilter to provide the resource server

credentials.

For convenience in this test, "requireHttps" is false. In production

environments, set it to true.

After the filter successfully validates the access token, it creates a new

context from the authorization server response, containing

information about the access token.

The StaticResponseHandler returns a message that access is granted.

c. Add the following route to IG:

1. Linux

2. Windows

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body><h2>Access

Granted</h2></body></html>"

}

}

}

}

}

151 / 360

$HOME/.openig/config/routes/resource-owner.json

%appdata%\OpenIG\config\routes\resource-owner.json

{

"name": "resource-owner",

"baseURI": "http://ig.example.com:8080",

"condition" : "${find(request.uri.path, '^/resource-

owner')}",

"heap" : [{

"name" : "clientSecretAccessTokenExchangeHandler",

"type" : "Chain",

"capture" : "all",

"config" : {

"filters" : [{

"type" :

"ClientSecretBasicAuthenticationFilter",

"config" : {

"clientId" : "resource-owner-client",

"clientSecretId" : "client.secret.id",

"secretsProvider" : {

"type" : "Base64EncodedSecretStore",

"config" : {

"secrets" : {

"client.secret.id" : "cGFzc3dvcmQ="

}

}

}

}

}],

"handler" : "ForgeRockClientHandler"

}

}, {

"name" : "oauth2EnabledClientHandler",

"type" : "Chain",

"capture" : "all",

"config" : {

"filters" : [{

"type" : "ResourceOwnerOAuth2ClientFilter",

"config" : {

"tokenEndpoint" :

"http://am.example.com:8088/openam/oauth2/access_token"

,

152 / 360

Note the following features of the route:

The route matches requests to /resource-owner .

The ScriptableHandler rewrites the request to target it to /oauth2-

protected-resource , and then calls the HTTP client, that has been

redefined to use the oauth2EnabledClientHandler.

The oauth2EnabledClientHandler calls the

ResourceOwnerOAuth2ClientFilter to obtain an access token from AM.

The ResourceOwnerOAuth2ClientFilter calls the

clientSecretAccessTokenExchangeHandler to exchange tokens on the

authorization endpoint. The demo user authenticates with their

username and password.

"endpointHandler":

"clientSecretAccessTokenExchangeHandler",

"scopes" : ["client-scope"],

"username" : "demo",

"passwordSecretId" :

"user.password.secret.id",

"secretsProvider" : {

"type" : "Base64EncodedSecretStore",

"config" : {

"secrets" : {

"user.password.secret.id" :

"Q2g0bmczMXQ="

}

}

}

}

}],

"handler" : "ForgeRockClientHandler"

}

}],

"handler" : {

"type" : "ScriptableHandler",

"config" : {

"type" : "application/x-groovy",

"clientHandler" : "oauth2EnabledClientHandler",

"source" : ["request.uri.path = '/oauth2-

protected-resource'", "return http.send(context,

request);"]

}

}

}

153 / 360

The clientSecretAccessTokenExchangeHandler calls a

ClientSecretBasicAuthenticationFilter to authenticate the client through

the HTTP basic access authentication scheme, and a

ForgeRockClientHandler to propagate the request.

The route oauth2-protected-resource.json uses the AM

introspection endpoint to resolve the access token and display its

contents.

3. Test the setup by accessing the route on http://ig.example.com:8080/resource-

owner . A message shows that access is granted.

The following sections provide an overview of how IG supports OpenID Connect 1.0, and

examples of to set up IG as an OpenID Connect relying party in different deployment

scenarios:

IG supports OpenID Connect 1.0, an authentication layer built on OAuth 2.0. OpenID

Connect 1.0 is a specific implementation of OAuth 2.0, where the identity provider holds

the protected resource that the third-party application wants to access. For more

information, see OpenID Connect .

OpenID Connect refers to the following entities:

End user : An OAuth 2.0 resource owner whose user information the application

needs to access.

The end user wants to use an application through an existing identity provider

account without signing up and creating credentials for another web service.

Relying Party (RP): An OAuth 2.0 client that needs access to the end user’s protected

user information.

For example, an online mail application needs to know which end user is accessing

the application in order to present the correct inbox.

As another example, an online shopping site needs to know which end user is

accessing the site in order to present the right offerings, account, and shopping cart.

OpenID Provider (OP): An OAuth 2.0 authorization server and also resource server

that holds the user information and grants access.

The OP requires the end user to give the RP permission to access to some of its user

information. Because OpenID Connect 1.0 defines unique identification for an



OpenID Connect

About IG with OpenID Connect



http://ig.example.com:8080/resource-owner
http://openid.net/developers/specs/

154 / 360

account (subject identifier + issuer identifier), the RP can use that identification to

bind its own user profile to a remote identity.

For the online mail application, this key could be used to access the mailboxes and

related account information. For the online shopping site, this key could be used to

access the offerings, account, shopping cart and others. The key makes it possible to

serve users as if they had local accounts.

UserInfo : The protected resource that the third-party application wants to access. The

information about the authenticated end user is expressed in a standard format. The

user-info endpoint is hosted on the authorization server and is protected with OAuth

2.0.

When IG acts as an OpenID Connect relying party, its role is to retrieve user information

from the OpenID provider, and then to inject that information into the context for use by

subsequent filters and handlers.

This section gives an example of how to set up AM as an OpenID Connect identity

provider, and IG as a relying party for browser requests to the home page of the sample

application.

The following sequence diagram shows the flow of information for a request to access

the home page of the sample application, using AM as a single, preregistered OpenID

Connect identity provider, and IG as a relying party:

Use AM as a single OpenID Connect provider

155 / 360

Information flow for requests using AM as a single OpenID Connect identity provider

Browser

Browser

IG
Relying party

IG
Relying party

Configurer

Configurer

AM
Authorization server

AM
Authorization server

Sample app

Sample app

Register AM as an authorization server

One authorization server registered
before request flow starts

Registration okay

Request

Request to access sample app
(app.example.com/home/id_token)

1. Unauthenticated browser redirected to single pre-registered authorization server

Use client registration to
determine authorization endpoint

Request authentication
(/home/id_token/login?registration=myid&goto=...

Log in

Authorize and return access_code (/home/id_token/callback)

Automatically redirect request with access_code
(ig.example.com/home/id_token/callback)

Create session

Send access code (am.example.com/access token)

access token

Request authorization

Authorization

Request completion

Request redirect the request to the original URL
(app.example.com/home/id_token)

Redirect

Forward request with access token and user information
(app.example.com/home/id_token)

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

1. Set Up AM as an OpenID Connect provider:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Create an OAuth 2.0 Authorization Server:

i. Select Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

c. Create an OAuth 2.0 Client to request OAuth 2.0 access tokens:

i. Select Applications > OAuth 2.0 > Clients.

ii. Add a client with the following values:

Client ID: oidc_client

Client secret: password

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples

156 / 360

Redirection URIs:

http://ig.example.com:8080/home/id_token/callback

Scope(s): openid , profile , and email

iii. (From AM 6.5) On the Advanced tab, select the following values:

Grant Types: Authorization Code

iv. On the Signing and Encryption tab, change ID Token Signing

Algorithm to HS256 , HS384 , or HS512 . The algorithm must be HMAC.

2. Set up IG:

a. Set an environment variable for oidc_client , and then restart IG:

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG:

1. Linux

2. Windows

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/07-openid.json

%appdata%\OpenIG\config\routes\07-openid.json

{

"name": "07-openid",

157 / 360

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AuthenticatedRegistrationHandler-1",

"type": "Chain",

"config": {

"filters": [

{

"name":

"ClientSecretBasicAuthenticationFilter-1",

"type":

"ClientSecretBasicAuthenticationFilter",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-

1",

"type":

"AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

158 / 360

For information about how to set up the IG route in Studio, see OpenID

Connect in Structured Editor.

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"authenticatedRegistrationHandler":

"AuthenticatedRegistrationHandler-1"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-oidc-am

159 / 360

Notice the following features about the route:

The route matches requests to /home/id_token .

The AuthorizationCodeOAuth2ClientFilter enables IG to act as a

relying party. It uses a single client registration that is defined inline

and refers to the AM server configured in Use AM As a single OpenID

Connect provider.

The filter has a base client endpoint of /home/id_token , which creates

the following service URIs:

Requests to /home/id_token/login start the delegated

authorization process.

Requests to /home/id_token/callback are expected as redirects

from the OAuth 2.0 Authorization Server (OpenID Connect

provider). This is why the redirect URI in the client profile in AM is

set to http://ig.example.com:8080/home/id_token/callback .

Requests to /home/id_token/logout remove the authorization

state for the end user, and redirect to the specified URL if a goto

parameter is provided.

These endpoints are implicitly reserved. Attempts to access them

directly can cause undefined errors.

For convenience in this test, "requireHttps" is false. In production

environments, set it to true. So that you see the delegated

authorization process when you make a request, "requireLogin" has

the default value true .

The target for storing authorization state information is

${attributes.openid} . This is where subsequent filters and handlers

can find access tokens and user information.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/home/id_token .

The AM login page is displayed.

c. Log in to AM as user demo , password Ch4ng31t , and then allow the

application to access user information.

The home page of the sample application is displayed.

To authenticate automatically to the sample application, change the last name of the user

demo to match the password Ch4ng31t , and add a StaticRequestFilter like the following



Authenticate automatically to the sample application

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
http://ig.example.com:8080/home/id_token

160 / 360

to the end of the chain in 07-openid.json :

The StaticRequestFilter retrieves the username and password from the context, and

replaces the original HTTP GET request with an HTTP POST login request containing

credentials.

This section builds on the example in Use AM As a single OpenID Connect provider to give

an example of using OpenID Connect with two identity providers.

The client registration for the AM provider is declared in the heap, and a second client

registration defines Google as an alternative identity provider. The Nascar page helps the

user to choose an identity provider.

1. Set up AM as the first OpenID Connect provider, as described in Use AM As a

single OpenID Connect provider.

2. Set up Google as the second OpenID Connect identity provider, using the

following hints:

a. Go to https://console.cloud.google.com/apis/credentials .

b. Create credentials for an OAuth 2.0 client ID with the following options:

Application type: Web application

Authorized redirect URI:

http://ig.example.com:8080/home/id_token/callback

c. Make a note of the ID and password for the Google identity provider.

{

"type": "StaticRequestFilter",

"config": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.openid.user_info.sub}"

],

"password": [

"${attributes.openid.user_info.family_name}"

]

}

}

}

Use multiple OpenID Connect providers



file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
https://console.cloud.google.com/apis/credentials

161 / 360

3. Set up IG:

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

b. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/07-openid-nascar.json

%appdata%\OpenIG\config\routes\07-openid-nascar.json

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "openam",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"issuer": {

"name": "Issuer",

"type": "Issuer",

162 / 360

"config": {

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"secretsProvider": "SystemAndEnvSecretStore-1",

"tokenEndpointAuthMethod":

"client_secret_basic"

}

},

{

"name": "google",

"type": "ClientRegistration",

"config": {

"clientId": "googleClientId",

"clientSecretId": "google.secret.id",

"issuer": {

"name": "accounts.google.com",

"type": "Issuer",

"config": {

"wellKnownEndpoint":

"https://accounts.google.com/.well-known/openid-

configuration"

}

},

"scopes": [

"openid",

"profile"

],

"secretsProvider": "SystemAndEnvSecretStore-1"

}

},

{

"name": "NascarPage",

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"

163 / 360

]

},

"entity": "<html><body><p><a

href='/home/id_token/login?

registration=oidc_client&issuer=Issuer&goto=${urlEncode

QueryParameterNameOrValue('http://ig.example.com:8080/h

ome/id_token')}'>AM Login</p><p><a

href='/home/id_token/login?

registration=googleClientId&issuer=accounts.google.com&

goto=${urlEncodeQueryParameterNameOrValue('http://ig.ex

ample.com:8080/home/id_token')}'>Google Login</p>

</body></html>"

}

}

],

"name": "07-openid-nascar",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"comment": "Trivial failure handler for

debugging only",

"status": 500,

"headers": {

"Content-Type": ["text/plain;

charset=UTF-8"]

},

"entity": "${attributes.openid}"

}

},

"loginHandler": "NascarPage",

"registrations": ["openam", "google"],

"requireHttps": false,

"cacheExpiration": "disabled"

164 / 360

Consider the differences with 07-openid.json :

The heap objects openam and google define two client registrations

to authenticate IG to identity providers.

The heap object NascarPage is a StaticResponseHandler that provides

links to the two client registrations.

The AuthorizationCodeOAuth2ClientFilter uses a loginHandler that

refers to NascarPage to allow users to choose from the two client

registrations.

c. In the route, replace both occurrences of googleClientId by the Google

identity provider ID.

d. Set environment variables for the identity providers' passwords:

i. Set an environment variable for the password of the AM identity

provider, oidc_client :

ii. Set an environment variable for the password of the Google identity

provider:

The passwords are retrieved by the SystemAndEnvSecretStore, and

must be base64-encoded.

4. Test the setup:

a. Log out of AM.

b. Go to http://ig.example.com:8080/home/id_token .

The Nascar page offers the choice of identity provider.

c. Select a provider, log in with your credentials, and then allow the

application to access user information.

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

$ export OIDC.SECRET.ID='cGFzc3dvcmQ='

$ export GOOGLE.SECRET.ID='base64-encoded-google-

client-password'



http://ig.example.com:8080/home/id_token

165 / 360

For AM, use the following credentials: username demo , password

Ch4ng31t . For the Google identity provider, use the Google credentials.

The home page of the sample application is displayed.

OpenID Connect defines mechanisms for discovering and dynamically registering with an

identity provider that is not known in advance, as specified in the following publications:

OpenID Connect Discovery , OpenID Connect Dynamic Client Registration , and OAuth

2.0 Dynamic Client Registration Protocol .

In dynamic registration, issuer and client registrations are generated dynamically. They

are held in memory and can be reused, but do not persist when IG is restarted.

This section builds on the example in Use AM As a single OpenID Connect provider to give

an example of discovering and dynamically registering with an identity provider that is

not known in advance. In this example, the client sends a signed JWT to the authorization

server.

To facilitate the example, a WebFinger service is embedded in the sample application. In a

normal deployment, the WebFinger server is likely to be a service on the issuer’s domain.

1. Set up a key

a. Locate a directory for secrets, and go to it:

b. Create a key:

2. Set up AM:

a. Set up AM as described in Use AM As a single OpenID Connect provider.

Discover and dynamically register with OpenID Connect providers

 



$ cd /path/to/secrets

$ keytool -genkey \

-alias myprivatekeyalias \

-keyalg RSA \

-keysize 2048 \

-keystore keystore.p12 \

-storepass keystore \

-storetype PKCS12 \

-keypass keystore \

-validity 360 \

-dname "CN=ig.example.com, OU=example, O=com, L=fr,

ST=fr, C=fr"

http://openid.net/specs/openid-connect-discovery-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/rfc/rfc7591
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am

166 / 360

b. Select the user demo , and change the last name to Ch4ng31t . Note that, for

this example, the last name must be the same as the password.

c. Configure the OAuth 2.0 Authorization Server for dynamic registration:

i. Select Services > OAuth2 Provider.

ii. On the Advanced tab, add the following scopes to Client

Registration Scope Whitelist: openid , profile , email .

iii. On the Client Dynamic Registration tab, select these settings:

Allow Open Dynamic Client Registration: Enabled

Generate Registration Access Tokens: Disabled

d. Configure the authentication method for the OAuth 2.0 Client:

i. Select Applications > OAuth 2.0 > Clients.

ii. Select oidc_client , and on the Advanced tab, select Token

Endpoint Authentication Method: private_key_jwt .

3. Set up IG:

a. In the IG configuration, set an environment variable for the keystore

password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following script to IG:

$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

167 / 360

1. Linux

2. Windows

$HOME/.openig/scripts/groovy/discovery.groovy

%appdata%\OpenIG\scripts\groovy\discovery.groovy

/*

* OIDC discovery with the sample application

*/

response = new Response(Status.OK)

response.getHeaders().put(ContentTypeHeader.NAME,

"text/html");

response.entity = """

<!doctype html>

<html>

<head>

<title>OpenID Connect Discovery</title>

<meta charset='UTF-8'>

</head>

<body>

<form id='form' action='/discovery/login?'>

Enter your user ID or email address:

<input type='text' id='discovery'

name='discovery'

placeholder='demo or demo@example.com' />

<input type='hidden' name='goto'

value='${contexts.router.originalUri}' />

</form>

<script>

// Make sure sampleAppUrl is correct for your

sample app.

window.onload = function() {

document.getElementById('form').onsubmit =

function() {

// Fix the URL if not using the default settings.

var sampleAppUrl =

'http://app.example.com:8081/';

var discovery =

document.getElementById('discovery');

discovery.value = sampleAppUrl +

discovery.value.split('@', 1)[0];

};

168 / 360

The script transforms the input into a discovery value for IG. This is not a

requirement for deployment, only a convenience for the purposes of this

example. Alternatives are described in the discovery protocol specification.

d. Add the following route to IG, replacing /path/to/secrets/keystore.p12

with your path:

1. Linux

2. Windows

};

</script>

</body>

</html>""" as String

return response

$HOME/.openig/config/routes/07-discovery.json

%appdata%\OpenIG\config\routes\07-discovery.json

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "SecretsProvider-1",

"type": "SecretsProvider",

"config": {

"stores": [

{

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/keystore.p12",

"mappings": [

{

"aliases": ["myprivatekeyalias"],

"secretId":

"private.key.jwt.signing.key"

}

],

"storePasswordSecretId":

"keystore.secret.id",

169 / 360

"storeType": "PKCS12",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

]

}

},

{

"name": "DiscoveryPage",

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"file": "discovery.groovy"

}

}

],

"name": "07-discovery",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/discovery')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "DynamicallyRegisteredClient",

"type":

"AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/discovery",

"requireHttps": false,

"requireLogin": true,

"target": "${attributes.openid}",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"comment": "Trivial failure handler for

debugging only",

"status": 500,

"headers": {

"Content-Type": ["text/plain;

charset=UTF-8"]

},

"entity": "${attributes.openid}"

170 / 360

Consider the differences with 07-openid.json :

The route matches requests to /discovery .

The AuthorizationCodeOAuth2ClientFilter uses DiscoveryPage as the

login handler, and specifies metadata to prepare the dynamic

}

},

"loginHandler": "DiscoveryPage",

"discoverySecretId":

"private.key.jwt.signing.key",

"tokenEndpointAuthMethod":

"private_key_jwt",

"secretsProvider": "SecretsProvider-1",

"metadata": {

"client_name": "My Dynamically Registered

Client",

"redirect_uris": [

"http://ig.example.com:8080/discovery/callback"],

"scopes": ["openid", "profile", "email"

]

}

}

},

{

"type": "StaticRequestFilter",

"config": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.openid.user_info.name}"

],

"password": [

"${attributes.openid.user_info.family_name}"

]

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

171 / 360

registration request.

DiscoveryPage uses a ScriptableHandler and script to provide the

discovery parameter and goto parameter.

If there is a match, then it can use the issuer’s registration endpoint

and avoid an additional request to look up the user’s issuer using the

WebFinger protocol.

If there is no match, IG uses the discovery value as the resource for

a WebFinger request using OpenID Connect Discovery protocol.

IG uses the discovery parameter to find an identity provider. IG

extracts the domain host and port from the value, and attempts to find

a match in the supportedDomains lists for issuers configured for the

route.

When discoverySecretId is set, the tokenEndpointAuthMethod is

always private_key_jwt . Clients send a signed JWT to the

authorization server.

Redirects IG to the end user’s browser, using the goto parameter, fter

the process is complete and IG has injected the OpenID Connect user

information into the context.

4. Test the setup:

a. Log out of AM, and clear any cookies.

b. Go to http://ig.example.com:8080/discovery .

c. Enter the following email address: demo@example.com . The AM login page

is displayed.

d. Log in as user demo , password Ch4ng31t , and then allow the application

to access user information. The sample application returns the user’s page.

Retrieve user profile attributes of an AM user, and provide them in the UserProfileContext

to downstream filters and handlers. Profile attributes that are enabled in AM can be

retrieved, except the roles attribute.

The userProfile property of AmService is configured to retrieve employeeNumber and

mail . When the property is not configured, all available attributes in rawInfo or

asJsonValue() are displayed.





Passing data along the chain

Pass profile data downstream

https://www.rfc-editor.org/rfc/rfc7033
http://ig.example.com:8080/discovery

172 / 360

In this example, the user is authenticated with AM through the SingleSignOnFilter, which

stores the SSO token and its validation information in the SsoTokenContext . The

UserProfileFilter retrieves the user’s mail and employee number, as well as the

username , _id , and _rev , from that context.

1. Set up AM:

a. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

b. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/?

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

Retrieve profile attributes for a user authenticated with an SSO token

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/user-profile-sso.json

%appdata%\OpenIG\config\routes\user-profile-sso.json

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

173 / 360

{

"name": "user-profile-sso",

"condition": "${find(request.uri.path, '^/user-

profile-sso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"amHandler": "ForgeRockClientHandler"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "UserProfileFilter-1",

"type": "UserProfileFilter",

"config": {

"username":

"${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1",

174 / 360

3. Test the setup:

a. Go to http://ig.example.com:8080/user-profile-sso .

b. Log in to AM with username demo and password Ch4ng31t .

The UserProfileFilter retrieves the user’s profile data and stores it in the

UserProfileContext. The StaticResponseHandler displays the username and

the profile data that is available in rawInfo :

In this example, the UserProfileFilter retrieves AM profile information for the user

identified by the SessionInfoContext, at ${contexts.amSession.username} . The

SessionInfoFilter validates an SSO token without redirecting the request to an

authentication page.

"profileAttributes": [

"employeeNumber", "mail"]

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-

8"]

},

"entity": "<html><body>username:

${contexts.userProfile.username}

rawInfo:

<pre>${contexts.userProfile.rawInfo}</pre></body>

</html>"

}

}

}

}

}



username: demo

rawInfo: {_id=demo, _rev=273001616, employeeNumber=

[123], mail=[demo@example.com], username=demo}

Retrieve a username from the sessionInfo context

http://ig.example.com:8080/user-profile-sso
mailto:demo@example.com

175 / 360

1. Set up AM:

a. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/user-profile-ses-info.json

%appdata%\OpenIG\config\routes\user-profile-ses-

info.json

{

"name": "user-profile-ses-info",

"condition": "${find(request.uri.path, '^/user-

profile-ses-info')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

176 / 360

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"amHandler": "ForgeRockClientHandler"

}

}

],

"handler": {

"type": "Chain",

"capture": "all",

"config": {

"filters": [

{

"name": "SessionInfoFilter-1",

"type": "SessionInfoFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "UserProfileFilter-1",

"type": "UserProfileFilter",

"config": {

"username":

"${contexts.amSession.username}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1",

"profileAttributes": [

"employeeNumber", "mail"]

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

177 / 360

3. Test the setup:

a. In a terminal window, retrieve an SSO token:

b. Access the route, providing the token ID retrieved in the previous step,

where iPlanetDirectoryPro is the name of the AM session cookie:

"config": {

"status": 200,

"headers": {

"Content-Type": ["application/json"]

},

"entity": "{ \"username\":

\"${contexts.userProfile.username}\", \"user_profile\":

${contexts.userProfile.asJsonValue()} }"

}

}

}

}

}

$ curl --request POST \

--url

http://am.example.com:8088/openam/json/realms/root/auth

enticate \

--header 'accept-api-version: resource=2.0' \

--header 'content-type: application/json' \

--header 'x-openam-username: demo' \

--header 'x-openam-password: Ch4ng31t' \

--data '{}'

{"tokenId":"AQIC5wM2LY . . .

Dg5AAJTMQAA*","successUrl":"/openam/console"}

$ curl --cookie 'iPlanetDirectoryPro=tokenID'

http://ig.example.com:8080/user-profile-ses-info | jq .

{

"username": "demo",

"user_profile": {

"_id": "demo",

"_rev": "123...456",

"employeeNumber": ["123"],

"mail": ["demo@example.com"],

"username": "demo"

178 / 360

To find the name of your AM session cookie, see Find the name of your AM

session cookie.

The UserProfileFilter retrieves the user’s profile data and stores it in the

UserProfileContext. The StaticResponseHandler displays the username and

the profile data that is available in asJsonValue() .

In this example, the OAuth2ResourceServerFilter validates a request containing an OAuth

2.0 access token, using the introspection endpoint, and injects the token into the

OAuth2Context context. The UserProfileFilter retrieves AM profile information for the

user identified by this context.

1. Set up AM as described in Validate access tokens through the introspection

endpoint.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

}

}

Retrieving a username from the OAuth2Context

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/user-profile-oauth.json

%appdata%\OpenIG\config\routes\user-profile-oauth.json

{

"name": "user-profile-oauth",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/user-

profile-oauth')}",

"heap": [

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#am-session-cookie
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

179 / 360

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"amHandler": "ForgeRockClientHandler"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

180 / 360

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"name": "UserProfileFilter-1",

"type": "UserProfileFilter",

"config": {

"username":

"${contexts.oauth2.accessToken.info.sub}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1",

"profileAttributes": [

"employeeNumber", "mail"]

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["application/json"]

},

"entity": "{ \"username\":

\"${contexts.userProfile.username}\", \"user_profile\":

${contexts.userProfile.asJsonValue()} }"

}

181 / 360

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

b. Validate the access token returned in the previous step:

The UserProfileFilter retrieves the user’s profile data and stores it in the

UserProfileContext. The StaticResponseHandler displays the username and

the profile data that is available in asJsonValue() .

The following sections describe how to pass identity or other runtime information in a

JWT, downstream to a protected application:

The examples in this section use the following objects:

}

}

}

}

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token

| jq -r ".access_token")



$ curl -v http://ig.example.com:8080/user-profile-oauth

 --header "Authorization: Bearer ${mytoken}" | jq .**

{

"username": "demo",

"user_profile": {

"_id": "demo",

"_rev": "123…​456",

"employeeNumber": ["123"],

"mail": ["demo@example.com"],

"username": "demo"

}

}



Passing runtime data downstream

http://am.example.com:8088/openam/oauth2/access_token
http://ig.example.com:8080/user-profile-oauth
mailto:demo@example.com

182 / 360

JwtBuilderFilter to collect runtime information and pack it into a JWT

HeaderFilter to add the information to the forwarded request

To help with development, the sample application includes a /jwt endpoint to display

the JWT, verify its signature, and decrypt the JWT.

1. Set up secrets

a. Locate a directory for secrets, and go to it:

b. Generate PEM files to sign and verify the JWT:

2. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

Pass runtime data in a JWT signed with a PEM

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout id.key.for.signing.jwt.pem \

-out id.key.for.verifying.jwt.pem

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#JwtBuilderFilter
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#HeaderFilter
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

183 / 360

3. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG, replacing value of the property secretsDir

with the directory for the PEM file:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/jwt-builder-sign-pem.json

%appdata%\OpenIG\config\routes\jwt-builder-sign-

pem.json

{

"name": "jwt-builder-sign-pem",

184 / 360

"condition": "${find(request.uri.path, '/jwt-builder-

sign-pem')}",

"baseURI": "http://app.example.com:8081",

"properties": {

"secretsDir": "/path/to/secrets"

},

"capture": "all",

"heap": [

{

"name": "pemPropertyFormat",

"type": "PemPropertyFormat"

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"suffix": ".pem",

"mappings": [{

"secretId": "id.key.for.signing.jwt",

"format": "pemPropertyFormat"

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam"

}

}

],

"handler": {

"type": "Chain",

"config": {

185 / 360

"filters": [{

"name": "SingleSignOnFilter",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}, {

"name": "UserProfileFilter",

"type": "UserProfileFilter",

"config": {

"username": "${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1"

}

}

}

}, {

"name": "JwtBuilderFilter-1",

"type": "JwtBuilderFilter",

"config": {

"template": {

"name":

"${contexts.userProfile.commonName}",

"email":

"${contexts.userProfile.rawInfo.mail[0]}"

},

"secretsProvider": "FileSystemSecretStore-1",

"signature": {

"secretId": "id.key.for.signing.jwt",

"algorithm": "RS512"

}

}

}, {

"name": "HeaderFilter-1",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-openig-user":

["${contexts.jwtBuilder.value}"]

}

}

}],

186 / 360

Notice the following features of the route:

The route matches requests to /jwt-builder-sign-pem .

The agent password for AmService is provided by a

SystemAndEnvSecretStore.

If the request does not have a valid AM session cookie, the

SingleSignOnFilter redirects the request to authenticate with AM. If the

request already has a valid AM session cookie, the SingleSignOnFilter

passes the request to the next filter, and stores the cookie value in an

SsoTokenContext.

The UserProfileFilter reads the username from the SsoTokenContext,

uses it to retrieve the user’s profile info from AM, and places the data

into the UserProfileContext.

The JwtBuilderFilter refers to the secret ID of the PEM, and uses the

FileSystemSecretStore to manage the secret.

The FileSystemSecretStore mapping refers to the secret ID of the PEM,

and uses the PemPropertyFormat to define the format.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and

adds it to the header field x-openig-user in the request, so that the

sample app can display the JWT.

The ClientHandler passes the request to the sample app, which

displays the JWT.

4. Test the setup

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/jwt-builder-sign-pem .

c. Log in to AM as user demo , password Ch4ng31t , or as another user. The

sample app displays the signed JWT along with its header and payload.

d. In USE PEM FILE in the sample app, enter the path to

id.key.for.verifying.jwt.pem to verify the JWT signature.

This example passes runtime data in a JWT that is signed with a PEM, and then encrypted

with a symmetric key.

"handler": "ReverseProxyHandler"

}

}

}



Pass runtime data in a JWT signed with PEM then encrypted with a symmetric

key

http://ig.example.com:8080/jwt-builder-sign-pem

187 / 360

1. Set up secrets

a. Locate a directory for secrets, and go to it:

b. From the secrets directory, generate PEM files to sign and verify the JWT:

c. Encrypt the PEM file used to sign the JWT:

The encrypted PEM file used for signatures is

id.encrypted.key.for.signing.jwt.pem . The password to decode the

file is encryptedpassword .

d. Generate a symmetric key to encrypt the JWT:

e. Make sure you have the following keys in your secrets directory:

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout id.key.for.signing.jwt.pem \

-out id.key.for.verifying.jwt.pem

$ openssl pkcs8 \

-topk8 \

-inform PEM \

-outform PEM \

-in id.key.for.signing.jwt.pem \

-out id.encrypted.key.for.signing.jwt.pem \

-passout pass:encryptedpassword \

-v1 PBE-SHA1-3DES

If encryption fails, make sure your encryption methods and ciphers

are supported by the Java Cryptography Extension.

TIP

$ openssl rand -base64 32 >

symmetric.key.for.encrypting.jwt

188 / 360

id.encrypted.key.for.signing.jwt.pem

id.key.for.signing.jwt.pem

id.key.for.verifying.jwt.pem

symmetric.key.for.encrypting.jwt

2. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

3. Set up IG:

a. In IG, create an environment variable for the base64-encoded password to

decrypt the PEM file used to sign the JWT:

b. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

c. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export

ID_DECRYPTED_KEY_FOR_SIGNING_JWT='ZW5jcnlwdGVkcGFzc3dvc

mQ='

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

189 / 360

d. Add the following route to IG, replacing the value of secretsDir with your

secrets directory:

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/jwtbuilder-sign-then-

encrypt.json

%appdata%\OpenIG\config\routes\jwtbuilder-sign-then-

encrypt.json

{

"name": "jwtbuilder-sign-then-encrypt",

"condition": "${find(request.uri.path, '/jwtbuilder-

sign-then-encrypt')}",

"baseURI": "http://app.example.com:8081",

"properties": {

"secretsDir": "/path/to/secrets"

},

"capture": "all",

"heap": [

{

"name": "SystemAndEnvSecretStore",

"type": "SystemAndEnvSecretStore",

"config": {

"mappings": [{

"secretId":

"id.decrypted.key.for.signing.jwt",

"format": "BASE64"

}]

190 / 360

}

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore",

"url": "http://am.example.com:8088/openam"

}

},

{

"name": "pemPropertyFormat",

"type": "PemPropertyFormat",

"config": {

"decryptionSecretId":

"id.decrypted.key.for.signing.jwt",

"secretsProvider": "SystemAndEnvSecretStore"

}

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"mappings": [{

"secretId":

"id.encrypted.key.for.signing.jwt.pem",

"format": "pemPropertyFormat"

}, {

"secretId":

"symmetric.key.for.encrypting.jwt",

"format": {

"type": "SecretKeyPropertyFormat",

"config": {

"format": "BASE64",

"algorithm": "AES"

}

}

}]

}

191 / 360

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [{

"name": "SingleSignOnFilter",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}, {

"name": "UserProfileFilter",

"type": "UserProfileFilter",

"config": {

"username": "${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1"

}

}

}

}, {

"name": "JwtBuilderFilter-1",

"type": "JwtBuilderFilter",

"config": {

"template": {

"name":

"${contexts.userProfile.commonName}",

"email":

"${contexts.userProfile.rawInfo.mail[0]}"

},

"secretsProvider": "FileSystemSecretStore-1",

"signature": {

"secretId":

"id.encrypted.key.for.signing.jwt.pem",

"algorithm": "RS512",

"encryption": {

"secretId":

"symmetric.key.for.encrypting.jwt",

"algorithm": "dir",

"method": "A128CBC-HS256"

}

}

192 / 360

Notice the following features of the route:

The route matches requests to /jwtbuilder-sign-then-encrypt .

The SystemAndEnvSecretStore provides the IG agent password and the

password to decode the PEM file for the signing keys.

The FileSystemSecretStore maps the secret IDs of the encrypted PEM

file used to sign the JWT, and the symmetric key used to encrypt the

JWT.

After authentication, the UserProfileFilter reads the username from the

SsoTokenContext, uses it to retrieve the user’s profile info from AM,

and places the data into the UserProfileContext.

The JwtBuilderFilter takes the username and email from the

UserProfileContext, and stores them in a JWT in the JwtBuilderContext.

It uses the secrets mapped in the FileSystemSecretStore to sign then

encrypt the JWT.

}

}, {

"name": "AddBuiltJwtToHeader",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-openig-user":

["${contexts.jwtBuilder.value}"]

}

}

},

{

"name": "AddBuiltJwtAsCookie",

"type": "HeaderFilter",

"config": {

"messageType": "RESPONSE",

"add": {

"set-cookie": ["my-

jwt=${contexts.jwtBuilder.value};PATH=/"]

}

}

}],

"handler": "ReverseProxyHandler"

}

}

}

193 / 360

The AddBuiltJwtToHeader HeaderFilter retrieves the JWT from the

JwtBuilderContext, and adds it to the header field x-openig-user in

the request so that the sample app can display the JWT.

The AddBuiltJwtAsCookie HeaderFilter adds the JWT to a cookie

called my-jwt so that it can be retrieved by the JwtValidationFilter in

JWT validation. The cookie is ignored in this example.

The ClientHandler passes the request to the sample app.

4. Test the setup

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/jwtbuilder-sign-then-encrypt .

c. Log in to AM as user demo , password Ch4ng31t . The sample app displays

the encrypted JWT. The payload is concealed because the JWT is encrypted.

d. In the ENTER SECRET box, enter the value of

symmetric.key.for.encrypting.jwt to decrypt the JWT. The signed JWT

and its payload are now displayed.

e. In the USE PEM FILE box, enter the path to

id.key.for.verifying.jwt.pem to verify the JWT signature.

1. Set up secrets:

a. Locate a directory for secrets, and go to it:

b. In the secrets folder, generate an AES 256-bit key:

c. In the secrets folder, create a file called

symmetric.key.for.encrypting.jwt containing the AES key:

Make sure the password file contains only the password, with no trailing

spaces or carriage returns.

2. Set up AM:



Pass runtime data in JWT encrypted with a symmetric key

$ cd /path/to/secrets

$ openssl rand -base64 32

loH...UFQ=

$ echo -n 'loH...UFQ=' >

symmetric.key.for.encrypting.jwt

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/validate-jwt.html
http://ig.example.com:8080/jwtbuilder-sign-then-encrypt

194 / 360

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

3. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

195 / 360

c. Add the following route to IG, replacing the value of the property

secretsDir with your value:

1. Linux

2. Windows

$HOME/.openig/config/routes/jwtbuilder-encrypt-

symmetric.json

%appdata%\OpenIG\config\routes\jwtbuilder-encrypt-

symmetric.json

{

"name": "jwtbuilder-encrypt-symmetric",

"condition": "${find(request.uri.path, '/jwtbuilder-

encrypt-symmetric')}",

"baseURI": "http://app.example.com:8081",

"properties": {

"secretsDir": "/path/to/secrets"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam"

}

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"mappings": [{

196 / 360

"secretId":

"symmetric.key.for.encrypting.jwt",

"format": {

"type": "SecretKeyPropertyFormat",

"config": {

"format": "BASE64",

"algorithm": "AES"

}

}

}]

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}, {

"name": "UserProfileFilter-1",

"type": "UserProfileFilter",

"config": {

"username": "${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1"

}

}

}

}, {

"name": "JwtBuilderFilter-1",

"type": "JwtBuilderFilter",

"config": {

"template": {

"name":

"${contexts.userProfile.commonName}",

"email":

"${contexts.userProfile.rawInfo.mail[0]}"

},

"secretsProvider": "FileSystemSecretStore-1",

197 / 360

Notice the following features of the route:

The route matches requests to /jwtbuilder-encrypt-symmetric .

The JWT encryption key is managed by the FileSystemSecretStore in

the heap, which defines the SecretKeyPropertyFormat.

The JwtBuilderFilter encryption property refers to key in the

FileSystemSecretStore.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and

adds it to the header field x-openig-user in the request, so that the

sample app can display the JWT.

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/jwtbuilder-encrypt-symmetric .

c. Log in to AM as user demo , password Ch4ng31t , or as another user. The

JWT is displayed in the sample app.

d. In the ENTER SECRET field, enter the value of the AES 256-bit key to decrypt

the JWT and display its payload.

"encryption": {

"secretId":

"symmetric.key.for.encrypting.jwt",

"algorithm": "dir",

"method": "A128CBC-HS256"

}

}

}, {

"name": "HeaderFilter-1",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-openig-user":

["${contexts.jwtBuilder.value}"]

}

}

}],

"handler": "ReverseProxyHandler"

}

}

}



Pass runtime data in JWT encrypted with an asymmetric key

http://ig.example.com:8080/jwtbuilder-encrypt-symmetric

198 / 360

The asymmetric key in this example is a PEM, but you can equally use a keystore.

1. Set up secrets:

a. Locate a directory for secrets, and go to it:

b. Generate an encrypted PEM file:

2. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

3. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout id.key.for.encrypting.jwt.pem \

-out id.key.for.decrypting.jwt.pem

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

199 / 360

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

c. Add the following route to IG, replacing value of the property secretsDir

with the directory for the PEM file:

1. Linux

2. Windows

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/jwtbuilder-encrypt-

asymmetric.json

%appdata%\OpenIG\config\routes\jwtbuilder-encrypt-

asymmetric.json

{

"name": "jwtbuilder-encrypt-asymmetric",

"condition": "${find(request.uri.path, '/jwtbuilder-

encrypt-asymmetric')}",

"baseURI": "http://app.example.com:8081",

"properties": {

"secretsDir": "/path/to/secrets"

},

"capture": "all",

"heap": [

{

200 / 360

"name": "pemPropertyFormat",

"type": "PemPropertyFormat"

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

"suffix": ".pem",

"mappings": [{

"secretId": "id.key.for.decrypting.jwt",

"format": "pemPropertyFormat"

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [{

"name": "SingleSignOnFilter",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}, {

"name": "UserProfileFilter",

"type": "UserProfileFilter",

201 / 360

Notice the following features of the route:

The route matches requests to /jwtbuilder-encrypt-asymmetric .

"config": {

"username": "${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService-1"

}

}

}

}, {

"name": "JwtBuilderFilter-1",

"type": "JwtBuilderFilter",

"config": {

"template": {

"name":

"${contexts.userProfile.commonName}",

"email":

"${contexts.userProfile.rawInfo.mail[0]}"

},

"secretsProvider": "FileSystemSecretStore-1",

"encryption": {

"secretId": "id.key.for.decrypting.jwt",

"algorithm": "RSA-OAEP-256",

"method": "A128CBC-HS256"

}

}

}, {

"name": "HeaderFilter-1",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-openig-user":

["${contexts.jwtBuilder.value}"]

}

}

}],

"handler": "ReverseProxyHandler"

}

}

}

202 / 360

The JwtBuilderFilter refers to the secret ID of the PEM, and uses the

FileSystemSecretStore to manage the secret.

The FileSystemSecretStore mapping refers to the secret ID of the PEM,

and uses the default PemPropertyFormat.

The HeaderFilter retrieves the JWT from the JwtBuilderContext, and

adds it to the header field x-openig-user in the request, so that the

sample app can display the JWT.

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/jwtbuilder-encrypt-asymmetric .

c. Log in to AM as user demo , password Ch4ng31t , or as another user. The

JWT is displayed in the sample app.

d. In the USE PEM FILE field, enter the path to

id.key.for.encrypting.jwt.pem to decrypt the JWT and display its

payload.

The IG federation component implements SAML 2.0, to validate users and log them in to

protected applications.

The SAML 2.0 standard describes the messages that providers exchange, and how they

exchange them. SAML 2.0 enables web SSO, for example, where the service managing the

user’s identity does not belong to the same organization and does not use the same

software as the service that the user wants to access.

The following terms are used in SAML and federation:

Identity Provider (IDP): The service that manages the user identity, for example AM.

Service Provider (SP): The service that a user wants to access. IG acts as a SAML 2.0 SP

for SSO, providing an interface to applications that don’t support SAML 2.0.

Circle of trust (CoT): An IDP and SP that participate in the federation.

When an IDP and an SP participate in a federation, they agree on what security

information to exchange, and mutually configure access to each other’s services.

After an IDP authenticates a user, it provides the SP with SAML assertions that attest to

which user is authenticated, when the authentication succeeded, how long the assertion

is valid, and so on. The SP uses the SAML assertions to make authorization decisions, for



SAML

SAML 2.0 single sign-on and federation

http://ig.example.com:8080/jwtbuilder-encrypt-asymmetric

203 / 360

example, to let an authenticated user complete a purchase that gets charged to the user’s

account at the IDP.

The IDP and SP usually communicate about a user identified by a name identifier. In SP-

initiated SSO and IDP-initiated SSO, the NameID format can be any format supported by

the IDP. For more information, refer to Use a non-transient NameID format.

SAML assertions can be signed and encrypted. ForgeRock recommends using *SHA-256

variants (rsa-sha256 or ecdsa-sha256).

SAML assertions can contain configurable attribute values, such as user meta-information

or anything else provided by the IDP. The attributes of a SAML assertion can contain one

or more values, made available as a list of strings. Even if an attribute contains a single

value, it is made available as a list of strings.

SAML in deployments with multiple instances of IG

IG uses a Java fedlet to implement SAML. When IG acts as a SAML service provider, the

session information is stored in the fedlet, not the session cookie. In deployments that

use multiple instances of IG as a SAML service provider, it is therefore necessary to set up

sticky sessions so that requests always hit the instance where the SAML interaction was

started.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

SP-initiated SSO occurs when a user attempts to access a protected application directly

through the SP. Because the user’s federated identity is managed by the IDP, the SP sends

a SAML authentication request to the IDP. After the IDP authenticates the user, it provides

the SP with a SAML assertion for the user.

The following sequence diagram shows the flow of information in SP-initiated SSO, when

IG acts as a SAML 2.0 SP:

About SP-initiated SSO

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-nameidformat
https://backstage.forgerock.com/docs/am/7.3/saml2-guide/saml2-configuration.html#saml2-and-session-state

204 / 360

SP-Initiated SSO

Browser

Browser

AM
identity provider

AM
identity provider

IG
service provider

IG
service provider

Protected application

Protected application

SSO on the federation

1 HTTP GET request to the protected application

2
User not authenticated, direct
request to the SP-initiated SSO endpoint

3 Request credential, and user logs in

4
Direct request to the SP,
provide SAML assertions for the user

5 Validate the assertions, set the attributes

Application-specific password replay

6
Retrieve credentials, replace original HTTP GET
with HTTP POST containing credentials to
authenticate to the protected application

7 Return response page showing that the user has logged in

IDP-initiated SSO occurs when a user attempts to access a protected application, using

the IDP for authentication. The IDP sends an unsolicited authentication statement to the

SP.

Before IDP-initiated SSO can occur:

The user must access a link on the IDP that refers to the remote SP.

The user must authenticate to the IDP.

The IDP must be configured with links that refer to the SP.

The following sequence diagram shows the flow of information in IDP-initiated SSO when

IG acts as a SAML 2.0 SP:

IDP-Initiated SSO

Browser

Browser

AM
identity provider

AM
identity provider

IG
service provider

IG
service provider

Protected application

Protected application

SSO on the federation

1
HTTP GET request to the protected application
through IDP-initiated SSO endpoint

2 Request credentials, and user logs in

3
Direct the request to the SP,
provide SAML assertions for the user

4 Validate the assertions, set the attributes

Application-specific password replay

5
Retrieve credentials, replace original HTTP GET
with HTTP POST containing credentials to
authenticate to the protected application.

6 Return response page showing that the user has logged in

About IDP-initiated SSO

Set up federation with unsigned/unencrypted assertions

205 / 360

For examples of the federation configuration files, refer to Example fedlet files. To set up

multiple SPs, work through this section, and then SAML 2.0 and multiple applications.

1. Set up the network:

Add sp.example.com to your /etc/hosts file:

Traffic to the application is proxied through IG, using the host name

sp.example.com .

2. Configure a Java Fedlet:

For more information about Java Fedlets, refer to Creating and configuring the

fedlet in AM’s SAML v2.0 guide.

a. Copy and unzip the fedlet zip file, Fedlet-7.3.0.zip , delivered with the

AM installation, into a local directory.

127.0.0.1 localhost am.example.com ig.example.com

app.example.com sp.example.com

The SAML library component validates the SP’s AssertionConsumerService

Location against the incoming IDP SAML Assertion, based on the request

information, including the port. In sp.xml , always specify the port in the

Location value of AssertionConsumerService , even when using defaults

of 443 or 80, as follows:

NOTE

<AssertionConsumerService isDefault="true"

index="0"

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="https://sp.example.com:443/fedletapplication" />

$ unzip $HOME/openam/Fedlet-7.3.0.zip

Archive: Fedlet-7.3.0.zip

creating: conf/

inflating: README

inflating: conf/FederationConfig.properties

inflating: conf/fedlet.cot-template

inflating: conf/idp-extended.xml-template

inflating: conf/sp-extended.xml-template

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-example-fedlet
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-multi-sps
https://backstage.forgerock.com/docs/am/7.3/saml2-guide/create-configure-fedlet.html

206 / 360

b. For AM 6.5.2 and earlier versions, add the following lines to

FederationConfig.properties :

c. In each file, search and replace the following properties:

Replace this With this

IDP_ENTITY_ID openam

FEDLET_ENTITY_ID sp

FEDLET_PROTOCOL://FEDLET_HOST

:FEDLET_PORT/FEDLET_DEPLOY_UR

I

http://sp.example.com:8080/sa

ml

fedletcot and FEDLET_COT Circle of Trust

sp.example.com:8080/saml/fedl

etapplication

sp.example.com:8080/saml/fedl

etapplication/metaAlias/sp

d. Save the files as .xml, without the -template extension, so that the

directory looks like this:

By default, AM as an IDP uses the NameID format

urn:oasis:names:tc:SAML:2.0:nameid-format:transient to

communicate about a user. For information about using a different NameID

format, refer to Use a Non-Transient NameID Format.

inflating: conf/sp.xml-template

inflating: fedlet.war

Specifies implementation for

#

org.forgerock.openam.federation.plugin.rooturl.RootUrlP

rovider interface.

This property defines the default base url provider.

com.sun.identity.plugin.root.url.class.default=org.forg

erock.openam.federation.plugin.rooturl.impl.FedletRootU

rlProvider

conf

├── FederationConfig.properties

├── fedlet.cot

├── idp-extended.xml

├── sp-extended.xml

└── sp.xml

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-nameidformat

207 / 360

3. Set up AM:

a. Select  Identities, select the user demo , and change the last name to

Ch4ng31t . Note that, for this example, the last name must be the same as

the password.

b. Select Applications > Federation > Circles of Trust, and add a circle of

trust called Circle of Trust , with the default settings.

c. Set up a remote service provider:

i. Select Applications > Federation > Entity Providers, and add a

remote entity provider.

ii. Drag in or import sp.xml created in the previous step.

iii. Select Circles of Trust: Circle of Trust .

d. Set up a hosted identity provider:

i. Select Applications > Federation > Entity Providers, and add a

hosted entity provider with the following values:

Entity ID: openam

Entity Provider Base URL:

http://am.example.com:8088/openam

Identity Provider Meta Alias: idp

Circles of Trust: Circle of Trust

ii. Select Assertion Processing > Attribute Mapper, map the following

SAML attribute keys and values, and then save your changes:

SAML Attribute: cn , Local Attribute: cn

SAML Attribute: sn , Local Attribute: sn

iii. In a terminal, export the XML-based metadata for the IDP:

The idp.xml file is created locally.

4. Set up IG:

a. Copy the edited fedlet files, and the exported idp.xml file into the IG

configuration, at $HOME/.openig/SAML .

$ curl -v \

--output idp.xml \

"http://am.example.com:8088/openam/saml2/jsp/export

metadata.jsp?entityid=openam"

$ ls -l $HOME/.openig/SAML

FederationConfig.properties

208 / 360

b. In config.json , comment out or remove the baseURI :

Requests to the SamlFederationHandler must not be rebased, because the

request URI must match the endpoint in the SAML metadata.

c. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

d. Add the following route to IG:

1. Linux

2. Windows

fedlet.cot

idp-extended.xml

idp.xml

sp-extended.xml

sp.xml

{

"handler": {

"_baseURI": "http://app.example.com:8081",

...

}

}

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/saml.json

%appdata%\OpenIG\config\routes\saml.json

209 / 360

Notice the following features of the route:

The route matches requests to /saml .

After authentication, the SamlFederationHandler extracts cn and sn

from the SAML assertion, and maps them to the SessionContext, at

session.username and session.password .

The handler stores the subject name as a string in the session field

session.sp-subject-name , which is named by the subjectMapping

property. By default, the subject name is stored in the session field

session.subjectName .

The handler redirects the request to the /federate route.

The route uses the JwtSession implementation, meaning it stores

encrypted session information in a browser cookie. The name is a

reference to the JwtSession object defined in config.json . For

information, see JwtSession.

e. Add the following route to IG:

1. Linux

2. Windows

{

"name": "saml",

"condition": "${find(request.uri.path, '^/saml')}",

"session": "JwtSession",

"handler": {

"type": "SamlFederationHandler",

"config": {

"useOriginalUri": true,

"assertionMapping": {

"username": "cn",

"password": "sn"

},

"subjectMapping": "sp-subject-name",

"redirectURI": "/home/federate"

}

}

}

$HOME/.openig/config/routes/federate.json

%appdata%\OpenIG\config\routes\federate.json

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession

210 / 360

{

"name": "federate",

"condition": "${find(request.uri.path,

'^/home/federate')}",

"session": "JwtSession",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${empty session.username}",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 302,

"headers": {

"Location": [

"http://sp.example.com:8080/saml/SPInitiatedSSO?

metaAlias=/sp"

]

}

}

}

},

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-username":

["${session.username[0]}"],

"x-password":

["${session.password[0]}"]

}

}

}

],

"handler": "ReverseProxyHandler"

211 / 360

Notice the following features of the route:

The route matches requests to /home/federate .

If the user is not authenticated with AM, the username is not populated

in the context. The DispatchHandler then dispatches the request to the

StaticResponseHandler, which redirects it to the SP-initiated SSO

endpoint.

If the credentials are in the context, or after successful authentication,

the DispatchHandler dispatches the request to the Chain.

The HeaderFilter adds headers for the first value for the username and

password attributes of the SAML assertion.

The route uses the JwtSession implementation, meaning it stores

encrypted session information in a browser cookie. The name is a

reference to the JwtSession object defined in config.json . For

information, see JwtSession.

f. Restart IG.

5. Test the setup:

a. Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

b. Log in to AM with username demo and password Ch4ng31t .

IG returns the response page showing that the the demo user has logged in.

}

}

}

]

}

}

}





TIP

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://ig.example.com:8080/home/federate

212 / 360

1. Set up the example in saml.adoc#federation-installation.

2. Set up the SAML keystore:

a. Find the values of AM’s default SAML keypass and storepass:

b. Copy the SAML keystore from the AM configuration to IG:

3. Configure the Fedlet in IG:

a. In FederationConfig.properties , make the following changes:

For more control over the URL where the user agent is redirected, use the

RelayState query string parameter in the URL of the redirect Location

header. RelayState specifies where to redirect the user when the SAML 2.0

web browser SSO process is complete. It overrides the redirectURI set in the

SamlFederationHandler.

The RelayState value must be URL-encoded. When using an expression, use a

function to encode the value. For example, use

${urlEncodeQueryParameterNameOrValue(contexts.router.originalUri)} .

In the following example, the user is finally redirected to the original URI from

the request:

TIP

"headers": {

"Location": [

"http://ig.example.com:8080/saml/SPInitiatedSSO?

RelayState=${urlEncodeQueryParameterNameOrValue(contexts.router.o

riginalUri)}"

]

}

Set up federation with signed/encrypted assertions

$ more /path/to/am/security/secrets/default/.keypass

$ more /path/to/am/security/secrets/default/.storepass

$ cp /path/to/am/security/keystores/keystore.jceks

/path/to/ig/keystore.jceks

Legacy keystore types such as JKS and JCEKS are supported but are not

secure. Consider using the PKCS#12 keystore type.

WARNING

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-installation

213 / 360

i. Delete the following lines:

com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/securit

y/keystores/keystore.jks

com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.store

pass

com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass

com.sun.identity.saml.xmlsig.certalias=test

com.sun.identity.saml.xmlsig.storetype=JKS

am.encryption.pwd=@AM_ENC_PWD@

ii. Add the following line:

org.forgerock.openam.saml2.credential.resolver.class=org.for

gerock.openig.handler.saml.SecretsSaml2CredentialResolver

This class is responsible for resolving secrets and supplying

credentials.

b. In sp.xml , make the following changes:

i. Change AuthnRequestsSigned="false" to

AuthnRequestsSigned="true" .

ii. Add the following KeyDescriptor just before </SPSSODescriptor>

iii. Copy the value of the signing certificate from idp.xml to this file:

Be sure to leave no space at the end of the line.

TIP

<KeyDescriptor use="signing">

<ds:KeyInfo

xmlns:ds="http://www.w3.org/2000/09/xmldsig#" >

<ds:X509Data>

<ds:X509Certificate>

</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

</SPSSODescriptor>

<KeyDescriptor use="signing">

<ds:KeyInfo>

<ds:X509Data>

214 / 360

This is the public key used for signing so that the IDP can verify request

signatures.

4. Replace the remote service provider in AM:

a. Select Applications > Federation > Entity Providers, and remove the

sp entity provider.

b. Drag in or import the new sp.xml updated in the previous step.

c. Select Circles of Trust: Circle of Trust .

5. Set up IG:

a. In the IG configuration, set environment variables for the following secrets,

and then restart IG:

The passwords are retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Remove saml.json from the configuration, and add the following route,

replacing the path to keystore.jceks with your path:

1. Linux

2. Windows

<ds:X509Certificate>

MII...zA6

</ds:X509Certificate>

$ export KEYSTORE_SECRET_ID='a2V5c3RvcmU='

$ export SAML_KEYSTORE_STOREPASS_SECRET_ID='<base64-

encoded value of the SAML storepass>'

$ export SAML_KEYSTORE_KEYPASS_SECRET_ID='<base64-

encoded value of the SAML keypass>'

$HOME/.openig/config/routes/saml-secure.json

%appdata%\OpenIG\config\routes\saml-secure.json

{

"name": "saml-secure",

"condition": "${find(request.uri.path, '^/saml')}",

"session": "JwtSession",

"heap": [

215 / 360

Notice the following features of the route compared to saml.json :

The SamlFederationHandler refers to the KeyStoreSecretStore to

provide the keys for the signed and encrypted SAML assertions.

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "KeyStoreSecretStore-1",

"type" : "KeyStoreSecretStore",

"config" : {

"file" : "/path/to/ig/keystore.jceks",

"storeType" : "jceks",

"storePasswordSecretId" :

"saml.keystore.storepass.secret.id",

"entryPasswordSecretId" :

"saml.keystore.keypass.secret.id",

"secretsProvider" : "SystemAndEnvSecretStore-

1",

"mappings" : [{

"secretId" : "sp.signing.sp",

"aliases" : ["rsajwtsigningkey"]

}, {

"secretId" : "sp.decryption.sp",

"aliases" : ["test"]

}]

}

}

],

"handler": {

"type": "SamlFederationHandler",

"config": {

"useOriginalUri": true,

"assertionMapping": {

"username": "cn",

"password": "sn"

},

"subjectMapping": "sp-subject-name",

"redirectURI": "/home/federate",

"secretsProvider" : "KeyStoreSecretStore-1"

}

}

}

216 / 360

The secret IDs, sp.signing.sp and sp.decryption.sp , follow a

naming convention based on the name of the service provider, sp .

The alias for the signing key corresponds to the PEM in

keystore.jceks .

c. Restart IG.

6. Test the setup:

a. Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

b. Log in to AM with username demo and password Ch4ng31t .

IG returns the response page showing that the the demo user has logged in.

By default, AM as an IDP uses the NameID format

urn:oasis:names:tc:SAML:2.0:nameid-format:transient . For more information, refer

to Hosted identity provider configuration properties in AM’s SAML v2.0 guide.

When the IDP uses another NameID format, configure IG to use that NameID format by

editing the Fedlet configuration file sp-extended.xml :

To use the NameID value provided by the IDP, add the following attribute:

To use an attribute from the assertion, add the following attribute:

This example uses the value in SN to identify the subject.

Although IG supports the persistent NameID format, IG does not store the mapping. To

configure this behavior, edit the file sp-extended.xml :

To disable attempts to persist the user mapping, add the following attribute:





Use a non-transient NameID format

<Attribute name="useNameIDAsSPUserID">

<Value>true</Value>

</Attribute>

<Attribute name="autofedEnabled">

<Value>true</Value>

</Attribute>

<Attribute name="autofedAttribute">

<Value>sn</Value>

</Attribute>

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://ig.example.com:8080/home/federate
https://backstage.forgerock.com/docs/am/7.3/saml2-guide/saml2-reference.html#sec-saml2-hosted-idp-configuration

217 / 360

To enable attempts to persist the user mapping, add the following attribute:

If a login request doesn’t contain a NameID format query parameter, the value is defined

by the presence and content of the NameID format list for the SP and IDP. For example,

an SP-initiated login can be constructed with the binding and NameIDFormat as a

parameter, as follows:

When the NameID format is provided in a list, it is resolved as follows:

If both the IDP and SP have a list, the first matching NameID format in the lists.

If either the IDP or SP list is empty, the first NameID format in the other list.

If neither the IDP nor SP has a list, then AM defaults to transient , and IG defaults to

persistent .

File Description

FederationConfig.properties Fedlet properties

fedlet.cot Circle of trust for IG and the IDP

idp.xml Standard metadata for the IDP

idp-extended.xml Metadata extensions for the IDP

sp.xml Standard metadata for the IG SP

sp-extended.xml Metadata extensions for the IG SP

FederationConfig.properties

<Attribute name="spDoNotWriteFederationInfo">

<Value>true</Value>

</Attribute>

<Attribute name="spDoNotWriteFederationInfo">

<Value>false</Value>

</Attribute>

http://fedlet.example.org:7070/fedlet/SPInitiatedSSO?

binding=urn:oasis:names:tc:SAML:2.0:bindings:HTTP-

POST&NameIDFormat=urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified

Example fedlet files

218 / 360

The following example of $HOME/.openig/SAML/FederationConfig.properties

defines the fedlet properties:

#

DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

#

Copyright (c) 2006 Sun Microsystems Inc. All Rights Reserved

#

The contents of this file are subject to the terms

of the Common Development and Distribution License

(the License). You may not use this file except in

compliance with the License.

#

You can obtain a copy of the License at

https://opensso.dev.java.net/public/CDDLv1.0.html or

opensso/legal/CDDLv1.0.txt

See the License for the specific language governing

permission and limitations under the License.

#

When distributing Covered Code, include this CDDL

Header Notice in each file and include the License file

at opensso/legal/CDDLv1.0.txt.

If applicable, add the following below the CDDL Header,

with the fields enclosed by brackets [] replaced by

your own identifying information:

"Portions Copyrighted [year] [name of copyright owner]"

#

$Id: FederationConfig.properties,v 1.21 2010/01/08 22:41:28

exu Exp $

#

Portions Copyright 2016-2023 ForgeRock AS.

If a component wants to use a different datastore provider

than the

default one defined above, it can define a property like

follows:

com.sun.identity.plugin.datastore.class.<componentName>=

<provider class>

com.sun.identity.plugin.configuration.class specifies

implementation for

com.sun.identity.plugin.configuration.ConfigurationInstance

interface.

com.sun.identity.plugin.configuration.class=com.sun.identity.p

219 / 360

lugin.configuration.impl.FedletConfigurationImpl

Specifies implementation for

com.sun.identity.plugin.datastore.DataStoreProvider

interface.

This property defines the default datastore provider.

com.sun.identity.plugin.datastore.class.default=com.sun.identi

ty.plugin.datastore.impl.FedletDataStoreProvider

Specifies implementation for

#

org.forgerock.openam.federation.plugin.rooturl.RootUrlProvider

interface.

This property defines the default base url provider.

com.sun.identity.plugin.root.url.class.default=org.forgerock.o

penam.federation.plugin.rooturl.impl.FedletRootUrlProvider

com.sun.identity.plugin.log.class specifies implementation

for

com.sun.identity.plugin.log.Logger interface.

com.sun.identity.plugin.log.class=com.sun.identity.plugin.log.

impl.FedletLogger

com.sun.identity.plugin.session.class specifies

implementation for

com.sun.identity.plugin.session.SessionProvider interface.

com.sun.identity.plugin.session.class=com.sun.identity.plugin.

session.impl.FedletSessionProvider

com.sun.identity.plugin.monitoring.agent.class specifies

implementation for

com.sun.identity.plugin.monitoring.FedMonAgent interface.

com.sun.identity.plugin.monitoring.agent.class=com.sun.identit

y.plugin.monitoring.impl.FedletAgentProvider

com.sun.identity.plugin.monitoring.saml2.class specifies

implementation for

com.sun.identity.plugin.monitoring.FedMonSAML2Svc interface.

com.sun.identity.plugin.monitoring.saml2.class=com.sun.identit

y.plugin.monitoring.impl.FedletMonSAML2SvcProvider

com.sun.identity.saml.xmlsig.keyprovider.class specified the

implementation

class for com.sun.identity.saml.xmlsig.KeyProvider interface

com.sun.identity.saml.xmlsig.keyprovider.class=com.sun.identit

220 / 360

y.saml.xmlsig.JKSKeyProvider

com.sun.identity.saml.xmlsig.signatureprovider.class

specified the

implementation class for

com.sun.identity.saml.xmlsig.SignatureProvider

interface

com.sun.identity.saml.xmlsig.signatureprovider.class=com.sun.i

dentity.saml.xmlsig.AMSignatureProvider

com.iplanet.am.server.protocol=http

com.iplanet.am.server.host=am.example.com

com.iplanet.am.server.port=8080

com.iplanet.am.services.deploymentDescriptor=/openam

com.iplanet.am.logstatus=ACTIVE

Name of the webcontainer.

Even though the servlet/JSP are web container independent,

Access/Federation Manager uses servlet 2.3 API

request.setCharacterEncoding()

to decode incoming non English characters. These APIs will

not work if

Access/Federation Manager is deployed on Sun Java System Web

Server 6.1.

We use gx_charset mechanism to correctly decode incoming

data in

Sun Java System Web Server 6.1 and S1AS7.0. Possible values

are BEA6.1, BEA 8.1, IBM5.1 or IAS7.0.

If the web container is Sun Java System Webserver, the tag

is not replaced.

com.sun.identity.webcontainer=WEB_CONTAINER

Identify saml xml signature keystore file, keystore password

file

key password file

com.sun.identity.saml.xmlsig.keystore=%BASE_DIR%/security/keys

tores/keystore.jks

com.sun.identity.saml.xmlsig.storepass=%BASE_DIR%/.storepass

com.sun.identity.saml.xmlsig.keypass=%BASE_DIR%/.keypass

com.sun.identity.saml.xmlsig.certalias=test

Type of keystore used for saml xml signature. Default is

JKS.

#

com.sun.identity.saml.xmlsig.storetype=JKS

221 / 360

Specifies the implementation class for

com.sun.identity.saml.xmlsig.PasswordDecoder interface.

com.sun.identity.saml.xmlsig.passwordDecoder=com.sun.identity.

fedlet.FedletEncodeDecode

The following key is used to specify the maximum content-

length

for an HttpRequest that will be accepted by the OpenSSO

The default value is 16384 which is 16k

com.iplanet.services.comm.server.pllrequest.maxContentLength=1

6384

The following keys are used to configure the Debug service.

Possible values for the key 'level' are: off | error |

warning | message.

The key 'directory' specifies the output directory where the

debug files

will be created.

Trailing spaces are significant.

Windows: Use forward slashes "/" separate directories, not

backslash "\".

Windows: Spaces in the file name are allowed for Windows.

#

com.iplanet.services.debug.level=message

com.iplanet.services.debug.directory=%BASE_DIR%%SERVER_URI%/de

bug

The following keys are used to configure the Stats service.

Possible values for the key 'level' are: off | file |

console

Stats state 'file' will write to a file under the specified

directory,

and 'console' will write into webserver log files

The key 'directory' specifies the output directory where the

debug files

will be created.

Trailing spaces are significant.

Windows: Use forward slashes "/" separate directories, not

backslash "\".

Windows: Spaces in the file name are allowed for Windows.

Stats interval should be atleast 5 secs to avoid CPU

saturation,

the product would assume any thing less than 5 secs is 5

secs.

222 / 360

fedlet.cot

com.iplanet.am.stats.interval=60

com.iplanet.services.stats.state=file

com.iplanet.services.stats.directory=%BASE_DIR%/var/stats

The key that will be used to encrypt and decrypt passwords.

am.encryption.pwd=@AM_ENC_PWD@

SecureRandom Properties: The key

"com.iplanet.security.SecureRandomFactoryImpl"

specifies the factory class name for SecureRandomFactory

Available impl classes are:

com.iplanet.am.util.JSSSecureRandomFactoryImpl (uses JSS)

com.iplanet.am.util.SecureRandomFactoryImpl (pure Java)

com.iplanet.security.SecureRandomFactoryImpl=com.iplanet.am.ut

il.SecureRandomFactoryImpl

SocketFactory properties: The key

"com.iplanet.security.SSLSocketFactoryImpl"

specifies the factory class name for LDAPSocketFactory

Available classes are:

com.iplanet.services.ldap.JSSSocketFactory (uses JSS)

com.sun.identity.shared.ldap.factory.JSSESocketFactory

(pure Java)

com.iplanet.security.SSLSocketFactoryImpl=com.sun.identity.sha

red.ldap.factory.JSSESocketFactory

Encryption: The key "com.iplanet.security.encryptor"

specifies

the encrypting class implementation.

Available classes are:

com.iplanet.services.util.JCEEncryption

com.iplanet.services.util.JSSEncryption

com.iplanet.security.encryptor=com.iplanet.services.util.JCEEn

cryption

Determines if JSS will be added with highest priority to JCE

Set this to "true" if other JCE providers should be used for

digial signatures and encryptions.

com.sun.identity.jss.donotInstallAtHighestPriority=true

Configuration File (serverconfig.xml) Location

com.iplanet.services.configpath=@BASE_DIR@

223 / 360

The following example of $HOME/.openig/SAML/fedlet.cot defines a circle of trust

between AM as the IDP, and IG as the SP:

idp.xml

The following example of $HOME/.openig/SAML/idp.xml defines a SAML

configuration file for the AM IDP, idp :

cot-name=Circle of Trust

sun-fm-cot-status=Active

sun-fm-trusted-providers=openam, sp

sun-fm-saml2-readerservice-url=

sun-fm-saml2-writerservice-url=

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<EntityDescriptor entityID="openam"

xmlns="urn:oasis:names:tc:SAML:2.0:metadata"

xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"

xmlns:mdattr="urn:oasis:names:tc:SAML:metadata:attribute"

xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"

xmlns:xenc="http://www.w3.org/2001/04/xmlenc#"

xmlns:xenc11="http://www.w3.org/2009/xmlenc11#"

xmlns:alg="urn:oasis:names:tc:SAML:metadata:algsupport"

xmlns:x509qry="urn:oasis:names:tc:SAML:metadata:X509:query"

xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<IDPSSODescriptor

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protoc

ol">

<KeyDescriptor use="signing">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>

...

</ds:X509Certificate>

</ds:X509Data>

</ds:KeyInfo>

</KeyDescriptor>

<KeyDescriptor use="encryption">

<ds:KeyInfo>

<ds:X509Data>

<ds:X509Certificate>

...

</ds:X509Certificate>

224 / 360

</ds:X509Data>

</ds:KeyInfo>

<EncryptionMethod

Algorithm="http://www.w3.org/2009/xmlenc11#rsa-oaep">

<ds:DigestMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#sha256"/>

<xenc11:MGF

Algorithm="http://www.w3.org/2009/xmlenc11#mgf1sha256"/>

</EncryptionMethod>

<EncryptionMethod

Algorithm="http://www.w3.org/2001/04/xmlenc#aes128-cbc">

<xenc:KeySize>128</xenc:KeySize>

</EncryptionMethod>

</KeyDescriptor>

<ArtifactResolutionService index="0"

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/ArtifactResolver/m

etaAlias/idp"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://am.example.com:8088/openam/IDPSloRedirect/met

aAlias/idp"

ResponseLocation="http://am.example.com:8088/openam/IDPSloRedi

rect/metaAlias/idp"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://am.example.com:8088/openam/IDPSloPOST/metaAli

as/idp"

ResponseLocation="http://am.example.com:8088/openam/IDPSloPOST

/metaAlias/idp"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/IDPSloSoap/metaAli

as/idp"/>

<ManageNameIDService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://am.example.com:8088/openam/IDPMniRedirect/met

aAlias/idp"

ResponseLocation="http://am.example.com:8088/openam/IDPMniRedi

rect/metaAlias/idp"/>

<ManageNameIDService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://am.example.com:8088/openam/IDPMniPOST/metaAli

as/idp"

ResponseLocation="http://am.example.com:8088/openam/IDPMniPOST

225 / 360

/metaAlias/idp"/>

<ManageNameIDService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/IDPMniSoap/metaAli

as/idp"/>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:persistent</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:transient</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:emailAddress</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:unspecified</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:WindowsDomainQualifiedName</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:kerberos</NameIDFormat>

<NameIDFormat>urn:oasis:names:tc:SAML:1.1:nameid-

format:X509SubjectName</NameIDFormat>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://am.example.com:8088/openam/SSORedirect/metaAl

ias/idp"/>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://am.example.com:8088/openam/SSOPOST/metaAlias/

idp"/>

<SingleSignOnService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/SSOSoap/metaAlias/

idp"/>

<NameIDMappingService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/NIMSoap/metaAlias/

idp"/>

<AssertionIDRequestService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://am.example.com:8088/openam/AIDReqSoap/IDPRole

/metaAlias/idp"/>

<AssertionIDRequestService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:URI"

Location="http://am.example.com:8088/openam/AIDReqUri/IDPRole/

metaAlias/idp"/>

</IDPSSODescriptor>

</EntityDescriptor>

226 / 360

idp-extended.xml

The following example of $HOME/.openig/SAML/idp-extended.xml defines an AM-

specific SAML descriptor file for the IDP:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<!--

DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights

Reserved

The contents of this file are subject to the terms

of the Common Development and Distribution License

(the License). You may not use this file except in

compliance with the License.

You can obtain a copy of the License at

https://opensso.dev.java.net/public/CDDLv1.0.html or

opensso/legal/CDDLv1.0.txt

See the License for the specific language governing

permission and limitations under the License.

When distributing Covered Code, include this CDDL

Header Notice in each file and include the License file

at opensso/legal/CDDLv1.0.txt.

If applicable, add the following below the CDDL Header,

with the fields enclosed by brackets [] replaced by

your own identifying information:

"Portions Copyrighted [year] [name of copyright owner]"

Portions Copyrighted 2010-2017 ForgeRock AS.

-->

<EntityConfig entityID="openam" hosted="0"

xmlns="urn:sun:fm:SAML:2.0:entityconfig">

<IDPSSOConfig>

<Attribute name="description">

<Value/>

</Attribute>

<Attribute name="cotlist">

<Value>Circle of Trust</Value>

</Attribute>

</IDPSSOConfig>

<AttributeAuthorityConfig>

227 / 360

sp.xml

The following example of $HOME/.openig/SAML/sp.xml defines a SAML

configuration file for the IG SP, sp .

<Attribute name="cotlist">

<Value>Circle of Trust</Value>

</Attribute>

</AttributeAuthorityConfig>

<XACMLPDPConfig>

<Attribute name="wantXACMLAuthzDecisionQuerySigned">

<Value></Value>

</Attribute>

<Attribute name="cotlist">

<Value>Circle of Trust</Value>

</Attribute>

</XACMLPDPConfig>

</EntityConfig>

The SAML library component validates the SP’s AssertionConsumerService

Location against the incoming IDP SAML Assertion, based on the request

information, including the port. Always specify the port in the Location value of

AssertionConsumerService , even when using defaults of 443 or 80, as

follows:

NOTE

<AssertionConsumerService isDefault="true"

index="0"

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="https://sp.example.com:443/fedletapplication" />

<!--

DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights

Reserved

The contents of this file are subject to the terms

of the Common Development and Distribution License

(the License). You may not use this file except in

compliance with the License.

228 / 360

You can obtain a copy of the License at

https://opensso.dev.java.net/public/CDDLv1.0.html or

opensso/legal/CDDLv1.0.txt

See the License for the specific language governing

permission and limitations under the License.

When distributing Covered Code, include this CDDL

Header Notice in each file and include the License file

at opensso/legal/CDDLv1.0.txt.

If applicable, add the following below the CDDL Header,

with the fields enclosed by brackets [] replaced by

your own identifying information:

"Portions Copyrighted [year] [name of copyright owner]"

Portions Copyrighted 2010-2017 ForgeRock AS.

-->

<EntityDescriptor entityID="sp"

xmlns="urn:oasis:names:tc:SAML:2.0:metadata">

<SPSSODescriptor AuthnRequestsSigned="false"

WantAssertionsSigned="false"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protoc

ol">

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Redirect"

Location="http://sp.example.com:8080/saml/fedletSloRedirect"

ResponseLocation="http://sp.example.com:8080/saml/fedletSloRed

irect"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://sp.example.com:8080/saml/fedletSloPOST"

ResponseLocation="http://sp.example.com:8080/saml/fedletSloPOS

T"/>

<SingleLogoutService

Binding="urn:oasis:names:tc:SAML:2.0:bindings:SOAP"

Location="http://sp.example.com:8080/saml/fedletSloSoap"/>

<NameIDFormat>urn:oasis:names:tc:SAML:2.0:nameid-

format:transient</NameIDFormat>

<AssertionConsumerService isDefault="true" index="0"

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-POST"

Location="http://sp.example.com:8080/saml/fedletapplication/me

taAlias/sp"/>

<AssertionConsumerService index="1"

Binding="urn:oasis:names:tc:SAML:2.0:bindings:HTTP-Artifact"

Location="http://sp.example.com:8080/saml/fedletapplication/me

taAlias/sp"/>

229 / 360

sp-extended.xml

The following example of $HOME/.openig/SAML/sp-extended.xml defines an AM-

specific SAML descriptor file for the SP:

</SPSSODescriptor>

<RoleDescriptor

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:query="urn:oasis:names:tc:SAML:metadata:ext:query"

xsi:type="query:AttributeQueryDescriptorType"

protocolSupportEnumeration=

"urn:oasis:names:tc:SAML:2.0:protocol">

</RoleDescriptor>

<XACMLAuthzDecisionQueryDescriptor

WantAssertionsSigned="false"

protocolSupportEnumeration="urn:oasis:names:tc:SAML:2.0:protoc

ol">

</XACMLAuthzDecisionQueryDescriptor>

</EntityDescriptor>

<!--

DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS HEADER.

Copyright (c) 2002-2010 Sun Microsystems Inc. All Rights

Reserved

The contents of this file are subject to the terms

of the Common Development and Distribution License

(the License). You may not use this file except in

compliance with the License.

You can obtain a copy of the License at

https://opensso.dev.java.net/public/CDDLv1.0.html or

opensso/legal/CDDLv1.0.txt

See the License for the specific language governing

permission and limitations under the License.

When distributing Covered Code, include this CDDL

Header Notice in each file and include the License file

at opensso/legal/CDDLv1.0.txt.

If applicable, add the following below the CDDL Header,

with the fields enclosed by brackets [] replaced by

your own identifying information:

"Portions Copyrighted [year] [name of copyright owner]"

230 / 360

Portions Copyrighted 2010-2017 ForgeRock AS.

-->

<EntityConfig xmlns="urn:sun:fm:SAML:2.0:entityconfig"

xmlns:fm="urn:sun:fm:SAML:2.0:entityconfig" hosted="1"

entityID="sp">

<SPSSOConfig metaAlias="/sp">

<Attribute name="description">

<Value></Value>

</Attribute>

<Attribute name="signingCertAlias">

<Value></Value>

</Attribute>

<Attribute name="encryptionCertAlias">

<Value></Value>

</Attribute>

<Attribute name="basicAuthOn">

<Value>false</Value>

</Attribute>

<Attribute name="basicAuthUser">

<Value></Value>

</Attribute>

<Attribute name="basicAuthPassword">

<Value></Value>

</Attribute>

<Attribute name="autofedEnabled">

<Value>false</Value>

</Attribute>

<Attribute name="autofedAttribute">

<Value></Value>

</Attribute>

<Attribute name="transientUser">

<Value>anonymous</Value>

</Attribute>

<Attribute name="spAdapter">

<Value></Value>

</Attribute>

<Attribute name="spAdapterEnv">

<Value></Value>

</Attribute>

<Attribute name="fedletAdapter">

<Value></Value>

</Attribute>

<Attribute name="fedletAdapterEnv">

<Value></Value>

231 / 360

</Attribute>

<Attribute name="spAccountMapper">

<Value>com.sun.identity.saml2.plugins.DefaultLibrarySPAccountM

apper</Value>

</Attribute>

<Attribute name="spAttributeMapper">

<Value>com.sun.identity.saml2.plugins.DefaultSPAttributeMapper

</Value>

</Attribute>

<Attribute name="spAuthncontextMapper">

<Value>com.sun.identity.saml2.plugins.DefaultSPAuthnContextMap

per</Value>

</Attribute>

<Attribute name="spAuthncontextClassrefMapping">

<Value>urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtecte

dTransport|0|default</Value>

</Attribute>

<Attribute name="spAuthncontextComparisonType">

<Value>exact</Value>

</Attribute>

<Attribute name="attributeMap">

<Value>*=*</Value>

</Attribute>

<Attribute name="saml2AuthModuleName">

<Value></Value>

</Attribute>

<Attribute name="localAuthURL">

<Value></Value>

</Attribute>

<Attribute name="intermediateUrl">

<Value></Value>

</Attribute>

<Attribute name="defaultRelayState">

<Value></Value>

</Attribute>

<Attribute name="appLogoutUrl">

<Value>http://sp.example.com:8080/saml/logout</Value>

</Attribute>

<Attribute name="assertionTimeSkew">

<Value>300</Value>

232 / 360

</Attribute>

<Attribute name="wantAttributeEncrypted">

<Value></Value>

</Attribute>

<Attribute name="wantAssertionEncrypted">

<Value></Value>

</Attribute>

<Attribute name="wantNameIDEncrypted">

<Value></Value>

</Attribute>

<Attribute name="wantPOSTResponseSigned">

<Value></Value>

</Attribute>

<Attribute name="wantArtifactResponseSigned">

<Value></Value>

</Attribute>

<Attribute name="wantLogoutRequestSigned">

<Value></Value>

</Attribute>

<Attribute name="wantLogoutResponseSigned">

<Value></Value>

</Attribute>

<Attribute name="wantMNIRequestSigned">

<Value></Value>

</Attribute>

<Attribute name="wantMNIResponseSigned">

<Value></Value>

</Attribute>

<Attribute name="cotlist">

<Value>Circle of Trust</Value></Attribute>

<Attribute name="saeAppSecretList">

</Attribute>

<Attribute name="saeSPUrl">

<Value></Value>

</Attribute>

<Attribute name="saeSPLogoutUrl">

</Attribute>

<Attribute name="ECPRequestIDPListFinderImpl">

<Value>com.sun.identity.saml2.plugins.ECPIDPFinder</Value>

</Attribute>

<Attribute name="ECPRequestIDPList">

<Value></Value>

</Attribute>

<Attribute name="enableIDPProxy">

233 / 360

<Value>false</Value>

</Attribute>

<Attribute name="idpProxyList">

<Value></Value>

</Attribute>

<Attribute name="idpProxyCount">

<Value>0</Value>

</Attribute>

<Attribute name="useIntroductionForIDPProxy">

<Value>false</Value>

</Attribute>

</SPSSOConfig>

<AttributeQueryConfig metaAlias="/attrQuery">

<Attribute name="signingCertAlias">

<Value></Value>

</Attribute>

<Attribute name="encryptionCertAlias">

<Value></Value>

</Attribute>

<Attribute name="wantNameIDEncrypted">

<Value></Value>

</Attribute>

<Attribute name="cotlist">

<Value>Circle of Trust</Value>

</Attribute>

</AttributeQueryConfig>

<XACMLAuthzDecisionQueryConfig metaAlias="/pep">

<Attribute name="signingCertAlias">

<Value></Value>

</Attribute>

<Attribute name="encryptionCertAlias">

<Value></Value>

</Attribute>

<Attribute name="basicAuthOn">

<Value>false</Value>

</Attribute>

<Attribute name="basicAuthUser">

<Value></Value>

</Attribute>

<Attribute name="basicAuthPassword">

<Value></Value>

</Attribute>

<Attribute

name="wantXACMLAuthzDecisionResponseSigned">

<Value></Value>

234 / 360

The chapter extends the example in SAML with the service provider sp , to add a second

service provider.

The new service provider has entity ID sp2 and runs on the host sp2.example.com . To

prevent unwanted behavior, the service providers must have different values.

1. Add sp2.example.com to your /etc/hosts file:

2. In IG, configure the service provider files for sp2 , using the files you created in

Configure a Java Fedlet::

a. In fedlet.cot , add sp2 to the list of sun-fm-trusted-providers:

b. Copy sp.xml to sp2.xml , and copy sp-extended.xml to sp2-

extended.xml .

c. In both files, search and replace the following strings:

entityID=sp : replace with entityID=sp2

sp.example.com : replace with sp2.example.com

metaAlias=/sp : replace with metaAlias=/sp2

/metaAlias/sp : replace with /metaAlias/sp2

</Attribute>

<Attribute name="wantAssertionEncrypted">

<Value></Value>

</Attribute>

<Attribute name="cotlist">

<Value>Circle of Trust</Value>

</Attribute>

</XACMLAuthzDecisionQueryConfig>

</EntityConfig>

SAML 2.0 and multiple applications

127.0.0.1 localhost am.example.com ig.example.com

app.example.com sp.example.com sp2.example.com

cot-name=Circle of Trust

sun-fm-cot-status=Active

sun-fm-trusted-providers=openam, sp, sp2

sun-fm-saml2-readerservice-url=

sun-fm-saml2-writerservice-url=

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#proc-federation-conf-fedlet

235 / 360

d. Restart IG.

3. In AM, set up a remote service provider for sp2 , as described in Set up

federation with unsigned/unencrypted assertions:

a. Select Applications > Federation > Entity Providers.

b. Drag in or import sp2.xml created in the previous step.

c. Select Circles of Trust: Circle of Trust .

4. Add the following routes to IG:

1. Linux

2. Windows

1. Linux

2. Windows

$HOME/.openig/config/routes/saml-sp2.json

%appdata%\OpenIG\config\routes\saml-sp2.json

{

"name": "saml-sp2",

"condition": "${find(request.uri.host,

'sp2.example.com') and find(request.uri.path, '^/saml')}",

"handler": {

"type": "SamlFederationHandler",

"config": {

"comment": "Use unique session properties for this

SP.",

"useOriginalUri": true,

"assertionMapping": {

"sp2Username": "cn",

"sp2Password": "sn"

},

"authnContext": "sp2AuthnContext",

"sessionIndexMapping": "sp2SessionIndex",

"subjectMapping": "sp2SubjectName",

"redirectURI": "/sp2"

}

}

}

$HOME/.openig/config/routes/federate-sp2.json

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html#federation-installation

236 / 360

%appdata%\OpenIG\config\routes\federate-sp2.json

{

"name": "federate-sp2",

"condition": "${find(request.uri.host,

'sp2.example.com') and not find(request.uri.path,

'^/saml')}",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${empty session.sp2Username}",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 302,

"headers": {

"Location": [

"http://sp2.example.com:8080/saml/SPInitiatedSSO?

metaAlias=/sp2"

]

}

}

}

},

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"x-username":

["${session.sp2Username[0]}"],

"x-password":

["${session.sp2Password[0]}"]

}

}

237 / 360

5. Test the setup:

a. Log out of AM, and test the setup with the following links:

IDP-initiated SSO

SP-initiated SSO

b. Log in to AM with username demo and password Ch4ng31t .

IG returns the response page showing that the user has logged in.

This chapter builds on the example in OpenID Connect to transform OpenID Connect ID

tokens into SAML 2.0 assertions.

Many enterprises use existing or legacy, SAML 2.0-based SSO, but many mobile and

social applications are managed by OpenID Connect. Use the IG

TokenTransformationFilter to bridge the gap between OpenID Connect and SAML 2.0

frameworks.

The following figure illustrates the data flow:

}

],

"handler": "ReverseProxyHandler"

}

}

}

]

}

}

}





Token transformation

Transform OpenID Connect ID tokens into SAML assertions

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp2
http://sp2.example.com:8080/home/federate
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html

238 / 360

AM

ig.example.com/id_tokenBrowser

STS RESTOAuth 2.0/OIDC

Application

2

1

3 54

6

1. A user tries to access to a protected resource.

2. If the user is not authenticated, the AuthorizationCodeOAuth2ClientFilter redirects

the request to AM. After authentication, AM asks for the user’s consent to give IG

access to private information.

3. If the user consents, AM returns an id_token to the

AuthorizationCodeOAuth2ClientFilter. The filter opens the id_token JWT and makes it

available in attributes.openid .id_token and

attributes.openid.id_token_claims for downstream filters.

4. The TokenTransformationFilter calls the AM STS to transform the id_token into a

SAML 2.0 assertion.

5. The STS validates the signature, decodes the payload, and verifies that the user

issued the transaction. The STS then issues a SAML assertion to IG on behalf of the

user.

6. The TokenTransformationFilter makes the result of the token transformation

available to downstream handlers in the issuedToken property of the

${contexts.sts} context.

The following sequence diagram shows a more detailed view of the flow:

239 / 360

IG relying party AM identity provider

User agent

User agent

AuthorizationCodeOAuth2ClientFilter

AuthorizationCodeOAuth2ClientFilter

TokenTransformationFilter

TokenTransformationFilter

Authorization Server

Authorization Server

User info end point

User info end point

STS

STS

OpenID Connect authorization flow

1 Request to access to route.

2 Redirect for authorization.

3 Request authorization.

4
User agent
not authenticated

5 Request authentication.

6 Provide authentication.

7 Request consent to share private information with IG.

8 Give consent.

9 Redirect request and include authorization code.

1 0 Redirect authorization code.

1 1 Exchange authorizationcode for access token and id_token

1 2 Validate id_token.

1 3 Use access token to get other user info.

1 4 Return other user info.

1 5
Insert user info and tokens
into the request context.

1 6 Display id_token

Add the token transformation
fi lter to the route, and access
the route again.

Token transformation code flow for authenticated user agent

1 7 Request to access route.

1 8
Session valid
so forward request.

1 9 Provide id_token and request transformation into SAML assertion.

2 0 Transform id_token.

2 1 Return the SAML assertion.

2 2 Insert SAML assertion into the dedicated context.

2 3 Display id_token and SAML assertion.

1. Set up an AM Security Token Service (STS), where the subject confirmation

method is Bearer. For more information about setting up a REST STS instance,

see AM’s Security Token Service (STS) guide.

a. Set up AM as described in

Use AM As a single OpenID Connect provider

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

c. Create a Bearer Module:

i. In the top level realm, select  Authentication > Modules, and add a

module with the following values:

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

https://backstage.forgerock.com/docs/am/7.3/sts-guide/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

240 / 360

Module name : oidc

Type : OpenID Connect id_token bearer

ii. In the configuration page, enter the following values:

OpenID Connect validation configuration type : Client

Secret

OpenID Connect validation configuration value : password

This is the password of the OAuth 2.0/OpenID Connect client.

Client secret : password

Name of OpenID Connect ID Token Issuer :

http://am.example.com:8088/openam/oauth2

Audience name : oidc_client

This is the name of the OAuth 2.0/OpenID Connect client.

List of accepted authorized parties : oidc_client

Leave all other values as default, and save your settings.

d. Create an instance of STS REST.

i. In the top level realm, select STS, and add a Rest STS instance with the

following values:

Deployment URL Element : openig

This value identifies the STS instance and is used by the instance

parameter in the TokenTransformationFilter.

SAML2 Token

SAML2 issuer Id : OpenAM

Service Provider Entity Id : openig_sp

NameIdFormat : Select

urn:oasis:names:tc:SAML:2.0:nameid-format:transient

OpenID Connect Token

OpenID Connect Token Provider Issuer Id : oidc

Token signature algorithm : Enter a value that is consistent

with Use AM As a single OpenID Connect provider, for

example, HMAC SHA 256

Client Secret : password

For STS, it isn’t necessary to create a SAML SP configuration

in AM.

NOTE

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am

241 / 360

Issued Tokens Audience : oidc_client

ii. On the SAML 2 Token tab, add the following Attribute Mappings:

Key : userName , Value : uid

Key : password , Value : mail

e. Log out of AM.

2. Set up IG:

a. Set an environment variable for oidc_client and ig_agent , and then

restart IG:

b. Add the following route to IG:

1. Linux

2. Windows

$ export OIDC_SECRET_ID='cGFzc3dvcmQ='

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/50-idtoken.json

%appdata%\OpenIG\config\routes\50-idtoken.json

{

"name": "50-idtoken",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AuthenticatedRegistrationHandler-1",

"type": "Chain",

"config": {

"filters": [

{

"name":

"ClientSecretBasicAuthenticationFilter-1",

"type":

"ClientSecretBasicAuthenticationFilter",

242 / 360

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-

1",

"type":

"AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "An error occurred during the

243 / 360

OAuth2 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"authenticatedRegistrationHandler":

"AuthenticatedRegistrationHandler-1"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

},

{

"name": "TokenTransformationFilter-1",

"type": "TokenTransformationFilter",

"config": {

"idToken": "${attributes.openid.id_token}",

"instance": "openig",

"amService": "AmService-1"

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

244 / 360

For information about how to set up the IG route in Studio, refer to Token

transformation in Structured Editor.

Notice the following features of the route:

The route matches requests to /home/id_token .

The AmService in the heap is used for authentication and REST STS

requests.

The AuthorizationCodeOAuth2ClientFilter enables IG to act as an

OpenID Connect relying party:

The client endpoint is set to /home/id_token , so the service URIs

for this filter on the IG server are /home/id_token/login ,

/home/id_token/logout , and /home/id_token/callback .

For convenience in this test, requireHttps is false. In production

environments, set it to true. So that you see the delegated

authorization process when you make a request, requireLogin

is true.

The target for storing authorization state information is

${attributes.openid} . Subsequent filters and handlers can find

access tokens and user information at this target.

The ClientRegistration holds configuration provided in Use AM As a

single OpenID Connect provider, and used by IG to connect with AM.

The TokenTransformationFilter transforms an id_token into a SAML

assertion:

The id_token parameter defines where this filter gets the

id_token created by the AuthorizationCodeOAuth2ClientFilter .

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-

8"]

},

"entity": "

{\"id_token\":\n\"${attributes.openid.id_token}\"}

\n\n\n{\"saml_assertions\":\n\"${contexts.sts.issuedTok

en}\"}"

}

}

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-ttf-se
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am

245 / 360

The TokenTransformationFilter makes the result of the token

transformation available to downstream handlers in the

issuedToken property of the ${contexts.sts} context.

The instance parameter must match the Deployment URL

Element for the REST STS instance.

Errors that occur during token transformation cause an error

response to be returned to the client and an error message to be

logged for the IG administrator.

When the request succeeds, a StaticResponseHandler retrieves and

displays the id_token from the target

{attributes.openid.id_token} .

3. Test the setup:

a. Go to http://ig.example.com:8080/home/id_token .

The AM login screen is displayed.

b. Log in to AM as username demo , password Ch4ng31t .

An OpenID Connect request to access private information is displayed.

c. Select Allow.

The id_token and SAML assertions are displayed:

The following sections describe how to exchange an OAuth 2.0 access token for another

access token, with AM as an authorization server. Other authorization providers can be

used instead of AM.

Token exchange requires a subject token and provides an issued token. The subject token

is the original access token, obtained using the OAuth 2.0/OpenID Connect flow. The

issued token is provided in exchange for the subject token.

The token exchange can be conducted only by an OAuth 2.0 client that "may act" on the

subject token, as configured in the authorization service.



{"id_token": "eyA . . ."}

{"saml_assertions": "<\"saml:Assertion

xmlns:saml=\"urn:oasis:names:tc:SAML:2.0:assertion\"

Version= . . ."}

OAuth 2.0 token exchange

http://ig.example.com:8080/home/id_token

246 / 360

This example is a typical scenario for token impersonation. For more information, refer to

OAuth 2.0 token exchange in AM’s OAuth 2.0 guide.

The following sequence diagram shows the flow of information during token exchange

between IG and AM:

A M

User

User

Bank phone app

Bank phone app

IG

IG

Authorization service

Authorization service

Bank transfer service

Bank transfer service

Opens app

Redirects login request

Logs in user

Returns subject token with multiple scopes

Presents online banking page

Request to transfer money

Request to transfer money, including
subject token with multiple scopes

Exchange subject token for issued token,
with only the `transfer` scope

Issued token

Request to transfer money, including issued token

Response

Response

Response

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

1. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

Token Introspection: Realm Only

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



IMPORTANT

https://backstage.forgerock.com/docs/am/7.3/oauth2-guide/oauth2-token-exchange.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

247 / 360

c. Select Services > Add a Service, and add an OAuth2 Provider service

with the following values:

OAuth2 Access Token May Act Script : OAuth2 May Act Script

OAuth2 ID Token May Act Script : OAuth2 May Act Script

d. Select  Scripts# > OAuth2 May Act Script, and replace the example

script with the following script:

This script adds a may_act claim to the token, indicating that the OAuth 2.0

client, serviceConfidentialClient , may act to exchange the subject

token in the impersonation use case.

e. Add an OAuth 2.0 Client to request OAuth 2.0 access tokens:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : client-application

Client secret : password

Scope(s) : mail , employeenumber

ii. On the Advanced tab, select Grant Types : Resource Owner

Password Credentials .

f. Add an OAuth 2.0 client to perform the token exchange:

i. Select Applications > OAuth 2.0 > Clients, and add a client with the

following values:

Client ID : serviceConfidentialClient

Client secret : password

Scope(s) : mail , employeenumber

ii. On the Advanced tab, select:

Grant Types : Token Exchange

Token Endpoint Authentication Methods :

client_secret_post

2. Set up IG:

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

import org.forgerock.json.JsonValue

token.setMayAct(

JsonValue.json(JsonValue.object(

JsonValue.field("client_id",

"serviceConfidentialClient"))))

248 / 360

a. Set an environment variable for the serviceConfidentialClient password:

b. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

c. Add the following route to IG to exchange the access token:

1. Linux

2. Windows

$ export CLIENT_SECRET_ID='cGFzc3dvcmQ='

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/token-exchange.json

%appdata%\OpenIG\config\routes\token-exchange.json

{

"name": "token-exchange",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/token-

exchange')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

},

{

"name": "ExchangeHandler",

249 / 360

"type": "Chain",

"capture": "all",

"config": {

"handler": "ForgeRockClientHandler",

"filters": [

{

"type":

"ClientSecretBasicAuthenticationFilter",

"config": {

"clientId": "serviceConfidentialClient",

"clientSecretId": "client.secret.id",

"secretsProvider" :

"SystemAndEnvSecretStore-1"

}

}

]

}

},

{

"name": "ExchangeFailureHandler",

"type": "StaticResponseHandler",

"capture": "all",

"config": {

"status": 400,

"entity": "

{\"${contexts.oauth2Failure.error}\":

\"${contexts.oauth2Failure.description}\"}",

"headers": {

"Content-Type": [

"application/json"

]

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "oauth2TokenExchangeFilter",

"type": "OAuth2TokenExchangeFilter",

"config": {

"amService": "AmService-1",

"endpointHandler": "ExchangeHandler",

250 / 360

Notice the following features of the route:

The route matches requests to /token-exchange

IG reads the subjectToken from the request entity.

The StaticResponseHandler returns an issued token.

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token, which is the subject token:

"subjectToken": "#

{request.entity.form['subject_token'][0]}",

"scopes": ["mail"],

"failureHandler": "ExchangeFailureHandler"

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"content-type": [

"application/json"

]

},

"entity": "{\"access_token\":

\"${contexts.oauth2TokenExchange.issuedToken}\",

\"issued_token_type\":

\"${contexts.oauth2TokenExchange.issuedTokenType}\"}"

}

}

}

}

}

$ subjecttoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token") \

&& echo $subjecttoken

251 / 360

b. Introspect the subject token at the AM introspection endpoint:

Note that in the subject token, the client_id is client-application , and

the scopes are employeenumber and mail . The may_act claim indicates

that serviceConfidentialClient is authorized to exchange this token.

c. Exchange the subject token for an issued token:

hc-...c6A

$ curl --location \

--request POST

'http://am.example.com:8088/openam/oauth2/realms/root/i

ntrospect' \

--header 'Content-Type: application/x-www-form-

urlencoded' \

--data-urlencode "token=${subjecttoken}" \

--data-urlencode 'client_id=client-application' \

--data-urlencode 'client_secret=password'

Decoded access_token: {

"active": true,

"scope": "employeenumber mail",

"realm": "/",

"client_id": "client-application",

"user_id": "demo",

"username": "demo",

"token_type": "Bearer",

"exp": 1626796888,

"sub": "(usr!demo)",

"subname": "demo",

"iss": "http://am.example.com:8088/openam/oauth2",

"auth_level": 0,

"authGrantId": "W-j...E1E",

"may_act": {

"client_id": "serviceConfidentialClient"

},

"auditTrackingId": "4be...169"

}

$ issuedtoken=$(curl \

--location \

--request POST 'http://ig.example.com:8080/token-

exchange' \

252 / 360

d. Introspect the issued token at the AM introspection endpoint:

Note that in the issued token, the client_id is

serviceConfidentialClient , and the only the scope is mail .

--header 'Content-Type: application/x-www-form-

urlencoded' \

--data "subject_token=${subjecttoken}" | jq -r

".access_token") \

&& echo $issuedtoken

F8e...Q3E

$ curl --location \

--request POST

'http://am.example.com:8088/openam/oauth2/realms/root/i

ntrospect' \

--header 'Content-Type: application/x-www-form-

urlencoded' \

--data-urlencode "token=${issuedtoken}" \

--data-urlencode 'client_id=serviceConfidentialClient'

\

--data-urlencode 'client_secret=password'

{

"active": true,

"scope": "mail",

"realm": "/",

"client_id": "serviceConfidentialClient",

"user_id": "demo",

"username": "demo",

"token_type": "Bearer",

"exp": 1629200490,

"sub": "(usr!demo)",

"subname": "demo",

"iss": "http://am.example.com:8088/openam/oauth2",

"auth_level": 0,

"authGrantId": "aYK...EPA",

"may_act": {

"client_id": "serviceConfidentialClient"

},

"auditTrackingId": "814...367"

}

253 / 360

By default, IG routes protect resources (such as a websites or applications) from all

requests on the route’s condition path. Some parts of the resource, however, do not need

to be protected. For example, it can be okay for unauthenticated requests to access the

welcome page of a web site, or an image or favicon.

The following sections give examples of routes that do not enforce authentication for a

specific request URL or URL pattern, but enforce authentication for other request URLs:

Before you start:

Prepare IG and the sample app as described in the Getting started

Install and configure AM on http://am.example.com:8088/openam , using the

default configuration.

1. On your system, add the following data in a comma-separated value file:

1. Linux

2. Windows

2. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a

Validation Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

Not-enforced URIs

Implement not-enforced URIs with a SwitchFilter



/tmp/userfile.txt

C:\Temp\userfile.txt

username,password,fullname,email

george,C0stanza,George Costanza,george@example.com

kramer,N3wman12,Kramer,kramer@example.com

bjensen,H1falutin,Babs Jensen,bjensen@example.com

demo,Ch4ng31t,Demo User,demo@example.com

kvaughan,B5ibery12,Kirsten Vaughan,kvaughan@example.com

scarter,S9rain12,Sam Carter,scarter@example.com

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://am.example.com:8088/openam

254 / 360

b. Select Applications > Agents > Identity Gateway, and add an agent

with the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in

Set up an IG agent in AM 6.5 and earlier.

3. Set up IG:

a. Set an environment variable for the IG agent password, and then

restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG, to serve .css and other static resources

for the sample application:

1. Linux

2. Windows

c. Add the following route to IG:

1. Linux

2. Windows

Use secure passwords in a production environment.

Consider using a password manager to generate secure

passwords.

IMPORTANT

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-

resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

255 / 360

$HOME/.openig/config/routes/not-enforced-

switch.json

%appdata%\OpenIG\config\routes\not-enforced-

switch.json

{

"properties": {

"notEnforcedPathPatterns":

"^/home|^/favicon.ico|^/css"

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider":

"SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"name": "not-enforced-switch",

"condition": "${find(request.uri.path, '^/')}",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SwitchFilter-1",

"type": "SwitchFilter",

"config": {

"onRequest": [{

"condition":

256 / 360

"${find(request.uri.path, '&

{notEnforcedPathPatterns}')}",

"handler": "ReverseProxyHandler"

}]

}

},

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${true}",

"credentials": {

"type": "FileAttributesFilter",

"config": {

"file": "/tmp/userfile.txt",

"key": "email",

"value":

"${contexts.ssoToken.info.uid}@example.com",

"target":

"${attributes.credentials}"

}

},

"request": {

"method": "POST",

"uri":

"http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.credentials.username}"

],

"password": [

"${attributes.credentials.password}"

]

}

}

}

}

],

257 / 360

Notice the following features of the route:

The route condition is / , so the route matches all requests.

The SwitchFilter passes requests on the path ^/home ,

^/favicon.ico , and ^/css directly to the ReverseProxyHandler.

All other requests continue the along the chain to the

SingleSignOnFilter.

If the request does not have a valid AM session cookie, the

SingleSignOnFilter redirects the request to AM for authentication.

The SingleSignOnFilter stores the cookie value in an

SsoTokenContext .

Because the PasswordReplayFilter detects that the response is a

login page, it uses the FileAttributesFilter to replay the password,

and logs the request into the sample application.

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Access the route on the not-enforced URL

http://ig.example.com:8080/home . The home page of the sample

app is displayed without authentication.

c. Access the route on the enforced URL

http://ig.example.com:8080/profile . The SingleSignOnFilter redirects

the request to AM for authentication.

d. Log in to AM as user demo , password Ch4ng31t . The

PasswordReplayFilter replays the credentials for the demo user. The

request is passed to the sample app’s profile page for the demo user.

To use a DispatchHandler for not-enforced URIs, replace the route in Implement not-

enforced URIs with a SwitchFilter with the following route. If the request is on the path

^/home , ^/favicon.ico , or ^/css , the DispatchHandler sends it directly to the

ReverseProxyHandler, without authentication. It passes all other requests into the Chain

for authentication.

"handler": "ReverseProxyHandler"

}

}

}





Implement not-enforced URIs with a DispatchHandler

{

"properties": {

"notEnforcedPathPatterns": "^/home|^/favicon.ico|^/css"

http://ig.example.com:8080/home
http://ig.example.com:8080/profile
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/not-enforced-uri.html#not-enforced-uri-switch

258 / 360

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"name": "not-enforced-dispatch",

"condition": "${find(request.uri.path, '^/')}",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${find(request.uri.path, '&

{notEnforcedPathPatterns}')}",

"handler": "ReverseProxyHandler"

},

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type": "PasswordReplayFilter",

"config": {

259 / 360

The DataPreservationFilter triggers POST data preservation when an unauthenticated

client posts HTML form data to a protected resource.

When an authentication redirect is triggered, the filter stores the data in the HTTP session,

and redirects the client for authentication. After authentication, the filter generates an

"loginPage": "${true}",

"credentials": {

"type": "FileAttributesFilter",

"config": {

"file": "/tmp/userfile.txt",

"key": "email",

"value":

"${contexts.ssoToken.info.uid}@example.com",

"target": "${attributes.credentials}"

}

},

"request": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${attributes.credentials.username}"

],

"password": [

"${attributes.credentials.password}"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

]

}

}

}

POST data preservation

file:///home/pptruser/Downloads/build/site/ig/reference/DataPreservationFilter.html

260 / 360

empty self-submitting form POST to emulate the original POST. It then replays the stored

data into the request before passing it along the chain.

The data can be any POST content, such as HTML form data or a file upload.

Consider the following points for POST data preservation:

The size of the POST data is important because the data is stored in the HTTP

session.

Stateless sessions have a maximum cookie size of 4 KBytes, and present an

additional limitation on POST data size even when the session JWT is compressed.

Sticky sessions may be required for deployments with stateful sessions, and multiple

IG instances.

The following image shows a simplified data flow for POST data preservation:

IG

Client

Client

DataPreservationFilter

DataPreservationFilter

SingleSignOnFilter

SingleSignOnFilter

AM

AM

Protected resource
app.example.com

Protected resource
app.example.com

1 POST data to app.example.com

2
Tag POST request with a unique identifier,
and pass to next fi lter

3
Trigger authentication with a goto URL
tagged with the unique identifier

4
Store POST data in HTTP session
using unique identifier

5 Redirect for authentication

6 Request authentication

7 Respond with redirect to goto URL

8 GET request containing unique identifier

9
Process request and generate
self-posting form response

1 0 Self-posting form response

1 1 POST request containing unique identifier

1 2
Process and update request
with stored POST data

1 3 Send POST request

1 4 Send POST request

1. An unauthenticated client requests a POST to a protected resource.

2. The DataPreservationFilter tags the the request with a unique identifier, and passes it

along the chain. The next filter should be an authentication filter such as a

SingleSignOnFilter.

3. The next filter triggers the authentication, and includes a goto URL tagged with the

unique identifier from the previous step.

261 / 360

4-5. The DataPreservationFilter stores the POST data in the HTTP session, and redirects

the request for authentication. The POST data is identified by the unique identifier.

6-7. The client authenticates with AM, and AM provides an authentication response to the

goto URL.

8. The authenticated client sends a GET request containing the unique identifier.

9-10. The DataPreservationFilter validates the unique identifier, and generates a self-

posting form response for the client.

The presence of the unique identifier in the goto URL ensures that requests at the URL

can be individually identified. Additionally, it is more difficult to hijack user data, because

there is little chance of guessing the code within the login window.

If the identifier is not validated, IG denies the request.

11. The client resends the POST request, including the identifier.

12-13. The DataPreservationFilter updates the request with the POST data, and sends it

along the chain.

1. Set up AM and IG as described in Authentication, and test the example. This

example extends that example.

2. Replace cdsso.json with the following route:

1. Linux

2. Windows

Preserve POST data during CDSSO

$HOME/.openig/config/routes/pdp.json

%appdata%\OpenIG\config\routes\pdp.json

{

"name": "pdp",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/cdsso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html

262 / 360

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent_cdsso",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "DataPreservationFilter",

"type": "DataPreservationFilter"

},

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/home/cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1",

"verificationSecretId": "verify",

"secretsProvider": {

"type": "JwkSetSecretStore",

"config": {

"jwkUrl":

"http://am.example.com:8088/openam/oauth2/connect/jwk_uri"

}

},

"logoutExpression": "${find(request.uri.query,

263 / 360

Notice the following differences compared to cdsso.json :

A DataPreservationFilter is positioned in front of the

CrossDomainSingleSignOnFilter to manage POST data preservation before

authentication.

The ReverseProxyHandler is replaced by a StaticResponseHandler, which

displays the POST data provided in the request.

3. Add the following route to IG:

1. Linux

2. Windows

'logOff=true')}",

"defaultLogoutLandingPage": "/form"

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": [

"text/html; charset=UTF-8"

]

},

"entity": "<html><body bgcolor='white'><h1>

Request Information </h1>Request Method: #

{request.method}<p>Request URI: #{request.uri}<p>Query

string: #{request.queryParams}<p>Form:
#

{request.entity.form}<p>Content length: #

{request.headers['Content-Length'][0]}<p>Content type: #

{request.headers['Content-Type'][0]}</body></html>"

}

}

}

}

}

$HOME/.openig/config/routes/form.json

%appdata%\OpenIG\config\routes\pdp.json

264 / 360

Notice the following features of the route:

The route matches requests to /home/form .

The StaticResponseHandler includes the following entity to present visible

and hidden form elements from the original request:

{

"condition": "${request.uri.path == '/form'}",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html"]

},

"entity" : "<!DOCTYPE html><html><body><h1>Test page

: POST Data Preservation containing visible and hidden

form elements</h1><form id='testingPDP'

enctype='application/x-www-form-urlencoded'

name='test_form' action='/home/cdsso/pdp.info?

foo=bar&baz=pdp' method='post'><input name='email'

value='user@example.com' size='60'>

<input

type='hidden' name='phone' value='555-123-456'/><input

type='hidden' name='manager' value='Bob'/><input

type='hidden' name='dept' value='Engineering'/><input

type='submit' value='Press to demo form posting'

id='form_post_button'/></form></body></html>"

}

}

}

<!DOCTYPE html>

<html>

<body>

<h1>Test page : POST Data Preservation containing

visible and hidden form elements</h1>

<form

id='testingPDP'

enctype='application/x-www-form-urlencoded'

name='test_form'

action='/home/cdsso/pdp.info?foo=bar&baz=pdp'

method='post'>

<input

name='email'

265 / 360

4. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to https://ig.ext.com:8443/form .

If you see warnings that the site is not secure, respond to the warnings to

access the site.

The script in the StaticResponseHandler entity of form.json creates a

button to demonstrate form posting.

c. Press the button, and log in to AM as user demo , password Ch4ng31t .

When you have authenticated, the script presents the POST data from the

original request.

In a Cross Site Request Forgery (CSRF) attack, a user unknowingly executes a malicious

request on a website where they are authenticated. A CSRF attack usually includes a link

or script in a web page. When a user accesses the link or script, the page executes an

HTTP request on the site where the user is authenticated.

value='user@example.com'

size='60'>

<input

type='hidden'

name='phone'

value='555-123-456'/>

<input

type='hidden'

name='manager'

value='Bob'/>

<input

type='hidden'

name='dept'

value='Engineering'/>

<input

type='submit'

value='Press to demo form posting'

id='form_post_button'/>

</form>

</body>

</html>



CSRF protection

https://ig.ext.com:8443/form

266 / 360

CSRF attacks interact with HTTP requests as follows:

CSRF attacks can execute POST, PUT, and DELETE requests on the targeted server.

For example, a CSRF attack can transfer funds out of a bank account or change a

user’s password.

Because of same-origin policy, CSRF attacks cannot access any response from the

targeted server.

When IG processes POST, PUT, and DELETE requests, it checks a custom HTTP header in

the request. If a CSRF token is not present in the header or not valid, IG rejects the

request and returns a valid CSRF token in the response.

Rogue websites that attempt CSRF attacks operate in a different website domain to the

targeted website. Because of same-origin policy, rogue websites can’t access a response

from the targeted website, and cannot, therefore, access the response or CSRF token.

The following example shows the data flow when an authenticated user sends a POST

request to an application protected against CSRF:

Flow of requests from authenticated user to application protected against CSRF

Client

Client

IG

IG

legitimate.example.com

legitimate.example.com

Post request without CSRF token

POST
Headers: session cookie

Validate CSRF token as hash of session cookie
CSRF token not present or not valid

HTTP 403 Forbidden
Headers: X-CSRF-TOKEN

Re-post request with CSRF token

POST
Headers: session cookie, X-CSRF-TOKEN

Validate CSRF token as hash of session cookie
CSRF token validated

POST
Headers: session cookie

Content

Content

The following example shows the data flow when an authenticated user sends a POST

request from a rogue site to an application protected against CSRF:

267 / 360

Flow of requests from rogue site to application protected against CSRF

Malicious User

Malicious User

Client

Client

IG

IG

legitimate.example.com

legitimate.example.com

rogue.example.com

rogue.example.com

Checkout rogue.example.com

GET rogue.example.com

Malicious code
POST with form to change data
Headers: session cookie (auto added)

Validate CSRF token as hash
of session cookieCSRF token not present or not valid

Content: HTTP 403/Forbidden
Header: CSRF token

1. Set up SSO, so that AM authenticates users to the sample app through IG:

a. Set up AM and IG as described in Authenticate with SSO through the default

authentication service.

b. Remove the condition in sso.json , so that the route matches all requests:

2. Test the setup without CSRF protection:

a. Go to http://ig.example.com:8080/bank/index , and log in to the Sample

App Bank through AM, as user demo , password Ch4ng31t .

b. Send a bank transfer of $10 to Bob, and note that the transfer is successful.

c. Go to http://localhost:8081/bank/attack-autosubmit to simulate a CSRF

attack.

When you access this page, a hidden HTML form is automatically submitted

to transfer $1000 to the rogue user, using the IG session cookie to

authenticate to the bank.

In the bank transaction history, note that $1000 has been debited.

3. Test the setup with CSRF protection:

a. In IG, replace sso.json with the following route:

"condition": "${find(request.uri.path, '^/home/sso')}"





{

"name": "Csrf",

"baseURI": "http://app.example.com:8081",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#proc-sso
http://ig.example.com:8080/bank/index
http://localhost:8081/bank/attack-autosubmit

268 / 360

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

},

{

"name": "FailureHandler-1",

"type": "StaticResponseHandler",

"config": {

"status": 403,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"

]

},

"entity": "Request forbidden"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "CsrfFilter-1",

"type": "CsrfFilter",

"config": {

"cookieName": "iPlanetDirectoryPro",

"failureHandler": "FailureHandler-1"

}

}

],

"handler": "ReverseProxyHandler"

269 / 360

Notice the following features of the route compared to sso.json :

The CsrfFilter checks the AM session cookie for the X-CSRF-Token

header. If a CSRF token is not present in the header or not valid, the

filter rejects the request and provides a valid CSRF token in the header.

b. Go to http://ig.example.com:8080/bank/index , and send a bank transfer

of $10 to Alice.

Because there is no CSRF token, IG responds with an HTTP 403, and

provides the token.

c. Send the transfer again, and note that because the CSRF token is provided

the transfer is successful.

d. Go to http://localhost:8081/bank/attack-autosubmit to automatically

send a rogue transfer.

Because there is no CSRF token, IG rejects the request and provides the

CSRF token. However, because the rogue site is in a different domain to

ig.example.com it can’t access the CSRF token.

To protect applications from being overused by clients, use a throttling filter to limit how

many requests can be made in a defined time. The maximum number of requests that

are allowed in a defined time is called the throttling rate. The following sections describe

how to set up simple, mapped, and scriptable throttling filters:

The throttling filter uses the token bucket algorithm, allowing some unevenness or bursts

in the request flow. The following image shows how IG manages requests for a throttling

rate of 10 requests/10 seconds:

}

}

}





Throttling

About throttling

http://ig.example.com:8080/bank/index
http://localhost:8081/bank/attack-autosubmit

270 / 360

Seconds

1

r eq1 r eq2

R
e

q
u

e
s

ts

2

r eq11

3

r eq12

r eq13

4 5

r eq14

8 9 107

r eq16

6

r eq15

11 12 13 14 17

r eq17

18

r eq18

191615 20

r eq3

r eq4

r eq5

r eq6

r eq7

r eq8

r eq9

r eq10

r eq19

r eq20

r eq21

X
X

r eq22

r eq23

r eq24X

X
r eq25

At 7 seconds, 2 requests have previously passed when there is a burst of 9 requests.

IG allows 8 requests, but disregards the 9th because the throttling rate for the 10-

second throttling period has been reached.

At 8 and 9 seconds, although 10 requests have already passed in the 10-second

throttling period, IG allows 1 request each second.

At 17 seconds, 4 requests have passed in the previous 10-second throttling period,

and IG allows another burst of 6 requests.

When the throttling rate is reached, IG issues an HTTP status code 429 Too Many

Requests and a Retry-After header like the following, where the value is the number

of seconds to wait before trying the request again:

This section describes how to configure a simple throttling filter that applies a throttling

rate of 6 requests/10 seconds. When an application is protected by this throttling filter,

no more than 6 requests, irrespective of their origin, can access the sample application in

a 10 second period.

All requests Throttled requests
User

Sample applicationIG

Throttling rate
6 req/10 sec

1. Add the following route to IG:

1. Linux

2. Windows

GET http://ig.example.com:8080/home/throttle-scriptable HTTP/1.1

. . .

HTTP/1.1 429 Too Many Requests

Retry-After: 10



Configure simple throttling

http://ig.example.com:8080/home/throttle-scriptable

271 / 360

For information about how to set up the IG route in Studio, refer to Simple

throttling filter in Structured Editor.

Notice the following features of the route:

The route matches requests to /home/throttle-simple .

The ThrottlingFilter contains a request grouping policy that is blank. This

means that all requests are in the same group.

The rate defines the number of requests allowed to access the sample

application in a given time.

2. Test the setup:

$HOME/.openig/config/routes/00-throttle-simple.json

%appdata%\OpenIG\config\routes\00-throttle-simple.json

{

"name": "00-throttle-simple",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/throttle-

simple')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ThrottlingFilter",

"name": "ThrottlingFilter-1",

"config": {

"requestGroupingPolicy": "",

"rate": {

"numberOfRequests": 6,

"duration": "10 s"

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-throttle-simple

272 / 360

a. With IG and the sample application running, use curl , a bash script, or

another tool to access the following route in a loop:

http://ig.example.com:8080/home/simple-throttle .

Accessing the route in a loop runs the request multiple times in quick

succession, allowing you to test the throttling rate.

b. Search the output file for the result:

Notice that the first six requests returned a success response, and the

following four requests returned an HTTP 429 Too Many Requests . This

result demonstrates that the throttling filter has allowed only six requests

to access the application, and has blocked the other requests.

This section describes how to configure a mapped throttling policy, where the grouping

policy defines criteria to group requests, and the rate policy defines the criteria by which

rates are mapped.

The following image illustrates how different throttling rates can be applied to users.

The following image illustrates how each user with a gold status has a throttling rate of

6 requests/10 seconds, and each user with a silver status has 3 requests/10 seconds.

The bronze status is not mapped to a throttling rate, and so a user with the bronze

status has the default rate.



$ curl -v http://ig.example.com:8080/home/throttle-

simple/\[01-10\] \

> /tmp/throttle-simple.txt 2>&1

$ grep "< HTTP/1.1" /tmp/throttle-simple.txt | sort |

uniq -c

6 < HTTP/1.1 200 OK

4 < HTTP/1.1 429 Too Many Requests

Configure mapped throttling

http://ig.example.com:8080/home/simple-throttle

273 / 360

Requests Throttled requests
User 1

gold status

User 2
gold status

User 3
silver status

User 4
bronze status

Sample applicationIG

Throttling rate
3 req/10 sec

Throttling rate
6 req/10 sec

Default throttling
rate 1 req/10 sec

Throttling rate
6 req/10 sec

1. Set up AM:

a. Set up AM as described in Validate access tokens through the introspection

endpoint.

b. Select  Scripts > OAuth2 Access Token Modification Script, and

replace the default script as follows:

The AM script adds user profile information to the access token, and

defines the content of the users status field according to the email

domain.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

import org.forgerock.http.protocol.Request

import org.forgerock.http.protocol.Response

def attributes = identity.getAttributes(["mail",

"employeeNumber"].toSet())

accessToken.setField("mail", attributes["mail"][0])

def mail = attributes['mail'][0]

if (mail.endsWith('@example.com')) {

status = "gold"

} else if (mail.endsWith('@other.com')) {

status = "silver"

} else {

status = "bronze"

}

accessToken.setField("status", status)

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

274 / 360

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/00-throttle-mapped.json

%appdata%\OpenIG\config\routes\00-throttle-mapped.json

{

"name": "00-throttle-mapped",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/throttle-mapped')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

275 / 360

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"name": "ThrottlingFilter-1",

"type": "ThrottlingFilter",

"config": {

"requestGroupingPolicy":

"${contexts.oauth2.accessToken.info.mail}",

"throttlingRatePolicy": {

"name": "MappedPolicy",

"type": "MappedThrottlingPolicy",

"config": {

"throttlingRateMapper":

276 / 360

For information about how to set up the IG route in Studio, refer to Mapped

throttling filter in Structured Editor.

Notice the following features of the route:

The route matches requests to /home/throttle-mapped .

The OAuth2ResourceServerFilter validates requests with the

AccessTokenResolver, and makes it available for downstream

components in the oauth2 context.

The ThrottlingFilter bases the request grouping policy on the AM user’s

email. The throttling rate is applied independently to each email

address.

The throttling rate is mapped to the AM user’s status , which is

defined by the email domain, in the AM script.

3. Test the setup:

"${contexts.oauth2.accessToken.info.status}",

"throttlingRatesMapping": {

"gold": {

"numberOfRequests": 6,

"duration": "10 s"

},

"silver": {

"numberOfRequests": 3,

"duration": "10 s"

},

"bronze": {

"numberOfRequests": 1,

"duration": "10 s"

}

},

"defaultRate": {

"numberOfRequests": 1,

"duration": "10 s"

}

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-throttle-mapped

277 / 360

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

b. Using the access token, access the route multiple times. The following

example accesses the route 10 times, and writes the output to a file:

c. Search the output file for the result:

Notice that with a gold status, the user can access the route 6 times in 10

seconds.

d. In AM, change the demo user’s email to demo@other.com , and then run the

last two steps again to find how the access is reduced.

The following image illustrates what can happen when the throttling rate defined by

throttlingRateMapping changes frequently or quickly:

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/home/throttle-

mapped/\[01-10\] \

--header "Authorization:Bearer ${mytoken}" \

> /tmp/throttle-mapped.txt 2>&1

$ grep "< HTTP/1.1" /tmp/throttle-mapped.txt | sort |

uniq -c

6 < HTTP/1.1 200

4 < HTTP/1.1 429

Considerations for dynamic throttling

278 / 360

2 sec

0 sec

Sample applicationIG
Throttled
requests

User
gold status

Throttling rate
6 req/10 sec

Throttling rate
6 req/10 sec

Throttling rate
3 req/10 sec

User
sliver status

X

Request 1

Request 2

Request 3
Request 4

Request 5

Request 6

Request 7

Request 10

Request 12

Request 8

Request 9

User
gold status

Request 11

In the image, the user starts out with a gold status. In a two second period, the users

sends five requests, is downgraded to silver, sends four requests, is upgraded back to

gold , and then sends three more requests.

After making five requests with a gold status, the user has almost reached their

throttling rate. When his status is downgraded to silver, those requests are disregarded

and the full throttling rate for silver is applied. The user can now make three more

requests even though they have nearly reached their throttling rate with a gold status.

After making three requests with a silver status, the user has reached their throttling

rate. When the user makes a fourth request, the request is refused.

The user is now upgraded back to gold and can now make six more requests even

though they had reached his throttling rate with a silver status.

When you configure requestGroupingPolicy and throttlingRateMapper , bear in mind

what happens when the throttling rate defined by the throttlingRateMapper is

changed.

This section builds on the example in Configure mapped throttling. It creates a scriptable

throttling filter, where the script applies a throttling rate of 6 requests/10 seconds to

requests from gold status users. For all other requests, the script returns null , and

applies the default rate of 1 request/10 seconds.

1. Set up AM as described in Configure mapped throttling.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart IG:

Configure scriptable throttling

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-mapped
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-mapped

279 / 360

The password is retrieved by a SystemAndEnvSecretStore, and must be

base64-encoded.

b. Add the following route to IG:

1. Linux

2. Windows

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/00-throttle-scriptable.json

%appdata%\OpenIG\config\routes\00-throttle-

scriptable.json

{

"name": "00-throttle-scriptable",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/throttle-scriptable')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

280 / 360

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"name": "ThrottlingFilter-1",

"type": "ThrottlingFilter",

"config": {

"requestGroupingPolicy":

"${contexts.oauth2.accessToken.info.mail}",

"throttlingRatePolicy": {

281 / 360

For information about how to set up the IG route in Studio, refer to

Scriptable throttling filter in Structured Editor.

Notice the following features of the route, compared to path] 00-throttle-

mapped.json :

The route matches requests to /home/throttle-scriptable .

"type": "DefaultRateThrottlingPolicy",

"config": {

"delegateThrottlingRatePolicy": {

"name": "ScriptedPolicy",

"type": "ScriptableThrottlingPolicy",

"config": {

"type": "application/x-groovy",

"source": [

"if

(contexts.oauth2.accessToken.info.status == status) {",

" return new

ThrottlingRate(rate, duration)",

"} else {",

" return null",

"}"

],

"args": {

"status": "gold",

"rate": 6,

"duration": "10 seconds"

}

}

},

"defaultRate": {

"numberOfRequests": 1,

"duration": "10 s"

}

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-throttle-scriptable

282 / 360

The DefaultRateThrottlingPolicy delegates the management of

throttling to the ScriptableThrottlingPolicy.

The script applies a throttling rate to requests from users with gold

status. For all other requests, the script returns null and the default

rate is applied.

3. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

a. Using the access token, access the route multiple times. The following example

accesses the route 10 times, and writes the output to a file:

b. Search the output file for the result:

Notice that with a gold status, the user can access the route 6 times in 10

seconds.

c. In AM, change the user’s email to demo@other.com , and then run the last two

steps again to find how the access is reduced.

URI fragments are optional last parts of a URL for a document, typically used to identify

or navigate to a particular part of the document. The fragment part follows the URL after

a hash # , for example https://www.rfc-editor.org/rfc/rfc1234#section5 .

$ mytoken=$(curl -s \

--user "client-application:password" \

--data "grant_type=password&username={amDemoUn}&password=

{amDemoPw}&scope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token | jq -r

".access_token")

$ curl -v http://ig.example.com:8080/home/throttle-

scriptable/\[01-10\] --header "Authorization:Bearer

${mytoken}" > /tmp/throttle-script.txt 2>&1

$ grep "< HTTP/1.1" /tmp/throttle-script.txt | sort | uniq

-c

6 < HTTP/1.1 200

4 < HTTP/1.1 429

URI fragments in redirect

283 / 360

When an unauthenticated user requests a resource that includes a URI fragment, the user

agent sends the URI but does not send the fragment. The fragment is lost during the

authentication flow.

IG provides a FragmentFilter to track the fragment part of a URI when a request triggers a

login redirect. The following image shows the flow of information when the

FragmentFilter is included in the SSO authentication flow:

User Agent IG

Client

Client

Browser

Browser

FragmentFilter

FragmentFilter

SSOFilter

SSOFilter

AM

AM

Sample App

Sample App

Request for a fragment URI

1
GET
http://app.example.com/profi le#fragment

2
GET
http://app.example.com/profi le

Capture and store fragment

3 AuthRedirectContext

4
AuthRedirectContext
.notifyImpendingIgRedirect()

5 Redirect to http://app.example.com/login

6
AuthRedirectContext
.isImpendingIgRedirectNotified()

7 Auto submit form to get the fragment

8 Submit the form containing the fragment

9 Add fragment cookie

Authenticate

1 0
Redirect to
http://am.example.com/login?goto=...
include fragment cookie

1 1 Authentication

1 2
Redirect to
http://app.example.com/profi le

Add fragment to the final redirect

1 3
GET http://app.example.com/profile
include fragment cookie

1 4
REDIRECT to
http://app.example.com/profi le#fragment

1 5
GET
http://app.example.com/profi le

1 6
GET
http://app.example.com/profi le

1 7 GET http://app.example.com/profile

1 8 Response

1 9 Response

2 0 Response

1-2. An unauthenticated client requests access to a fragment URL.

3. The FragmentFilter adds the AuthRedirectContext, so that downstream filters can mark

the response as redirected.

4-5. The SingleSignOnFilter adds to the context to notify upstream filters that a redirect is

pending, and redirects the request for authentication.

6-7. The FragmentFilter is notified by the context that a redirect is pending, and returns a

new response object containing the response cookies, an autosubmit HTML form, and

Javascript.

8. The user agent runs the Javascript or displays the form’s submit button for the user to

click on. This operation POSTs a form request back to a fragment endpoint URI,

containing the following parts:

file:///home/pptruser/Downloads/build/site/ig/reference/FragmentFilter.html

284 / 360

Request URI path (/profile)

Captured fragment (#fragment)

Login URI (http://am.example.com/login?goto=…​)

9. The FragmentFilter creates the fragment cookie.

10-12. The client authenticates with AM.

13. The FragmentFilter intercepts the request because it contains a fragment cookie, and

its URI matches the original request URI.

The filter redirects the client to the original request URI containing the fragment. The

fragment cookie then expires.

14-19. The client follows the final redirect to the original request URI containing the

fragment, and the sample app returns the response.

This procedure shows how to persist a URI fragment in an SSO authentication.

1. Set up the example in Authenticate with SSO through the default authentication

service.

2. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/fragment.json

%appdata%\OpenIG\config\routes\fragment.json

{

"name": "fragment",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/sso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#proc-sso

285 / 360

Notice the following feature of the route compared to sso.json :

The FragmentFilter captures the fragment form data from the route

condition endpoint.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/home/sso#fragment .

The SingleSignOnFilter redirects the request to AM for authentication.

c. Log in to AM as user demo , password Ch4ng31t .

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "FragmentFilter-1",

"type": "FragmentFilter",

"config": {

"fragmentCaptureEndpoint": "/home/sso"

}

},

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



http://ig.example.com:8080/home/sso#fragment

286 / 360

The SingleSignOnFilter passes the request to sample app, which returns the

home page. Note that the URL of the page has preserved the fragment:

http://ig.example.com:8080/home/sso?_ig=true#fragment

d. Remove the FragmentFilter from the route and test the route again.

Note that this time the URL of the page has not preserved the fragment.

The following examples show how to use the JwtValidationFilter to validate signed and

encrypted JWT.

The JwtValidationFilter can access JWTs in the request, provided in a header, query

parameter, form parameter, cookie, or other way. If an upstream filter makes the JWT

available in the request’s attributes context, the JwtValidationFilter can access the JWT

through the context, for example, at ${attributes.jwtToValidate} .

For convenience, the JWT in this example is provided by the JwtBuilderFilter, and passed

to the JwtValidationFilter in a cookie.

The following figure shows the flow of information in the example:

IG
Client

Application

Client
Application

Authorization Server
AM

Authorization Server
AM

SingleSignOnFilter

SingleSignOnFilter

UserProfileFilter

UserProfileFilter

JwtBuilderFilter

JwtBuilderFilter

HeaderFilter

HeaderFilter

JwtValidationFilter

JwtValidationFilter

Authenticate

1 Authentication request

2 SSO token

Build JWT

3 Request with SSO token

4
Grab token from request
header

5 Request token information

6 Token information

7 Validate that token is active

8
Retrieve the user
profi le attributes

9 Token

1 0
Convert token to signed
and encrypted JWT

1 1 JWT

1 2 Put JWT into a cookie

Validate JWT

1 3 Retrieve cookie

1 4
Unpack JWT and
check claims

1. Create a signed then encrypted JWT as described in Pass runtime data in a JWT

signed with PEM then encrypted with a symmetric key.

JWT validation

file:///home/pptruser/Downloads/build/site/ig/reference/JwtValidationFilter.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/data-downstream.html#runtime-sign-then-encrypt

287 / 360

2. Add the following route to IG, replacing value of the property secretsDir with

the directory for the PEM files:

1. Linux

2. Windows

$HOME/.openig/config/routes/jwt-validate.json

%appdata%\OpenIG\config\routes\jwt-validate.json

{

"name": "jwt-validate",

"condition": "${find(request.uri.path, '^/jwt-

validate')}",

"properties": {

"secretsDir": "path/to/secrets"

},

"capture": "all",

"heap": [

{

"name": "SystemAndEnvSecretStore",

"type": "SystemAndEnvSecretStore",

"config": {

"mappings": [{

"secretId": "id.decrypted.key.for.signing.jwt",

"format": "BASE64"

}]

}

},

{

"name": "pemPropertyFormat",

"type": "PemPropertyFormat",

"config": {

"decryptionSecretId":

"id.decrypted.key.for.signing.jwt",

"secretsProvider": "SystemAndEnvSecretStore"

}

},

{

"name": "FileSystemSecretStore-1",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{secretsDir}",

288 / 360

"mappings": [{

"secretId":

"id.encrypted.key.for.signing.jwt.pem",

"format": "pemPropertyFormat"

}, {

"secretId": "symmetric.key.for.encrypting.jwt",

"format": {

"type": "SecretKeyPropertyFormat",

"config": {

"format": "BASE64",

"algorithm": "AES"

}

}

}]

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [{

"type": "JwtValidationFilter",

"config": {

"jwt": "${request.cookies['my-jwt'][0].value}",

"secretsProvider": "FileSystemSecretStore-1",

"decryptionSecretId":

"symmetric.key.for.encrypting.jwt",

"customizer": {

"type": "ScriptableJwtValidatorCustomizer",

"config": {

"type": "application/x-groovy",

"source": [

"builder.claim('name',

JsonValue::asString, isEqualTo('demo'))",

"builder.claim('email',

JsonValue::asString, isEqualTo('demo@example.com'));"

]

}

},

"failureHandler": {

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"source": [

"def response = new

289 / 360

Notice the following features of the route:

The route matches requests to /jwt-validate .

The JwtValidationFilter takes the value of the JWT from my-jwt .

The SystemAndEnvSecretStore, PemPropertyFormat, and

FileSystemSecretStore objects in the heap are the same as those in the

route to create the JWT. The JwtValidationFilter uses the same objects to

validate the JWT.

The JwtBuilderFilter customizer requires that the JWT claims match

name:demo and email:demo@example.com .

Response(Status.FORBIDDEN)",

"response.headers['Content-Type'] =

'text/html; charset=utf-8'",

"def errors =

contexts.jwtValidationError.violations.collect{it.descript

ion}",

"def display = \"<html>Can't validate JWT:

 ${contexts.jwtValidationError.jwt} \"",

"display <<=\"

For the following

errors:
 ${errors.join(\"
\")}</html>\"",

"response.entity=display as String",

"return response"

]

}

}

}

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><h2>Validated JWT:</h2>

<p>${contexts.jwtValidation.value}</p><h2>JWT payload:

</h2><p>${contexts.jwtValidation.info}</p></html>"

}

}

}

}

}

290 / 360

If the JWT is validated, the StaticResponseHandler displays the validated

value. Otherwise, the FailureHandler displays the reason for the failed

validation.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/jwtbuilder-sign-then-encrypt to build a

JWT, and log in to AM as user demo , password Ch4ng31t . The sample app

displays the signed JWT along with its header and payload.

c. Go to http://ig.example.com:8080/jwt-validate to validate the JWT. The

validated JWT and its payload are displayed.

d. Test the setup again, but log in to AM as a different user, or change the

email address of the demo user in AM. The JWT is not validated, and an

error is displayed.

When a user agent requests an upgrade from HTTP or HTTPS to the WebSocket protocol,

IG detects the request and performs an HTTP handshake request between the user agent

and the protected application.

If the handshake is successful, IG upgrades the connection and provides a dedicated

tunnel to route WebSocket traffic between the user agent and the protected application.

IG does not intercept messages to or from the WebSocket server.

The tunnel remains open until it is closed by the user agent or protected application.

When the user agent closes the tunnel, the connection between IG and the protected

application is automatically closed.

The following sequence diagram shows the flow of information when IG proxies

WebSocket traffic:





WebSocket traffic

http://ig.example.com:8080/jwtbuilder-sign-then-encrypt
http://ig.example.com:8080/jwt-validate

291 / 360

WebSocket client

WebSocket client

IG

IG

WebSocket server

WebSocket server

Perform handshake and create tunnel

WebSocket handshake request

HTTP filtering
(for example, execute IG fi lters for authentication)

WebSocket handshake request

Creation of WebSocket tunnel

WebSocket handshake response

Upgrade Client-IG connection from
HTTP to WebSocket protocol

WebSocket handshake response

Send message

WebSocket frame

Push through tunnel

WebSocket frame

Receive message

WebSocket frame

Push through tunnel

WebSocket frame

To configure IG to proxy WebSocket traffic, configure the websocket property of

ReverseProxyHandler. By default, IG does not proxy WebSocket traffic.

Proxy WebSocket traffic

1. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with

the following values:

Agent ID: ig_agent

Password: password

file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler

292 / 360

For AM 6.5.x and earlier versions, set up an agent as described in Set

up an IG agent in AM 6.5 and earlier.

2. Set up IG:

a. Add the following route to IG, to serve .css and other static resources for the

sample application:

1. Linux

2. Windows

b. Add the following route to IG:

1. Linux

2. Windows

Use secure passwords in a production environment. Consider

using a password manager to generate secure passwords.

IMPORTANT

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/websocket.json

%appdata%\OpenIG\config\routes\websocket.json

{

"name": "websocket",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/websocket')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

293 / 360

For information about how to set up the route in Studio, refer to Proxy for

WebSocket traffic in Structured Editor.

Notice the following features of the route:

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

},

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"config": {

"websocket": {

"enabled": true

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html#example-websocket-se

294 / 360

The route matches requests to /websocket , the endpoint on the sample

app that exposes a WebSocket server.

The SingleSignOnFilter redirects unauthenticated requests to AM for

authentication.

The ReverserProxyHandler enables IG to proxy WebSocket traffic, and, after

IG upgrades the HTTP connection to the WebSocket protocol, passes the

messages to the WebSocket server.

1. Test the setup:

c. If you are logged in to AM, log out and clear any cookies.

d. Go to http://ig.example.com:8080/websocket . The SingleSignOnFilter

redirects the request to AM for authentication.

e. Log in to AM as user demo , password Ch4ng31t .

AM authenticates the user, creates an SSO token, and redirects the request back

to the original URI, with the token in a cookie.

The request then passes to the ReverseProxyHandler, which routes the request

to the HTML page /websocket/index.html of the sample app. The page

initiates the HTTP handshake for connecting to the WebSocket endpoint

/websocket/echo .

f. Enter text on the WebSocket echo screen, and note that the text is echoed back.

Configure Vert.x-specific configuration for WebSocket connections, where IG does not

provide its own first-class configuration. Vert.x options are described in

HttpClientOptions .

The following example configures Vert.x options for Websocket connections:



Vert.x-specific configuration for WebSocket connections



{

"type": "ReverseProxyHandler",

"config": {

"websocket": {

"enabled": true,

"vertx": {

"maxWebSocketFrameSize": 200000000,

"maxWebSocketMessageSize": 200000000,

"tryUsePerMessageWebSocketCompression": true

}

}

http://ig.example.com:8080/websocket
https://vertx.io/docs/4.3.7/apidocs/io/vertx/core/http/HttpClientOptions.html

295 / 360

IG includes support for User-Managed Access (UMA) 2.0 Grant for OAuth 2.0

Authorization specifications.

The following figure shows an UMA environment, with IG protecting a resource, and AM

acting as an authorization server. For information about UMA, refer to AM’s User-

Managed Access (UMA) 2.0 guide.

Control

AuthorizeAccess

Manage

Protect

UMA Grant

P
ro

te
c

tio
n

 A
P

I
(re

q
u

ire
s

 P
A

T
)

Requesting Party Token

Protection API Access Token

Protected Resource
(requires RPT)

Resource Owner

ForgeRock
Identity Gateway
Resource Server

ForgeRock
Access Management
Authorization Server

Requesting
Party

Client

Redirect to Auth Server

(on behalf of Requesting Party)

The following figure shows the data flow when the resource owner registers a resource

with AM, and sets up a share using a Protection API Token (PAT):

}

}

UMA support



About IG as an UMA resource server

https://docs.kantarainitiative.org/uma/wg/oauth-uma-grant-2.0-08.html
https://backstage.forgerock.com/docs/am/7.3/uma-guide/index.html

296 / 360

Resource Owner (RO)

Resource Owner (RO)

IG
Resource Server (RS)

IG
Resource Server (RS)

AM
Authorization Server (AS)

AM
Authorization Server (AS)

1 Authentication, authorization, consent, with scope "uma_protection"

2 Protection API token (PAT)

3
Create a share, including the PAT and a
pattern to define resources included in the share

4
Registers resource on Authz Server at
Resource Registration endpoint

5
URL to a page where RO can define the policies
for the share

6
Configure policy conditions after registering
the resource

The following figure shows the data flow when the client accesses the resource, using a

Requesting Party Token (RPT):

Client
(On Behalf of Requesting Party)

Client
(On Behalf of Requesting Party)

IG
Resource Server (RS)

IG
Resource Server (RS)

AM
Authorization Server (AS)

AM
Authorization Server (AS)

1 Request access to a shared resource

2
Find resource set in the shares configured
for the request

3
Request a permission ticket for the
resource being accessed

4 Permission ticket

5
HTTP 401 Unauthorized Response, including
permission ticket and URL of UMA Authz Server

6 Authenticate with OpenID Connect

7 id_token

8 Request an RPT, including permission ticket and id_token

9 RPT

1 0 Request access to a shared resource, with the RPT

1 1 Introspect the RPT

1 2 Permissions associated with the RPT

a l t [I f requesting party authorized for resource]

1 3 Return the resource

[I f requesting party not authorized for resource]

1 4 HTTP 401 Unauthorized Response, including permission ticket and URL of UMA Authz Server

For information about CORS support, refer to Configuring CORS support in AM’s Security

guide. This procedure describes how to modify the AM configuration to allow cross-site

access.

When using IG as an UMA resource server, note the following points:

IG depends on the resource owner for the PAT.

When a PAT expires, no refresh token is available to IG. The resource owner must

repeat the entire share process with a new PAT in order to authorize access to

protected resources. The resource owner should delete the old resource and create a

new one.

Limitations of IG as an UMA resource server

https://backstage.forgerock.com/docs/am/7.3/security-guide/enable-cors-support.html

297 / 360

Data about PATs and shared resources is held in memory.

IG has no mechanism for persisting the data across restarts. When IG stops and

starts again, the resource owner must repeat the entire share process.

UMA client applications for sharing and accessing protected resources must deal

with UMA error conditions and IG error conditions.

By default, the REST API to manage share objects exposed by IG is protected only by

CORS.

When matching protected resource paths with share patterns, IG takes the longest

match.

For example, if resource owner Alice shares /photos/.* with Bob, and

/photos/vacation.png with Charlie, and then Bob attempts to access

/photos/vacation.png , IG applies the sharing permissions for Charlie, not Bob. As

a result, Bob can be denied access.

This section describes tasks to set up AM as an authorization server:

Enabling cross-origin resource sharing (CORS) support in AM

Configuring AM as an authorization server

Registering UMA client profiles with AM

Setting up a resource owner (Alice) and requesting party (Bob)

Before you start, prepare AM, IG, and the sample application as described in

Example installation for this guide.

If you use different settings for the sample application, refer to Edit the example to

match custom settings.

Set up the UMA example

The settings in this section are suggestions for this tutorial. They are not intended as

instructions for setting up AM CORS support on a server in production.

If you need to accept all origins, by allowing the use of Access-Control-Allowed-

Origin=* , do not allow Content-Type headers. Allowing the use of both types of

headers exposes AM to cross-site request forgery (CSRF) attacks.

CAUTION

This procedure uses the Resource Owner Password Credentials grant type.

According to information in the The OAuth 2.0 Authorization Framework ,

minimize use of this grant type and utilize other grant types whenever possible.

IMPORTANT



file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface-examples
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/uma.html#uma-non-default-conf
https://datatracker.ietf.org/doc/html/rfc6749#section-10.7

298 / 360

1. Set up AM:

a. Find the name of the AM session cookie at the

/openam/json/serverinfo/* endpoint. Alternatively, refer to Configuring

servers in AM’s Reference. This procedure assumes that you are using the

default AM session cookie, iPlanetDirectoryPro .

b. Create an OAuth 2.0 Authorization Server:

i. Select Services > Add a Service > OAuth2 Provider.

ii. Add a service with the default values.

c. Configure an UMA Authorization Server:

i. Select Services > Add a Service > UMA Provider.

ii. Add a service with the default values.

d. Add an OAuth 2.0 client for UMA protection:

i. Select Applications > OAuth 2.0 > Clients.

ii. Add a client with these values:

Client ID : OpenIG

Client secret : password

Scope : uma_protection

iii. (From AM 6.5) On the Advanced tab, select the following option:

Grant Types : Resource Owner Password Credentials

e. Add an OAuth 2.0 client for accessing protected resources:

i. Select Applications > OAuth 2.0 > Clients.

ii. Add a client with these values:

Client ID : UmaClient

Client secret : password

Scope : openid

iii. (From AM 6.5) On the Advanced tab, select the following option:

Grant Types : Resource Owner Password Credentials and UMA

f. Select  Identities, and add an identity for a resource owner, with the

following values:

ID : alice

Password : UMAexamp1e

g. Select  Identities, and add an identity for a requesting party, with the

following values:

ID : bob

Password : UMAexamp1e

https://backstage.forgerock.com/docs/am/7.3/reference/deployment-configuration-reference.html#servers-configuration

299 / 360

h. Enable the CORS filter on AM:

i. In a terminal window, retrieve an SSO token from AM:

ii. Using the token retrieved in the previous step, enable the CORS filter

on AM, by using the use the /global-config/services/CorsService

REST endpoint:

$ mytoken=$(curl --request POST \

--header "Accept-API-Version: resource=2.1" \

--header "X-OpenAM-Username: amadmin" \

--header "X-OpenAM-Password: password" \

--header "Content-Type: application/json" \

--data "{}" \

http://am.example.com:8088/openam/json/authenticate

| jq -r ".tokenId")

$ curl \

--request PUT \

--header "Content-Type: application/json" \

--header "iPlanetDirectoryPro: $mytoken"

http://am.example.com:8088/openam/json/global-

config/services/CorsService/configuration/CorsServi

ce \

--data '{

"acceptedMethods": [

"POST",

"GET",

"PUT",

"DELETE",

"PATCH",

"OPTIONS"

],

"acceptedOrigins": [

"http://app.example.com:8081",

"http://ig.example.com:8080",

"http://am.example.com:8088/openam"

],

"allowCredentials": true,

"acceptedHeaders": [

"Authorization",

"Content-Type",

"iPlanetDirectoryPro",

"X-OpenAM-Username",

"X-OpenAM-Password",

300 / 360

A CORS configuration is diplayed.

2. Set up IG as an UMA resource server:

"Accept",

"Accept-Encoding",

"Connection",

"Content-Length",

"Host",

"Origin",

"User-Agent",

"Accept-Language",

"Referer",

"Dnt",

"Accept-Api-Version",

"If-None-Match",

"Cookie",

"X-Requested-With",

"Cache-Control",

"X-Password",

"X-Username",

"X-NoSession"

],

"exposedHeaders": [

"Access-Control-Allow-Origin",

"Access-Control-Allow-Credentials",

"Set-Cookie",

"WWW-Authenticate"

],

"maxAge": 600,

"enabled": true,

"allowCredentials": true

}'

To delete the CORS configuration and create another, first run the

following command:

TIP

$ curl \

--request DELETE \

--header "X-Requested-With: XMLHttpRequest" \

--header "iPlanetDirectoryPro: $mytoken" \

http://am.example.com:8088/openam/json/global-

config/services/CorsService/CorsService/configuration

/CorsService

301 / 360

a. Add the following route to IG, to serve .css and other static resources for

the sample application:

1. Linux

2. Windows

b. Add the following admin.json configuration to IG:

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

{

"prefix": "openig",

"connectors": [

{ "port" : 8080 }

],

"heap": [

{

"name": "ClientHandler",

"type": "ClientHandler"

},

{

"name": "ApiProtectionFilter",

"type": "CorsFilter",

"config": {

"policies": [

{

"acceptedOrigins": [

"http://app.example.com:8081"],

"acceptedMethods": ["GET", "POST",

"DELETE"],

"acceptedHeaders": ["Content-Type"]

}

]

}

302 / 360

Notice the following feature:

The default ApiProtectionFilter is overridden by the CorsFilter, which

allows requests from the origin http://app.example.com:8081 .

c. Add the following route to IG:

1. Linux

2. Windows

}

]

}

$HOME/.openig/config/routes/00-uma.json

%appdata%\OpenIG\config\routes\00-uma.json

{

"name": "00-uma",

"condition": "${request.uri.host ==

'app.example.com'}",

"heap": [

{

"name": "UmaService",

"type": "UmaService",

"config": {

"protectionApiHandler": "ClientHandler",

"wellKnownEndpoint":

"http://am.example.com:8088/openam/uma/.well-

known/uma2-configuration",

"resources": [

{

"comment": "Protects all resources matching

the following pattern.",

"pattern": ".*",

"actions": [

{

"scopes": [

"#read"

],

"condition": "${request.method ==

'GET'}"

},

{

303 / 360

"scopes": [

"#create"

],

"condition": "${request.method ==

'POST'}"

}

]

}

]

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "CorsFilter",

"config": {

"policies": [

{

"acceptedOrigins": [

"http://app.example.com:8081"],

"acceptedMethods": ["GET"],

"acceptedHeaders": ["Authorization"],

"exposedHeaders": ["WWW-Authenticate"

],

"allowCredentials": true

}

]

}

},

{

"type": "UmaFilter",

"config": {

"protectionApiHandler": "ClientHandler",

"umaService": "UmaService"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

304 / 360

Notice the following features of the route:

The route matches requests from app.example.com .

The UmaService describes the resources that a resource owner can

share, using AM as the authorization server. It provides a REST API to

manage sharing of resource sets.

The CorsFilter defines the policy for cross-origin requests, listing the

methods and headers that the request can use, the headers that are

exposed to the frontend JavaScript code, and whether the request can

use credentials.

The UmaFilter manages requesting party access to protected

resources, using the UmaService. Protected resources are on the

sample application, which responds to requests on port 8081.

d. Restart IG to reload the configuration.

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://app.example.com:8081/uma/ .

c. Share resources:

i. Select Alice shares resources.

ii. On Alice’s page, select Share with Bob. The following items are

displayed:

The PAT that Alice receives from AM.

The metadata for the resource set that Alice registers through IG.

The result of Alice authenticating with AM in order to create a

policy.

The successful result when Alice configures the authorization

policy attached to the shared resource.

If the step fails, run the following command to get an access token

for Alice:



$ curl -X POST \

-H "Cache-Control: no-cache" \

-H "Content-Type: application/x-www-form-

urlencoded" \

-d

'grant_type=password&scope=uma_protection&userna

me=alice&password=UMAexamp1e&client_id=OpenIG&cl

ient_secret=password' \

http://app.example.com:8081/uma/

305 / 360

If you fail to get an access token, check that AM is configured as

described in this procedure. If you continue to have problems,

make sure that your IG configuration matches that shown when

you are running the test on http://app.example.com:8081/uma/.

d. Access resources:

i. Go back to the first page, and select Bob accesses resources.

ii. On Bob’s page, select Get Alice’s resources. The following items are

displayed:

The WWW-Authenticate Header.

The OpenID Connect Token that Bob gets to obtain the RPT.

The RPT that Bob gets in order to request the resource again.

The final response containing the body of the resource.

If you use a configuration that is different to that described in this chapter, consider the

following tasks to adjust the sample to your configuration:

1. Unpack the UMA files from the sample application described in Using the

sample application to temporary folder:

2. Edit the configuration in common.js , alice.html , and bob.html to match

your settings.

3. Repack the UMA sample client files and then restart the sample application:

http://am.example.com:8088/openam/oauth2/access_

token

Edit the example to match custom settings

$ mkdir /tmp/uma

$ cd /tmp/uma

$ jar -xvf /path/to/IG-sample-application-2023.2.0.jar

webroot-uma

created: webroot-uma/

inflated: webroot-uma/bob.html

inflated: webroot-uma/common.js

inflated: webroot-uma/alice.html

inflated: webroot-uma/index.html

inflated: webroot-uma/style.css

file:///home/pptruser/Downloads/build/site/ig/getting-started/start-sampleapp.html

306 / 360

4. If necessary, adjust the CORS settings for AM.

The UMA share endpoint serves API descriptors at runtime. When you retrieve an API

descriptor for the endpoint, a JSON that describes the API for the endpoint is returned.

You can use the API descriptor with a tool such as Swagger UI to generate a web page

that helps you to view and test the endpoint. For information, refer to Understanding IG

APIs with API descriptors.

To achieve complex server interactions or intensive data transformations that you can’t

currently achieve with scripts or existing handlers, filters, or expressions, extend IG

through scripting and customization. The following sections describe how to extend IG:

The following sections describe how to extend IG through scripts:

$ jar -uvf /path/to/IG-sample-application-2023.2.0.jar

webroot-uma

adding: webroot-uma/(in = 0) (out= 0)(stored 0%)

adding: webroot-uma/bob.html(in = 26458) (out= 17273)

(deflated 34%)

adding: webroot-uma/common.js(in = 3652) (out= 1071)

(deflated 70%)

adding: webroot-uma/alice.html(in = 27775) (out= 17512)

(deflated 36%)

adding: webroot-uma/index.html(in = 22046) (out= 16060)

(deflated 27%)

adding: webroot-uma/style.css(in = 811) (out= 416)

(deflated 48%)

updated module-info: module-info.class

Understand the UMA API with an API descriptor



Extensibility

Extend IG through scripts

About scripts

IMPORTANT

http://swagger.io/swagger-ui/
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#route-api-descriptor

307 / 360

IG supports the Groovy dynamic scripting language through the use the scriptable

objects. For information about scriptable object types, their configuration, and properties,

refer to Scripts.

Scriptable objects are configured by the script’s Internet media type, and either a source

script included in the JSON configuration, or a file script that IG reads from a file. The

configuration can optionally supply arguments to the script.

IG provides global variables to scripts at runtime, and provides access to Groovy’s built-in

functionality. Scripts can access the request and the context, store variables across

executions, write messages to logs, make requests to a web service or to an LDAP

directory service, and access responses returned in promise callback methods.

Before trying the scripts in this chapter, install and configure IG as described in the

Getting started.

When developing and debugging your scripts, consider configuring a capture decorator to

log requests, responses, and context data in JSON form. You can then turn off capturing

when you move to production. For information, refer to CaptureDecorator.

The following example defines a ScriptableFilter written in Groovy, and stored in the

following file:

1. Linux

2. Windows

When you are writing scripts or Java extensions, never use a Promise blocking

method, such as get() , getOrThrow() , or getOrThrowUninterruptibly() , to

obtain the response.

A promise represents the result of an asynchronous operation. Therefore, using a

blocking method to wait for the result can cause deadlocks and/or race issues.

IMPORTANT

Use a reference file script

$HOME/.openig/scripts/groovy/SimpleFormLogin.groovy

%appdata%\OpenIG\scripts\groovy\SimpleFormLogin.groovy

{

"name": "SimpleFormLogin",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

file:///home/pptruser/Downloads/build/site/ig/reference/Scripts.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html#CaptureDecorator

308 / 360

Relative paths in the file field depend on how IG is installed. If IG is installed in an

application server, then paths for Groovy scripts are relative to

$HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts\groovy).

The base location $HOME/.openig/scripts/groovy (or %appdata%

\OpenIG\scripts\groovy) is on the classpath when the scripts are executed. If some

Groovy scripts are not in the default package, but instead have their own package names,

they belong in the directory corresponding to their package name. For example, a script

in package com.example.groovy belongs in

$HOME/.openig/scripts/groovy/com/example/groovy/ (or %appdata%

\OpenIG\scripts\groovy\com\example\groovy\).

You can use Studio to configure a ScriptableFilter or scriptableThrottlingPolicy, or use

scripts to configure scopes in OAuth2ResourceServerFilter.

During configuration, you can enter the script directly into the object, or you can use a

stored reference script. Note the following points about creating and using reference

scripts:

When you enter a script directly into an object, the script is added to the list of

reference scripts.

You can use a reference script in multiple objects in a route, but if you edit a

reference script, all objects that use it are updated with the change.

If you delete an object that uses a script, or remove the object from the chain, the

script that it references remains in the list of scripts.

If a reference script is used in an object, you can’t rename or delete the script.

For an example of creating a ScriptableThrottlingPolicy in Studio, refer to Configure

Scriptable Throttling. For information about using Studio, refer to Adding Configuration to

a Route.

To route requests when the conditions are complicated, use a ScriptableHandler

instead of a DispatchHandler as described in DispatchHandler.

1. Add the following script to IG:

1. Linux

"file": "SimpleFormLogin.groovy"

}

}

Scripts in Studio

Script dispatch

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-scriptable
file:///home/pptruser/Downloads/build/site/ig/studio-guide/structured.html#studio-add-filters
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#DispatchHandler

309 / 360

2. Windows

$HOME/.openig/scripts/groovy/DispatchHandler.groovy

%appdata%\OpenIG\scripts\groovy\DispatchHandler.groovy

/*

* This simplistic dispatcher matches the path part of the

HTTP request.

* If the path is /mylogin, it checks Username and

Password headers,

* accepting bjensen:H1falutin, and returning HTTP 403

Forbidden to others.

* Otherwise it returns HTTP 401 Unauthorized.

*/

// Rather than returning a Promise of a Response from an

external source,

// this script returns the response itself.

response = new Response(Status.OK);

switch (request.uri.path) {

case "/mylogin":

if (request.headers.Username.values[0] ==

"bjensen" &&

request.headers.Password.values[0] ==

"H1falutin") {

response.status = Status.OK

response.entity = "<html><p>Welcome back,

Babs!</p></html>"

} else {

response.status = Status.FORBIDDEN

response.entity = "<html><p>Authorization

required</p></html>"

}

break

310 / 360

2. Add the following route to IG, to set up headers required by the script when the

user logs in:

1. Linux

2. Windows

default:

response.status = Status.UNAUTHORIZED

response.entity = "<html><p>Please log in.</p></html>"

break

}

// Return the locally created response, no need to wrap it

into a Promise

return response

$HOME/.openig/config/routes/98-dispatch.json

%appdata%\OpenIG\config\routes\98-dispatch.json

{

"heap": [

{

"name": "DispatchHandler",

"type": "DispatchHandler",

"config": {

"bindings": [{

"condition": "${find(request.uri.path,

'/mylogin')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"Username": [

311 / 360

3. Go to http://ig.example.com:8080/dispatch , and click log in .

The HeaderFilter sets Username and Password headers in the request, and

passes the request to the script. The script responds, Welcome back, Babs!

HTTP basic access authentication is a simple challenge and response mechanism, where a

server requests credentials from a client, and the client passes them to the server in an

Authorization header. The credentials are base-64 encoded. To protect them, use SSL

"bjensen"

],

"Password": [

"H1falutin"

]

}

}

}

],

"handler": "Dispatcher"

}

}

},

{

"handler": "Dispatcher",

"condition": "${find(request.uri.path,

'/dispatch')}"

}

]

}

},

{

"name": "Dispatcher",

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"file": "DispatchHandler.groovy"

}

}

],

"handler": "DispatchHandler",

"condition": "${find(request.uri.path, '^/dispatch') or

find(request.uri.path, '^/mylogin')}"

}



Script HTTP basic access authentication

http://ig.example.com:8080/dispatch

312 / 360

encryption for the connections between the server and client. For more information, see

RFC 2617 .

1. Add the following script to IG, to add an Authorization header based on a

username and password combination:

1. Linux

2. Windows



$HOME/.openig/scripts/groovy/BasicAuthFilter.groovy

%appdata%\OpenIG\scripts\groovy\BasicAuthFilter.groovy

/*

* Perform basic authentication with the user name and

password

* that are supplied using a configuration like the

following:

*

* {

* "name": "BasicAuth",

* "type": "ScriptableFilter",

* "config": {

* "type": "application/x-groovy",

* "file": "BasicAuthFilter.groovy",

* "args": {

* "username": "bjensen",

* "password": "H1falutin"

* }

* }

* }

*/

def userPass = username + ":" + password

def base64UserPass = userPass.getBytes().encodeBase64()

request.headers.add("Authorization", "Basic

${base64UserPass}" as String)

// Credentials are only base64-encoded, not encrypted: Set

scheme to HTTPS.

/*

* When connecting over HTTPS, by default the client tries

http://www.ietf.org/rfc/rfc2617.txt

313 / 360

2. Add the following route to IG, to set up headers required by the script when the

user logs in:

1. Linux

2. Windows

to trust the server.

* If the server has no certificate

* or has a self-signed certificate unknown to the client,

* then the most likely result is an

SSLPeerUnverifiedException.

*

* To avoid an SSLPeerUnverifiedException,

* set up HTTPS correctly on the server.

* Either use a server certificate signed by a well-known

CA,

* or set up the gateway to trust the server certificate.

*/

request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the

Response.

// The Response can be handled with asynchronous Promise

callbacks.

next.handle(context, request)

$HOME/.openig/config/routes/09-basic.json

%appdata%\OpenIG\config\routes\09-basic.json

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthFilter.groovy",

"args": {

"username": "bjensen",

"password": "H1falutin"

}

314 / 360

When the request path matches /basic , the route calls the Chain, which runs

the ScriptableFilter. The capture setting captures the request as updated by the

ScriptableFilter. Finally, IG returns a static page.

3. Go to http://ig.example.com:8080/basic .

The captured request in the console log shows that the scheme is now HTTPS,

and that the Authorization header is set for HTTP Basic:

Many organizations use an LDAP directory service, such as ForgeRock Directory Services

DS), to store user profiles and authentication credentials. This section describes how to

authenticate to DS by using a script and a ScriptableFilter.

DS is secure by default, so connections between IG and DS must be configured for TLS.

For convenience, this example uses a TrustAllManager to blindly accept any certificate

presented by DS. In a production environment, use a TrustManager that is configured to

accept only the appropriate certificates.

},

"capture": "filtered_request"

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"

]

},

"entity": "Hello bjensen!"

}

}

}

},

"condition": "${find(request.uri.path, '^/basic')}"

}



GET https://app.example.com:8081/basic HTTP/1.1

...

Authorization: Basic Ymp...aW4=

Script authentication to LDAP-enabled servers

http://ig.example.com:8080/basic

315 / 360

If the LDAP connection in your deployment is not secured with TLS, you can remove SSL

options from the example script, and remove the TrustAllManager from the example

route.

For more information about attributes and types for interacting with LDAP, see

AttributeParser in DS’s Javadoc. The ConnectionFactory heartbeat is enabled by default.

For information about how to disable it, refer to LdapConnectionFactory in DS’s Javadoc.

1. Install an LDAP directory server, such as ForgeRock Directory Services , and

then generate or import some sample users who can authenticate over LDAP.

For information about setting up DS and importing sample data, refer to Install

DS for evaluation in Directory Services’s Installation guide.

2. Add the following script to IG:

1. Linux

2. Windows



$HOME/.openig/scripts/groovy/LdapsAuthFilter.groovy

%appdata%\OpenIG\scripts\groovy\LdapsAuthFilter.groovy

import org.forgerock.opendj.ldap.*

import org.forgerock.opendj.security.SslOptions;

/* Perform LDAP authentication based on user credentials

from a form,

* connecting to an LDAPS enabled server.

*

* If LDAP authentication succeeds, then return a promise

to handle the response.

* If there is a failure, produce an error response and

return it.

*/

username = request.queryParams?.username[0]

password = request.queryParams?.password[0]

// Update port number to match the LDAPS port of your

directory service.

host = ldapHost ?: "localhost"

port = ldapPort ?: 1636

// Include options for SSL.

https://backstage.forgerock.com/docs/ds/7.3/javadoc/org/forgerock/opendj/ldap/AttributeParser.html
https://backstage.forgerock.com/docs/ds/7.3/javadoc/org/forgerock/opendj/ldap/LdapConnectionFactory.html
https://www.forgerock.com/platform/directory-services/
https://backstage.forgerock.com/docs/ds/7.3/install-guide/setup-ds.html

316 / 360

// In this example, the keyManager is not set (no mTLS

enabled), and both

// the trustManager and the LDAP secure protocol are

specified from the

// script arguments (see 'trustManager' and 'protocols'

arguments).

// In a development environment (when there is no TLS),

the SslOptions can be removed completely.

ldapOptions = ldap.defaultOptions(context)

SslOptions sslOptions = SslOptions.newSslOptions(null,

trustManager)

.enabledProtocols(protocols);

ldapOptions =

ldapOptions.set(CommonLdapOptions.SSL_OPTIONS,

sslOptions);

// Include SSL options in the LDAP connection

client = ldap.connect(host, port as Integer, ldapOptions)

try {

// Assume the username is an exact match of either

// the user ID, the email address, or the user's full

name.

filter = "(|(uid=%s)(mail=%s)(cn=%s))"

user = client.searchSingleEntry(

"ou=people,dc=example,dc=com",

ldap.scope.sub,

ldap.filter(filter, username, username,

username))

client.bind(user.name as String,

password?.toCharArray())

// Authentication succeeded.

// Set a header (or whatever else you want to do

here).

request.headers.add("Ldap-User-Dn",

user.name.toString())

// Most LDAP attributes are multi-valued.

// When you read multi-valued attributes, use the

parse() method,

317 / 360

// with an AttributeParser method

// that specifies the type of object to return.

attributes.cn = user.cn?.parse().asSetOfString()

// When you write attribute values, set them directly.

user.description = "New description set by my script"

// Here is how you might read a single value of a

multi-valued attribute:

attributes.description =

user.description?.parse().asString()

// Call the next handler. This returns when the

request has been handled.

return next.handle(context, request)

} catch (AuthenticationException e) {

// LDAP authentication failed, so fail the response

with

// HTTP status code 403 Forbidden.

response = new Response(Status.FORBIDDEN)

response.headers['Content-Type'] = "text/html;

charset=utf-8"

response.entity = "<html><p>Authentication failed: " +

e.message + "</p></html>"

} catch (Exception e) {

// Something other than authentication failed on the

server side,

// so fail the response with HTTP 500 Internal Server

Error.

response = new Response(Status.INTERNAL_SERVER_ERROR)

response.headers['Content-Type'] = "text/html;

charset=utf-8"

response.entity = "<html><p>Server error: " +

e.message + "</p></html>"

} finally {

client.close()

}

// Return the locally created response, no need to wrap it

into a Promise

return response

318 / 360

Information about the script is given in the script comments. If necessary, adjust

the script to match your DS installation.

3. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/10-ldap.json

%appdata%\OpenIG\config\routes\10-ldap.json

{

"heap": [

{

"name": "DsTrustManager",

"type": "TrustAllManager"

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ScriptableFilter",

"config": {

"args": {

"ldapHost": "localhost",

"ldapPort": 1636,

"protocols": "TLSv1.3",

"trustManager": "${heap['DsTrustManager']}"

},

"type": "application/x-groovy",

"file": "LdapsAuthFilter.groovy"

}

}

],

"handler": {

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"source": [

"dn = request.headers['Ldap-User-

Dn'].values[0]",

319 / 360

Notice the following features of the route:

The route matches requests to /ldap .

The ScriptableFilter calls LdapsAuthFilter.groovy to authenticate the user

over a secure LDAP connection, using the username and password

provided in the request.

The script uses TrustAllManager to blindly accept any certificate presented

by DS.

The script receives a connection to the DS server, using TLS options. Using

the credentials in the request, the script tries to perform an LDAP bind

operation. If the bind succeeds (the credentials are accepted by the LDAP

server), the request continues to the ScriptableHandler. Otherwise, the

request stops with an error.

The ScriptableHandler returns the user DN.

4. Go to http://ig.example.com:8080/ldap?username=abarnes&password=chevron

 to specify credentials for the sample user abarnes .

The script returns the user DN:

This example builds on Password replay from a database to use scripts to look up

credentials in a database, set the credentials in headers, and set the scheme in HTTPS to

protect the request.

1. Set up and test the example in Password replay from a database.

"entity = '<html><body><p>Ldap-User-Dn: ' + dn

+ '</p></body></html>'",

"",

"response = new Response(Status.OK)",

"response.entity = entity",

"return response"

]

}

}

}

},

"condition": "${find(request.uri.path, '^/ldap')}"

}



Ldap-User-Dn: uid=abarnes,ou=People,dc=example,dc=com

Script SQL queries

http://ig.example.com:8080/ldap?username=abarnes&password=chevron
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#credentials-database
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#credentials-database

320 / 360

2. Add the following script to IG, to look up user credentials in the database, by

email address, and set the credentials in the request headers for the next

handler:

1. Linux

2. Windows

3. Add the following script to IG to access the database, and get credentials:

1. Linux

2. Windows

$HOME/.openig/scripts/groovy/SqlAccessFilter.groovy

%appdata%\OpenIG\scripts\groovy\SqlAccessFilter.groovy

/*

* Look up user credentials in a relational database

* based on the user's email address provided in the

request form data,

* and set the credentials in the request headers for the

next handler.

*/

def client = new SqlClient(dataSource)

def credentials =

client.getCredentials(request.queryParams?.mail[0])

request.headers.add("Username", credentials.Username)

request.headers.add("Password", credentials.Password)

// The credentials are not protected in the headers, so

use HTTPS.

request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the

Response.

// The Response can be handled with asynchronous Promise

callbacks.

next.handle(context, request)

$HOME/.openig/scripts/groovy/SqlClient.groovy

321 / 360

%appdata%\OpenIG\scripts\groovy\SqlClient.groovy

import groovy.sql.Sql

import javax.sql.DataSource

/**

* Access a database with a well-known structure,

* in particular to get credentials given an email

address.

*/

class SqlClient {

// DataSource supplied as constructor parameter.

def sql

SqlClient(DataSource dataSource) {

if (dataSource == null) {

throw new IllegalArgumentException("DataSource

is null")

}

this.sql = new Sql(dataSource)

}

// The expected table is laid out like the following.

// Table USERS

// --

// | USERNAME | PASSWORD | EMAIL |...|

// --

// | <username>| <passwd> | <mail@...>|...|

// --

String tableName = "USERS"

String usernameColumn = "USERNAME"

String passwordColumn = "PASSWORD"

String mailColumn = "EMAIL"

/**

* Get the Username and Password given an email

address.

*

* @param mail Email address used to look up the

credentials

322 / 360

4. Add the following route to IG to set up headers required by the scripts when the

user logs in:

1. Linux

2. Windows

* @return Username and Password from the database

*/

def getCredentials(mail) {

def credentials = [:]

def query = "SELECT " + usernameColumn + ", " +

passwordColumn +

" FROM " + tableName + " WHERE " +

mailColumn + "='$mail';"

sql.eachRow(query) {

credentials.put("Username",

it."$usernameColumn")

credentials.put("Password",

it."$passwordColumn")

}

return credentials

}

}

$HOME/.openig/config/routes/11-db.json

%appdata%\OpenIG\config\routes\11-db.json

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "JdbcDataSource-1",

"type": "JdbcDataSource",

"config": {

"driverClassName": "org.h2.Driver",

"jdbcUrl": "jdbc:h2:tcp://localhost/~/test",

"username": "sa",

"passwordSecretId": "database.password",

"secretsProvider": "SystemAndEnvSecretStore-1"

323 / 360

Notice the following features of the route:

The route matches requests to /db .

The JdbcDataSource in the heap sets up the connection to the database.

The ScriptableFilter calls SqlAccessFilter.groovy to look up credentials

over SQL.

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ScriptableFilter",

"config": {

"args": {

"dataSource": "${heap['JdbcDataSource-1']}"

},

"type": "application/x-groovy",

"file": "SqlAccessFilter.groovy"

}

},

{

"type": "StaticRequestFilter",

"config": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${request.headers['Username'][0]}"

],

"password": [

"${request.headers['Password'][0]}"

]

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.path, '^/db')}"

}

324 / 360

SqlAccessFilter.groovy , in turn, calls SqlClient.groovy to access the

database to get the credentials.

The StaticRequestFilter uses the credentials to build a login request.

Although the script sets the scheme to HTTPS, for convenience in this

example, the StaticRequestFilter resets the URI to HTTP.

5. To test the setup, go to a URL with a query string parameter that specifies an

email address in the database, such as http://ig.example.com:8080/db?

mail=george@example.com .

The sample application profile page for the user is displayed.

IG includes a complete Java application programming interface to allow you to customize

IG to perform complex server interactions or intensive data transformations that you

cannot achieve with scripts or the existing handlers, filters, and expressions described in

Expressions. The following sections describe how to extend IG through the Java API:

Interface Stability: Evolving, as defined in ForgeRock product stability labels.

The following interfaces are available:

Decorator

A Decorator adds new behavior to another object without changing the base type of

the object.

When suggesting custom Decorator names, know that IG reserves all field names

that use only alphanumeric characters. To avoid clashes, use dots or dashes in your

field names, such as my-decorator .

ExpressionPlugin

An ExpressionPlugin adds a node to the Expression context tree, alongside env

(for environment variables), and system (for system properties). For example, the

Extend IG through the Java API

When you are writing scripts or Java extensions, never use a Promise blocking

method, such as get() , getOrThrow() , or getOrThrowUninterruptibly() , to

obtain the response.

A promise represents the result of an asynchronous operation. Therefore, using a

blocking method to wait for the result can cause deadlocks and/or race issues.

IMPORTANT

Key extension points

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/ig/reference/Expressions.html#Expressions
https://backstage.forgerock.com/docs/ig/latest/release-notes/stability.html#interface-stability
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/decoration/Decorator.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/el/ExpressionPlugin.html

325 / 360

expression ${system['user.home']} yields the home directory of the user running

the application server for IG.

In your ExpressionPlugin , the getKey() method returns the name of the node, and

the getObject() method returns the unified expression language context object that

contains the values needed to resolve the expression. The plugins for env and

system return Map objects, for example.

When you add your own ExpressionPlugin , you must make it discoverable within

your custom library. You do this by adding a services file named after the plugin

interface, where the file contains the fully qualified class name of your plugin, under

META-INF/services/org.forgerock.openig.el.ExpressionPlugin in the .jar file for

your customizations. When you have more than one plugin, add one fully qualified

class name per line. For information, refer to the reference documentation for the

Java class ServiceLoader . If you build your project using Maven, then you can add

this under the src/main/resources directory. Add custom libraries, as described in

Embed Customizations in IG.

Remember to provide documentation for IG administrators on how your plugin

extends expressions.

Filter

A Filter serves to process a request before handing it off to the next element in the

chain, in a similar way to an interceptor programming model.

The Filter interface exposes a filter() method, which takes a Context, a Request,

and the Handler, which is the next filter or handler to dispatch to. The filter()

method returns a Promise that provides access to the Response with methods for

dealing with both success and failure conditions.

A filter can elect not to pass the request to the next filter or handler, and instead

handle the request itself. It can achieve this by merely avoiding a call to

next.handle(context, request) , creating its own response object and returning

that in the promise. The filter is also at liberty to replace a response with another of its

own. A filter can exist in more than one chain, therefore should make no assumptions

or correlations using the chain it is supplied. The only valid use of a chain by a filter is

to call its handle() method to dispatch the request to the rest of the chain.

Handler

A Handler generates a response for a request.

The Handler interface exposes a handle() method, which takes a Context, and a

Request. It processes the request and returns a Promise that provides access to the

link:../_attachments/apidocs/org/forgerock/http/protocol/Response .html[Response]

with methods for dealing with both success and failure conditions. A handler can elect

to dispatch the request to another handler or chain.

ClassAliasResolver



https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/ServiceLoader.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#custom-embed
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Filter.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Context.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Request.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Handler.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/util/Promise.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Response.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Handler.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Context.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Request.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/util/promise/Promise.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/alias/ClassAliasResolver.html

326 / 360

A ClassAliasResolver makes it possible to replace a fully qualified class name with

a short name (an alias) in an object declaration’s type.

The ClassAliasResolver interface exposes a resolve(String) method to do the

following:

Return the class mapped to a given alias

Return null if the given alias is unknown to the resolver

All resolvers available to IG are asked until the first non-null value is returned or

until all resolvers have been contacted.

The order of resolvers is nondeterministic. To prevent conflicts, don’t use the

same alias for different types.

The SampleFilter class implements the Filter interface to set a header in the

incoming request and in the outgoing response.

In the following example, the sample filter adds an arbitrary header:

Implement a customized sample filter

package org.forgerock.openig.doc.examples;

import org.forgerock.http.Filter;

import org.forgerock.http.Handler;

import org.forgerock.http.protocol.Request;

import org.forgerock.http.protocol.Response;

import org.forgerock.openig.heap.GenericHeaplet;

import org.forgerock.openig.heap.HeapException;

import org.forgerock.openig.model.type.service.NoTypeInfo;

import org.forgerock.services.context.Context;

import org.forgerock.util.promise.NeverThrowsException;

import org.forgerock.util.promise.Promise;

/**

* Filter to set a header in the incoming request and in the

outgoing response.

*/

public class SampleFilter implements Filter {

/** Header name. */

String name;

/** Header value. */

String value;

327 / 360

/**

* Set a header in the incoming request and in the outgoing

response.

* A configuration example looks something like the

following.

*

* <pre>

* {

* "name": "SampleFilter",

* "type": "SampleFilter",

* "config": {

* "name": "X-Greeting",

* "value": "Hello world"

* }

* }

* </pre>

*

* @param context Execution context.

* @param request HTTP Request.

* @param next Next filter or handler in the

chain.

* @return A {@code Promise} representing the response to be

returned to the client.

*/

@Override

public Promise<Response, NeverThrowsException> filter(final

Context context,

final

Request request,

final

Handler next) {

// Set header in the request.

request.getHeaders().put(name, value);

// Pass to the next filter or handler in the chain.

return next.handle(context, request)

// When it has been successfully executed,

execute the following callback

.thenOnResult(response -> {

// Set header in the response.

response.getHeaders().put(name, value);

});

}

328 / 360

The corresponding filter configuration is similar to this:

/**

* Create and initialize the filter, based on the

configuration.

* The filter object is stored in the heap.

*/

@NoTypeInfo

public static class Heaplet extends GenericHeaplet {

/**

* Create the filter object in the heap,

* setting the header name and value for the filter,

* based on the configuration.

*

* @return The filter object.

* @throws HeapException Failed to create the object.

*/

@Override

public Object create() throws HeapException {

SampleFilter filter = new SampleFilter();

filter.name =

config.get("name").as(evaluatedWithHeapProperties()).required().a

sString();

filter.value =

config.get("value").as(evaluatedWithHeapProperties()).required().

asString();

return filter;

}

}

}

{

"name": "SampleFilter",

"type": "org.forgerock.openig.doc.examples.SampleFilter",

"config": {

"name": "X-Greeting",

"value": "Hello world"

}

}

329 / 360

Note how type is configured with the fully qualified class name for SampleFilter . To

simplify the configuration, implement a class alias resolver, as described in Implement a

Class Alias Resolver.

To simplify the configuration of a customized object, implement a ClassAliasResolver

to allow the use of short names instead of fully qualified class names.

In the following example, a ClassAliasResolver is created for the SampleFilter class:

Implement a class alias resolver

package org.forgerock.openig.doc.examples;

import static java.util.stream.Collectors.toUnmodifiableSet;

import java.util.HashMap;

import java.util.Map;

import java.util.Optional;

import java.util.Set;

import org.forgerock.openig.alias.ClassAliasResolver;

import org.forgerock.openig.heap.Heaplet;

import org.forgerock.openig.heap.Heaplets;

/**

* Allow use of short name aliases in configuration object types.

*

* This allows a configuration with {@code "type":

"SampleFilter"}

* instead of {@code "type":

"org.forgerock.openig.doc.examples.SampleFilter"}.

*/

public class SampleClassAliasResolver implements

ClassAliasResolver {

private static final Map<String, Class<?>> ALIASES =

new HashMap<>();

static {

ALIASES.put("SampleFilter", SampleFilter.class);

}

/**

* Get the class for a short name alias.

*

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#custom-class-alias-resolver

330 / 360

With this ClassAliasResolver , the filter configuration in Implement a Customized

Sample Filter can use the alias instead of the fully qualified class name, as follows:

To create a customized ClassAliasResolver , add a services file with the following

characteristics:

Name the file after the class resolver interface.

Store the file under META-

INF/services/org.forgerock.openig.alias.ClassAliasResolver , in the

customization .jar file.

If you build your project using Maven, you can add the file under the

src/main/resources directory.

In your ClassAliasResolver file, add a line for the fully qualified class name of your

resolver as follows:

* @param alias Short name alias.

* @return The class, or null if the alias is not

defined.

*/

@Override

public Class<?> resolve(final String alias) {

return ALIASES.get(alias);

}

@Override

public Set<Class<? extends Heaplet>> supportedTypes() {

return ALIASES.values()

.stream()

.map(Heaplets::findHeapletClass)

.filter(Optional::isPresent)

.map(Optional::get)

.collect(toUnmodifiableSet());

}

}

{

"name": "SampleFilter",

"type": "SampleFilter",

"config": {

"name": "X-Greeting",

"value": "Hello world"

}

}

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#custom-sample-filter

331 / 360

If you have more than one resolver in your .jar file, add one line for each fully

qualified class name.

Objects are added to the heap and supplied with configuration artifacts at initialization

time. To be integrated with the configuration, a class must have an accompanying

implementation of the Heaplet interface. The easiest and most common way of exposing

the heaplet is to extend the GenericHeaplet class in a nested class of the class you want to

create and initialize, overriding the heaplet’s create() method.

Within the create() method, you can access the object’s configuration through the

config field.

1. Build your IG extension into a .jar file.

2. Create the directory $HOME/.openig/extra , where $HOME/.openig is the

instance directory:

3. Add the .jar file to the directory. The following example adds sample-

filter.jar to $HOME/.openig/extra :

4. If the extension has dependencies that are not included in IG, also add them to

the directory.

5. Start IG, as described in Start IG with default settings.

This section describes how to record a custom audit event to standard output. The

example is based on the example in Validate access tokens through the introspection

endpoint, adding an audit event for the custom topic OAuth2AccessTopic .

org.forgerock.openig.doc.examples.SampleClassAliasResolver

Configure the heap object for the customization

Embed customizations in IG

$ mkdir $HOME/.openig/extra

$ cp ~/sample-filter/target/sample-filter.jar

$HOME/.openig/extra

Record custom audit events

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/heap/Heaplet.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/heap/GenericHeaplet.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-default
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

332 / 360

To record custom audit events to other outputs, adapt the route in the following

procedure to use another audit event handler.

For information about how to configure supported audit event handlers, and exclude

sensitive data from log files, refer to Auditing your deployment. For more information

about audit event handlers, refer to Audit framework.

Record custom audit events to standard output

Before you start, prepare IG and the sample application as described in the Getting

started.

1. Set up AM as described in Validate access tokens through the introspection

endpoint.

2. Define the schema of an event topic called OAuth2AccessTopic by adding the

following route to IG:

1. Linux

2. Windows

$HOME/.openig/audit-schemas/OAuth2AccessTopic.json

%appdata%\OpenIG\OpenIG\audit-

schemas/OAuth2AccessTopic.json

{

"schema": {

"$schema": "http://json-schema.org/draft-04/schema#",

"id": "OAuth2Access",

"type": "object",

"properties": {

"_id": {

"type": "string"

},

"timestamp": {

"type": "string"

},

"transactionId": {

"type": "string"

},

"eventName": {

"type": "string"

},

"accessToken": {

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2.html#oauth2-rs-introspect

333 / 360

Notice that the schema includes the following fields:

Mandatory fields _id , timestamp , transactionId , and eventName .

"type": "object",

"properties": {

"scopes": {

"type": "array",

"items": {

"type": "string"

}

},

"expiresAt": "number",

"sub": "string"

},

"required": ["scopes"]

},

"resource": {

"type": "object",

"properties": {

"path": {

"type": "string"

},

"method": {

"type": "string"

}

}

}

}

},

"filterPolicies": {

"field": {

"includeIf": [

"/_id",

"/timestamp",

"/eventName",

"/transactionId",

"/accessToken",

"/resource"

]

}

},

"required": ["_id", "timestamp", "transactionId",

"eventName"]

}

334 / 360

accessToken , to include the access token scopes, expiry time, and the

subject.

resource , to include the path and method.

filterPolicies , to specify additional event fields to include in the logs.

3. Define a script to generate audit events on the topic named

OAuth2AccessTopic , by adding the following file to the IG configuration as:

1. Linux

2. Windows

$HOME/.openig/scripts/groovy/OAuth2Access.groovy

%appdata%\OpenIG\scripts\groovy/OAuth2Access.groovy

import static

org.forgerock.json.resource.Requests.newCreateRequest;

import static

org.forgerock.json.resource.ResourcePath.resourcePath;

// Helper functions

def String transactionId() {

return contexts.transactionId.transactionId.value;

}

def JsonValue auditEvent(String eventName) {

return json(object(field('eventName', eventName),

field('transactionId', transactionId()),

field('timestamp',

clock.instant().toEpochMilli())));

}

def auditEventRequest(String topicName, JsonValue

auditEvent) {

return newCreateRequest(resourcePath("/" + topicName),

auditEvent);

}

def accessTokenInfo() {

def accessTokenInfo = contexts.oauth2.accessToken;

return object(field('scopes', accessTokenInfo.scopes

as List),

field('expiresAt', accessTokenInfo.expiresAt),

field('subname',

335 / 360

The script generates audit events named OAuth2AccessEvent , on a topic

named OAuth2AccessTopic . The events conform to the topic schema.

4. Set an environment variable for the IG agent password, and then restart IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-

encoded.

5. Add the following route to IG:

1. Linux

2. Windows

accessTokenInfo.info.subname));

}

def resourceEvent() {

return object(field('path', request.uri.path),

field('method', request.method));

}

// --

// Build the event

JsonValue auditEvent = auditEvent('OAuth2AccessEvent')

.add('accessToken', accessTokenInfo())

.add('resource', resourceEvent());

// Send the event, and log a message if there is an error

auditService.handleCreate(context,

auditEventRequest("OAuth2AccessTopic", auditEvent))

.thenOnException(e -> logger.warn("An error

occurred while sending the audit event", e));

// Continue onto the next filter

return next.handle(context, request)

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/30-custom.json

%appdata%\OpenIG\config\routes\30-custom.json

336 / 360

{

"name": "30-custom",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-introspect-

audit')}",

"heap": [

{

"name": "AuditService-1",

"type": "AuditService",

"config": {

"config": {},

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"OAuth2AccessTopic"

]

}

}

]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

337 / 360

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"type": "ScriptableFilter",

"config": {

338 / 360

Notice the following features of the route:

The route matches requests to /rs-introspect-audit .

The accessTokenResolver uses the token introspection endpoint to

validate the access token.

The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing

token introspection request.

The ScriptableFilter uses the Groovy script OAuth2Access.groovy to

generate audit events named OAuth2AccessEvent , with a topic named

OAuth2AccessTopic .

The audit service publishes the custom audit event to the

JsonStdoutAuditEventHandler. A single line per audit event is published to

standard output.

6. Test the setup

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

"type": "application/x-groovy",

"file": "OAuth2Access.groovy",

"args": {

"auditService": "${heap['AuditService-1']}",

"clock": "${heap['Clock']}"

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><h2>Decoded access_token:

${contexts.oauth2.accessToken.info}</h2></body></html>"

}

}

}

}

}

$ mytoken=$(curl -s \

--user "client-application:password" \

339 / 360

b. Access the route, with the access_token returned in the previous step:

Information about the decoded access_token is returned.

c. Search the standard output for an audit message like the following

example, that includes an audit event on the topic OAuth2AccessTopic :

This chapter contains template routes for common configurations. To use a template, set

up IG as described in the Getting started, and modify the template for your deployment.

Before you use a route in production, review the points in Security guide.

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/rs-introspect-

audit --header "Authorization: Bearer ${mytoken}"

{

"_id": "fa2...-14",

"timestamp": 155...541,

"eventName": "OAuth2AccessEvent",

"transactionId": "fa2...-13",

"accessToken": {

"scopes": ["employeenumber", "mail"],

"expiresAt": 155...000,

"subname": "demo"

},

"resource": {

"path": "/rs-introspect-audit",

"method": "GET"

},

"source": "audit",

"topic": "OAuth2AccessTopic",

"level": "INFO"

}

Configuration templates

Proxy and capture

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/security-guide/preface.html

340 / 360

If you installed and configured IG with a router and default route as described in the

Getting started, then you already proxy and capture the application requests coming in

and the server responses going out.

This template route uses a DispatchHandler to change the scheme to HTTPS on login:

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${request.uri.path == '/login'}",

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

},

{

"condition": "${request.uri.scheme == 'http'}",

"handler": "ReverseProxyHandler",

"baseURI": "http://app.example.com:8081"

},

{

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

}

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

341 / 360

To try this example with the sample application:

1. Add the following route to IG:

1. Linux

2. Windows

2. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

3. Go to http://ig.example.com:8080/login?demo=capture .

The login page of the sample application is displayed.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

]

}

},

"condition": "${find(request.uri.query, 'demo=capture')}"

}

$HOME/.openig/config/routes/20-capture.json

%appdata%\OpenIG\config\routes\20-capture.json

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}



http://ig.example.com:8080/login?demo=capture

342 / 360

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the baseURI settings to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route intercepts the login page request, replaces it with a login form, and

logs the user into the target application with hard-coded username and password:

Simple login form

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

343 / 360

To try this example with the sample application:

1. Add the following route to IG:

1. Linux

2. Windows

2. Replace MY_USERNAME with demo , and MY_PASSWORD with Ch4ng31t .

3. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=simple')}"

}

$HOME/.openig/config/routes/21-simple.json

%appdata%\OpenIG\config\routes\21-simple.json

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

344 / 360

4. Go to http://ig.example.com:8080/login?demo=simple .

The sample application profile page for the demo user displays information about

the request:

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the uri , form , and baseURI to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

Like the previous route, this template route intercepts the login page request, replaces it

with the login form, and logs the user into the target application with hard-coded

username and password. This route also adds a CookieFilter to manage cookies.

The route uses a default CookieFilter to manage cookies. In this default configuration,

cookies from the protected application are intercepted and stored in the IG session. They

are not sent to the browser. For information, see CookieFilter.

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}



Username demo

REQUEST INFORMATION

Method POST

URI /login

Cookies

…​

Login form with cookie from login page

http://ig.example.com:8080/login?demo=simple
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#CookieFilter

345 / 360

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

]

}

}

}

},

{

"type": "CookieFilter"

346 / 360

To try this example with the sample application:

1. Add the following route to IG:

1. Linux

2. Windows

2. Replace MY_USERNAME with kramer , and MY_PASSWORD with N3wman12 .

3. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

4. Go to http://ig.example.com:8080/login?demo=cookie .

The sample application page is displayed.

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=cookie')}"

}

$HOME/.openig/config/routes/22-cookie.json

%appdata%\OpenIG\config\routes\22-cookie.json

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}



http://ig.example.com:8080/login?demo=cookie

347 / 360

5. Refresh your connection to http://ig.example.com:8080/login?demo=cookie .

Compared to the example in Login form with cookie from login page, this example

displays additional information about the session cookie:

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the uri and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

When a user without a valid session tries to access a protected application, this template

route works with an application to return a login page.

The route uses a PasswordReplayFilter to find the login page by using a pattern that

matches a mock AM Classic UI page.

Cookies sent by the user agent are retained in the CookieFilter, and not forwarded to the

protected application. Similarly, set-cookies sent by the protected application are retained

in the CookieFilter and not forwarded back to the user agent.

The route uses a default CookieFilter to manage cookies. In this default configuration,

cookies from the protected application are intercepted and stored in the IG session. They

Method POST

URI /login

Cookies

Headers content-type: application/x-www-form-urlencoded

content-length: 31

host: app.example.com:8444

connection: Keep-Alive

user-agent: Apache-HttpAsyncClient/…​ (Java/…​)



Cookies session-cookie=123…​

Login form with password replay and cookie filters

http://ig.example.com:8080/login?demo=cookie
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/templates.html#template-login-cookie

348 / 360

are not sent to the browser. For information, see CookieFilter.

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPageContentMarker": "OpenAM\\s\\(Login\\)",

"request": {

"comments": [

"An example based on OpenAM classic UI: ",

"uri is for the OpenAM login page; ",

"IDToken1 is the username field; ",

"IDToken2 is the password field; ",

"host takes the OpenAM FQDN:port.",

"The sample app simulates OpenAM."

],

"method": "POST",

"uri":

"http://app.example.com:8081/openam/UI/Login",

"form": {

"IDToken0": [

""

],

"IDToken1": [

"demo"

],

"IDToken2": [

"Ch4ng31t"

],

"IDButton": [

"Log+In"

],

"encoded": [

"false"

]

},

"headers": {

"host": [

"app.example.com:8081"

]

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#CookieFilter

349 / 360

To try this example with the sample application:

1. Save the file as $HOME/.openig/config/routes/23-classic.json .

2. Use the following curl command to check that it works:

To use this as a default route with a real application:

1. Change the uri and form to match the target application.

2. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route extracts a hidden value from the login page, and includes it the static

login form that it then POSTs to the target application.

}

}

}

},

{

"type": "CookieFilter"

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=classic')}"

}

$ curl -D- http://ig.example.com:8080/login?demo=classic

HTTP/1.1 200 OK

Set-Cookie: IG_SESSIONID=24446BA29E866F840197C8E0EAD57A89;

Path=/; HttpOnly

...

Login which requires a hidden value from the login page

{

"properties": {

"appBaseUri": "https://app.example.com:8444"

},

"heap": [

350 / 360

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"loginPageExtractions": [

{

"name": "hidden",

"pattern": "loginToken\\s+value=\"(.*)\""

}

],

"request": {

"method": "POST",

"uri": "${appBaseUri}/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

],

"hiddenValue": [

"${attributes.extracted.hidden}"

]

351 / 360

The parameters in the PasswordReplayFilter form, MY_USERNAME and MY_PASSWORD , can

have string values or can use expressions.

To try this example with the sample application:

1. Add the following route to IG:

1. Linux

2. Windows

2. Replace MY_USERNAME with scarter , and MY_PASSWORD with S9rain12 .

3. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=hidden')}",

"baseURI": "${appBaseUri}"

}

$HOME/.openig/config/routes/24-hidden.json

%appdata%\OpenIG\config\routes\24-hidden.json

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

352 / 360

4. Go to http://ig.example.com:8080/login?demo=hidden .

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the loginPage , loginPageExtractions , uri , and form to match the

target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route proxies traffic to an application with both HTTP and HTTPS ports. The

application uses HTTPS for authentication and HTTP for the general application features.

Assuming that all login requests are made over HTTPS, you must add the login filters and

handlers to the chain.

"handler": "ReverseProxyHandler"

}



HTTP and HTTPS application

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

http://ig.example.com:8080/login?demo=hidden

353 / 360

To try this example with the sample application:

1. Add the following route to IG:

1. Linux

2. Windows

}

}

}

],

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${request.uri.scheme == 'http'}",

"handler": "ReverseProxyHandler",

"baseURI": "http://app.example.com:8081"

},

{

"condition": "${request.uri.path == '/login'}",

"handler": {

"type": "Chain",

"config": {

"comment": "Add one or more filters to handle

login.",

"filters": [],

"handler": "ReverseProxyHandler"

}

},

"baseURI": "https://app.example.com:8444"

},

{

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

}

]

}

},

"condition": "${find(request.uri.query, 'demo=https')}"

}

$HOME/.openig/config/routes/25-https.json

354 / 360

2. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

3. Go to http://ig.example.com:8080/login?demo=https .

The login page of the sample application is displayed.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the loginPage , loginPageExtractions , uri , and form to match the

target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

%appdata%\OpenIG\config\routes\25-https.json

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}



http://ig.example.com:8080/login?demo=https

355 / 360

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the loginPage , loginPageExtractions , uri , and form to match the

target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route logs the user into the target application by using headers such as

those passed in from an AM policy agent. If the passed in header contains only a user

name or subject and requires a lookup to an external data source, you must add an

attribute filter to the chain to retrieve the credentials.

AM integration with headers

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert

for HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

356 / 360

To try this example with the sample application:

1. Add the route to IG:

1. Linux

2. Windows

2. Use the curl command to simulate the headers being passed in from an AM policy

agent, as in the following example:

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"${request.headers['username'][0]}"

],

"password": [

"${request.headers['password'][0]}"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=headers')}"

}

$HOME/.openig/config/routes/26-headers.json

%appdata%\OpenIG\config\routes\26-headers.json

$ curl \

--header "username: kvaughan" \

--header "password: B5ibery12" \

http://ig.example.com:8080/login?demo=headers

...

<title id="welcome">Howdy, kvaughan</title>

...

357 / 360

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler that

references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL for

hostnameVerifier .

2. Change the loginPage , uri , and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This section describes how to use the ForgeRock Token Validation Microservice to resolve

and cache OAuth 2.0 access tokens when protecting API resources. The section is based

on the example in Introspect stateful access tokens, in the Token Validation Microservice’s

User guide.

For information about the architecture, refer to IG as a microgateway. The following

figure illustrates the flow of information when a client requests access to a protected

microservice, providing a stateful access token as credentials:

Protected Microservice

Microservice Client

Microservice Client

Microgateway

Microgateway

Microservice A

Microservice A

Token Validation Microservice

Token Validation Microservice

Authorization Server

Authorization Server

1
Request resource from protected microservice,
providing stateful access token as credentials

2 Request token validation

3 Token validation

4 Send introspection result

5 Send introspection result

6
Use the introspection result to
decide whether to allow client access

7 Send resource

8 Send resource

Before you start, download and run the sample application as described in Using the

sample application. The sample application acts as Microservice A.

1. Set up the example in Introspect stateful access tokens, in the Token Validation

Microservice’s User guide.

2. In AM, edit the microservice client to add a scope to access the protected

microservice:

IG as a microgateway

https://backstage.forgerock.com/docs/tvm/1/user-guide/using-stateful.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/about.html#about-microgateway
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-sampleapp.html
https://backstage.forgerock.com/docs/tvm/1/user-guide/using-stateful.html

358 / 360

a. Select Applications > OAuth 2.0 > Clients.

b. Select microservice-client , and add the scope microservice-A .

3. Add the following route to IG:

1. Linux

2. Windows

$HOME/.openig/config/routes/mgw.json

%appdata%\OpenIG\config\routes\mgw.json

{

"properties": {

"introspectOAuth2Endpoint":

"http://mstokval.example.com:9090"

},

"capture": "all",

"name": "mgw",

"baseURI": "http://app.example.com:8081",

"condition": "${matches(request.uri.path,

'^/home/mgw')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"requireHttps": false,

"accessTokenResolver": {

"name":

"TokenIntrospectionAccessTokenResolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"endpoint": "&

{introspectOAuth2Endpoint}/introspect",

"providerHandler":

"ForgeRockClientHandler"

}

},

"scopes": ["microservice-A"]

359 / 360

Notice the following features of the route:

The route matches requests to IG on

http://ig.example.com:8080/home/mgw , and rebases them to the sample

application, on http://app.example.com:8081 .

The OAuth2ResourceServerFilter expects an OAuth 2.0 access token in the

header of the incoming authorization request, with the scope

microservice-A .

If the filter successfully validates the access token, the

ReverseProxyHandler passes the request to the sample application.

4. Test the setup:

a. With AM, IG, the Token Validation Microservice, and the sample application

running, get an access token from AM, using the scope microservice-A :

b. View the access token:

c. Call IG to access microservice A:

The home page of the sample application is displayed.

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

$ mytoken=$(curl -s \

--request POST \

--url

http://am.example.com:8088/openam/oauth2/access_token \

--user microservice-client:password \

--data grant_type=client_credentials \

--data scope=microservice-A --silent | jq -r

.access_token)

$ echo $mytoken

$ curl -v --header "Authorization: Bearer ${mytoken}"

http://ig.example.com:8080/home/mgw

360 / 360

Copyright © 2010-2023 ForgeRock, all rights reserved.

