
1 / 53

ForgeRock® Identity Platform serves as the basis for our simple and comprehensive

Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of their

employees and partners. For more information about ForgeRock and about the platform,

see https://www.forgerock.com .

This guide describes options for installing IG for customized or secure environments. For

information about how to install and configure IG for evaluation, refer to the Getting

started.

Consider these points to migrate from IG in web container mode to IG in standalone

mode.

High-availability of sessions is not supported .

In ClientHandler and ReverseProxyHandler, use only the default mode of

asyncBehavior:non_streaming ; responses are processed when the entity content is

entirely available.

If the property is set to streaming , the setting is ignored.

In ClientHandler and ReverseProxyHandler, use only the default mode of

stateTrackingEnabled:true ; when a client certificate is used for authentication,

connections cannot be reused.

If the property is set to false , the setting is ignored.

Installation guide



Migrate from web container mode to standalone mode

Session replication between IG instances

Streaming asynchronous responses and events

Connection reuse when client certificates are used for

authentication

Tomcat configuration

https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ClientHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ClientHandler
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler

2 / 53

Feature Standalone Tomcat

Port number Configure the connectors

property of admin.json.

Configure in the Connector

element of

/path/to/tomcat/conf/server.

xml :

HTTPS server-

side

configuration

Create a keystore, set up secrets,

and configure secrets stores,

ports, and ServerTlsOptions in

admin.json.

For information, refer to

Configure IG for HTTPS (server-

side).

Create a keystore, and set up the

SSL port in the Connector

element of

/path/to/tomcat/conf/server.

xml .

For information, refer to

Configure IG for HTTPS (server-

side) in Tomcat.

Session cookie

name

Configure the session property

of admin.json.

Configure WEB-INF/web.xml

when you unpack the IG .war

file.

Access logs Configure in the Audit

framework.

For information, refer to Auditing

your deployment and Audit

framework.

Configure with AccessLogValve .

JDBC

datasource

Configure with the

JdbcDataSource object.

For information, refer to

JdbcDataSource.

For an example, refer to

Password replay from a

database.

Configure in the

GlobalNamingResources

element of

/path/to/tomcat/conf/server.

xml .

<Connector port="8080"

protocol="HTTP/1.1"

connectionTimeout="20000"

redirectPort="8443" />

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-tomcat.html#tomcat-https
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JdbcDataSource
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso-cdsso.html#credentials-database

3 / 53

Feature Standalone Tomcat

Environment

variables

Configure in

$HOME/.openig/bin/env.sh ,

where $HOME/.openig is the

instance directory.

Configure in

/path/to/tomcat/bin/setenv.s

h .

Jar files Add to $HOME/.openig/extra ,

where $HOME/.openig is the

instance directory.

Add to to web container

classpath; for example

/path/to/tomcat/webapps/ROOT

/WEB-INF/lib .

For information about upgrade between supported versions of IG, see

migrate.adoc#supported-upgrades.

This section describes how to upgrade a single IG instance. The most straightforward

option when upgrading sites with multiple IG instances is to upgrade in place. One by

one, stop, upgrade, and then restart each server individually, leaving the service running

during the upgrade.

IG supports the following types of upgrade:

Drop-in software update

Usually, an update from a version of IG to a newer minor version. For example, the

update from 2023.2 to 2023.4.

Drop-in software updates can introduce additional functionality and fix bugs or

security issues. Consider the following restrictions for drop-in software updates:

Do not require any update to the configuration

Cannot cause feature regression

Can change default or previously configured behavior only for bug fixes and

security issues

Can deprecate but not remove existing functionality

Major upgrade

Usually, an upgrade from a version of IG to a newer major version. For example, the

upgrade from 7.2 to 2023.2.

Major upgrades can introduce additional functionality and fix bugs or security issues.

Major upgrades do not have the restrictions of drop-in software update. Consider the

Upgrade

file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#supported-upgrades

4 / 53

following features of major upgrades:

Can require code or configuration changes

Can cause feature regression

Can change default or previously configured behavior

Can deprecate and remove existing functionality

The following table lists supported upgrade paths to IG 2023.4:

Version Upgrade type

IG 2023.2 Drop-in software update

IG 7.x Major upgrade

IG 6.x Major upgrade

For more information, refer to Checking your product versions are supported in the

ForgeRock Knowledge Base.

For unsupported, legacy deployments, ForgeRock can assist you in the upgrade process.

Do these planning tasks before you start an upgrade:

Planning task Description

Find the upgrade

path

Refer to migrate.adoc#supported-upgrades to see if you need a

drop-in upgrade or a major upgrade.

Find out what

changed

Read the release notes for all releases between the current

version and the new version. Understand the new features and

changes in the new version compared to the current version.

Check the

requirements

Make sure you meet all of the requirements in the release notes

for the new version. In particular, make sure you have a recent,

supported Java version.

Supported upgrade paths



Plan the upgrade

file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#dropin-sw-update
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#major-upgrade
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#major-upgrade
https://backstage.forgerock.com/knowledge/kb/article/a18529200
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#supported-upgrades
https://backstage.forgerock.com/docs/ig/latest/release-notes
https://backstage.forgerock.com/docs/ig/latest/release-notes/before-you-install.html#prerequisites-java

5 / 53

Planning task Description

Plan for server

downtime

At least one of your IG servers will be down during upgrade.

Plan to route client applications to another server until the

upgrade process is complete and you have validated the result.

Make sure the owners of client application are aware of the

change, and let them know what to expect.

If you have a single IG server, make sure the downtime happens

in a low-usage window, and make sure you let client application

owners plan accordingly.

Back up The IG configuration is a set of files, including admin.json ,

config.json , logback.xml , routes, and scripts. Back up the IG

configuration and store it in version control, so that you can roll

back if something goes wrong.

Back up any tools scripts you have edited for your deployment

and any trust stores used to connect securely.

Plan for rollback Sometimes even a well-planned upgrade fails to go smoothly. In

such cases, you need a plan to roll back smoothly to the pre-

upgrade version.

For IG servers, roll back by restoring a backed-up configuration.

Prepare a test

environment

Before applying the upgrade in your production environment,

always try to upgrade IG in a test environment. This will help

you gauge the amount of work required, without affecting your

production environment, and will help smooth out unforeseen

problems.

The test environment should resemble your production

environment as closely as possible.

1. Read and act on Plan the upgrade.

2. Back up the IG configuration and store it in version control so that you can roll

back if something goes wrong.

3. Download the IG .zip file.

4. Stop IG.

5. Make the new configuration available on the file system.

Drop-in software update with binaries

file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#rollback
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#download-project
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#stopping

6 / 53

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

6. Restart IG.

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

7. In a test environment that simulates your production environment, validate that

the upgraded service performs as expected with the new configuration. Check

the logs for new or unexpected notifications or errors.

8. Allow client application traffic to flow to the upgraded site.

1. Read and act on Plan the upgrade.

2. Back up the IG configuration and store it in version control so that you can roll

back if something goes wrong.

3. Stop the Docker image.

4. Build the new base image for IG.

5. Run the Docker image.

6. In a test environment that simulates your production environment, validate that

the upgraded service performs as expected with the new configuration. Check

the logs for new or unexpected notifications or errors.

7. Allow client application traffic to flow to the upgraded site.

1. Read and act on Plan the upgrade.

2. Use the release notes for all releases between the version you currently use and

the new version, and create a new configuration as follows:

Review all incompatible changes and removed functionality, and adjust

your configuration as necessary.

Switch to the replacement settings for deprecated functionality. Although

deprecated objects continue to work, they add to the notifications in the

logs and are eventually removed.

Drop-in software update with Docker files

Major upgrade with binaries

file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#starting
file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-stop-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-build-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-run-image
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
https://backstage.forgerock.com/docs/ig/latest/release-notes
https://backstage.forgerock.com/docs/ig/latest/release-notes/stability.html#interface-stability

7 / 53

Check the lists of fixes, limitations, and known issues to find out if they

impact your deployment.

Recompile your Java extensions. The method signature or imports for

supported and evolving APIs can change in each version.

Read the documentation updates for new examples and information that

can help with your configuration.

3. Back up the IG configuration and store it in version control so that you can roll

back if something goes wrong.

4. Download the IG .zip file.

5. Stop IG.

6. Make the new configuration available on the file system.

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

7. Restart IG.

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

8. In a test environment that simulates your production environment, validate that

the upgraded service performs as expected with the new configuration. Check

the logs for new or unexpected notifications or errors.

9. Allow client application traffic to flow to the upgraded site.

1. Read and act on Plan the upgrade.

2. Use the release notes for all releases between the version you currently use and

the new version, and create a new configuration as follows:

Review all incompatible changes and removed functionality, and adjust

your configuration as necessary.

Switch to the replacement settings for deprecated functionality. Although

deprecated objects continue to work, they add to the notifications in the

logs and are eventually removed.

Check the lists of fixes, limitations, and known issues to find out if they

impact your deployment.

Recompile your Java extensions. The method signature or imports for

supported and evolving APIs can change in each version.

Major upgrade with Docker files

file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#download-project
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#stopping
file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#starting
file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/installation-guide/migrate.html#upgrade-planning
https://backstage.forgerock.com/docs/ig/latest/release-notes
https://backstage.forgerock.com/docs/ig/latest/release-notes/stability.html#interface-stability

8 / 53

Read the documentation updates for new examples and information that

can help with your configuration.

3. Back up the IG configuration and store it in version control so that you can roll

back if something goes wrong.

4. Stop the Docker image.

5. Build the new base image for IG.

6. Run the Docker image.

7. In a test environment that simulates your production environment, validate that

the upgraded service performs as expected with the new configuration. Check

the logs for new or unexpected notifications or errors.

8. Allow client application traffic to flow to the upgraded site.

After upgrade, review the what’s new section in the release notes and consider activating

new features and functionality.

Roll back with binaries

1. Plan for server downtime

Plan to route client applications to another server until the rollback process is

complete and you have validated the result. Make sure the owners of client

application are aware of the change, and let them know what to expect.

2. Stop IG

3. Download the replacement IG .zip file

4. Make the new configuration available on the file system.

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

5. Restart IG.

Post upgrade tasks

Rollback

Before you roll back to a previous version of IG, consider whether any change to the

the configuration during or since upgrade could be incompatible with the previous

version.

IMPORTANT

file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-stop-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-build-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-run-image
https://backstage.forgerock.com/docs/ig/latest/release-notes/whats-new.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#stopping
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#download-project
file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#starting

9 / 53

Roll back with Dockerfiles

1. Plan for server downtime

Plan to route client applications to another server until the rollback process is

complete and you have validated the result. Make sure the owners of client

application are aware of the change, and let them know what to expect.

2. Stop the Docker image.

3. Build the new base image for IG.

4. Run the Docker image.

Make sure your installation meets the requirements in the release notes.

To limit the impact of a security breach, install and run IG from a dedicated service

account. This is optional when you are evaluating IG, but essential in production

installations.

A hacker is constrained by the rights granted to the user account where IG runs;

therefore, never run IG as root user.

1. In a terminal window, use a command similar to the following to create a

service account:

1. Linux

2. Windows

Prepare to install

Requirements

Create an IG service account

$ sudo /usr/sbin/useradd \

--create-home \

--comment "Account for running IG" \

--shell /bin/bash IG

> net user username password /add /comment:"Account for

running IG"

file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-stop-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-build-image
file:///home/pptruser/Downloads/build/site/ig/devops-guide/docker-basic.html#docker-run-image
https://backstage.forgerock.com/docs/ig/latest/release-notes

10 / 53

2. Apply the principle of least privilege to the account, for example:

Read/write permissions on the installation directory, /path/to/identity-

gateway .

Execute permissions on the scripts in the installation bin directory,

/path/to/identity-gateway/bin .

Configure the network to include the hosts.

1. Add the following additional entry to your host file:

1. Linux

2. Windows

For more information about host files, refer to the Wikipedia entry, Hosts (file)

.

This section contains procedures for setting up items in ForgeRock Identity Cloud and AM

that you can use with IG. For more information about setting up Identity Cloud, refer to

the ForgeRock Identity Cloud docs. For more information about setting up AM, refer to

the Access Management docs.

Prepare the network

/etc/hosts

%SystemRoot%\system32\drivers\etc\hosts

127.0.0.1 localhost ig.example.com app.example.com

am.example.com



Set up Identity Cloud and AM for use with IG

Authenticate an IG agent to Identity Cloud

IMPORTANT

http://en.wikipedia.org/wiki/Hosts_(file)
https://backstage.forgerock.com/docs/idcloud/overview.html
https://backstage.forgerock.com/docs/am/7.3

11 / 53

This section describes how to create a journey to authenticate an IG agent to Identity

Cloud. The journey has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a journey in Identity Cloud, that same journey is used for all instances

of IG, Java agent, and Web agent. Consider this point if you change the journey

configuration.

1. Log in to the Identity Cloud admin UI as an administrator.

2. Click Journeys > New Journey.

3. Add a journey with the following information and click Create journey:

Name: Agent

Identity Object: The user or device to authenticate.

(Optional) Description: Authenticate an IG agent to Identity Cloud

The journey designer is displayed, with the Start entry point connected to the

Failure exit point, and a Success node.

4. Using the  Filter nodes bar, find and then drag the following nodes from the

Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are

provided in the incoming authentication request, and use their values in the

following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the

incoming authentication request, and use their values in the following

nodes.

Agent Data Store Decision node to verify the agent credentials match the

registered IG agent profile.

IG agents are automatically authenticated to Identity Cloud by a non-configurable

authentication module. Authentication chains and modules are deprecated in

Identity Cloud and replaced by journeys.

You can now authenticate IG agents to Identity Cloud with a journey. The procedure

is currently optional, but will be required when authentication chains and modules

are removed in a future release of Identity Cloud.

For more information, refer to Identity Cloud’s Journeys.

IMPORTANT

IMPORTANT

https://backstage.forgerock.com/docs/idcloud/latest/realms/journeys.html

12 / 53

5. Drag the following nodes from the Components panel into the Page node:

Platform Username node to prompt the user to enter their username.

Platform Password node to prompt the user to enter their password.

6. Connect the nodes as follows and save the journey:

This section describes how to create an authentication tree to authenticate an IG agent to

AM. The tree has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a tree in AM, that same tree is used for all instances of IG, Java agent,

and Web agent. Consider this point if you change the tree configuration.

1. On the Realms page of the AM admin UI, choose the realm in which to create

the authentication tree.

Many nodes can be configured in the panel on the right side of the page.

Unless otherwise stated, do not configure the nodes, and use only the

default values.

IMPORTANT

Authenticate an IG agent to AM

IG agents are automatically authenticated to AM by a non-configurable

authentication module in AM. Authentication chains and modules were deprecated

in AM 7 and are replaced by authentication nodes and trees.

From AM 7.3 you can authenticate IG agents to AM by using authentication nodes

and trees. The procedure is currently optional, but will be required when

authentication chains and modules are removed in a future release of AM.

For more information, refer to AM’s Authentication Nodes and Trees.

IMPORTANT

https://backstage.forgerock.com/docs/am/7.3/authentication-guide/about-authentication-trees.html

13 / 53

2. On the Realm Overview page, click  Authentication > Trees > + Create

tree.

3. Create a tree named Agent .

The authentication tree designer is displayed, with the Start entry point

connected to the Failure exit point, and a Success node.

The authentication tree designer provides the following features on the toolbar:

Button Usage

Lay out and align nodes according to the order they are

connected.

Toggle the designer window between normal and full-screen

layout.

Remove the selected node. Note that the Start entry point

cannot be deleted.

4. Using the  Filter bar, find and then drag the following nodes from the

Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are

provided in the incoming authentication request, and use their values in the

following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they are not provided in the

incoming authentication request, and use their values in the following

nodes.

Agent Data Store Decision node to verify the agent credentials match the

registered IG agent profile.

5. Drag the following nodes from the Components panel into the Page node:

Username Collector node to prompt the user to enter their username.

Password Collector node to prompt the user to enter their password.

6. Connect the nodes as follows and save the tree:

Many nodes can be configured in the panel on the right side of the page.

Unless otherwise stated, do not configure the nodes and use only the

default values.

IMPORTANT

14 / 53

This procedure registers an agent that acts on behalf of IG.

1. Log in to the Identity Cloud admin UI as an administrator.

2. Click verified_user Gateways & Agents > + New Gateway/Agent > Identity Gateway

> Next, and add an agent profile:

ID: agent-name

Password: agent-password

3. Click Save Profile > Done. The agent profile page is displayed.

4. To add a redirect URL for CDSSO, go to the agent profile page and add the URL.

5. To change the introspection scope, click open_in_new Native Consoles > Access

Management, and update the agent in the AM admin UI. By default, the agent

can introspect OAuth 2.0 tokens issued to any client, in the realm and subrealm

where it is created.

In AM 7 and later versions, follow these steps to register an agent that acts on behalf

of IG.

1. In the AM admin UI, select the top-level realm, and then select Applications >

Agents > Identity Gateway.

2. Add an agent with the following values:

1. For SSO

Register an IG agent in Identity Cloud

Use secure passwords in a production environment. Consider using a

password manager to generate secure passwords.

IMPORTANT

Register an IG agent in AM 7 and later

15 / 53

2. For CDSSO

Agent ID : ig_agent

Password : password

Agent ID : ig_agent

Password : password

Redirect URL for CDSSO :

https://ig.ext.com:8443/home/cdsso/redirect

In AM 6.5 and earlier versions, follow these steps to register an agent that acts on

behalf of IG.

1. In the AM admin UI, select the top-level realm, and then select Applications >

Agents > Java (or J2EE).

2. Add an agent with the following values:

1. For SSO

2. For CDSSO

Agent ID : ig_agent

Agent URL : http://ig.example.com:8080/agentapp

Server URL : http://am.example.com:8088/openam

Password : password

Agent ID : ig_agent_cdsso

Agent URL : http://ig.ext.com:8080/agentapp

Server URL : http://am.example.com:8088/openam

Password : password

3. On the Global tab, deselect Agent Configuration Change Notification.

This option stops IG from being notified about agent configuration changes in

AM. IG doesn’t need these notifications.

4. (For CDSSO) On the SSO tab, select the following values:

Cross Domain SSO : Deselect this option

CDSSO Redirect URI : /home/cdsso/redirect

5. (For CDSSO and policy enforcement) On the SSO tab, select the following values:

Cross Domain SSO : Deselect this option



Register an IG agent in AM 6.5 and earlier

https://ig.ext.com:8443/home/cdsso/redirect

16 / 53

CDSSO Redirect URI : /home/pep-cdsso/redirect

This procedure sets up a demo user in the alpha realm.

a. Log in to the Identity Cloud admin UI as an administrator.

b. Go to group Identities > Manage > settings_system_daydream Alpha realm - Users, and add a user

with the following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Password: Ch4ng3!t

AM is provided with a demo user in the top-level realm, with the following credentials:

ID/username: demo

Last name: user

Password: Ch4ng31t

Email address: demo@example.com

Employee number: 123

For information about how to manage identities in AM, refer to AM’s Identity stores.

The .zip file unpacks into a /path/to/identity-gateway directory with the following

content:

bin : Start and stop executables

Set up a demo user in Identity Cloud

Set up a demo user in AM

Install IG

Download and start IG

Download the IG .zip file

https://backstage.forgerock.com/docs/am/7.3/setup-guide/setting-up-identity-stores.html

17 / 53

classes : Initially empty; used to install patches from ForgeRock support

docker/Dockerfile : Dockerfile and README to build an IG Docker image

legal-notices : Licenses and copyrights

lib : IG and third-party libraries

1. Create a local installation directory for IG. The examples in this section use

/path/to .

2. Download IG-2023.4.0.zip from the ForgeRock BackStage download site ,

and copy the .zip file to the installation directory:

3. Unzip the file:

The directory /path/to/identity-gateway is created.

Use the following step to start the instance of IG, specifying the configuration directory

where IG looks for configuration files.

1. Start IG:

1. Linux

2. Windows

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different



$ cp IG-2023.4.0.zip /path/to/IG-2023.4.0.zip

$ unzip IG-2023.4.0.zip

Start IG

Start IG with default settings

$ /path/to/identity-gateway/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

C:\path\to\identity-gateway\bin\start.bat

https://backstage.forgerock.com/downloads

18 / 53

location, refer to Change the base location of the IG configuration.

2. Check that IG is running in one of the following ways:

Ping IG at http://ig.example.com:8080/openig/ping , and make sure an

HTTP 200 is returned.

Access the IG welcome page at http://ig.example.com:8080 .

When IG is running in development mode, display the product version and

build information at http://ig.example.com:8080/openig/api/info .

By default, IG runs on HTTP, on port 8080 , from the instance directory $HOME/.openig .

To start IG with custom settings, add the configuration file admin.json with the

following properties, and restart IG:

vertx : Finely tune Vert.x instances.

connectors : Customize server port, TLS, and Vert.x-specific configurations. Each

connectors object represents the configuration of an individual port.

prefix : Set the instance directory, and therefore, the base of the route for

administration requests.

The following example starts IG on non-default ports, and configures Vert.x-specific

options for the connection on port 9091:

For more information, refer to AdminHttpApplication (admin.json).

Start IG with custom settings

{

"connectors": [{

"port": 9090

},

{

"port": 9091,

"vertx": {

"maxWebSocketFrameSize": 128000,

"maxWebSocketMessageSize": 256000,

"compressionLevel": 4

}

}]

}

Stop IG

file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location
file:///home/pptruser/Downloads/build/site/ig/reference/RequiredConfiguration.html#AdminHttpApplication

19 / 53

Use the stop.sh script to stop an instance of IG, specifying the instance directory as an

argument. If the instance directory is not specified, IG uses the default instance directory:

1. Linux

2. Windows

When IG is server-side, applications send requests to IG or request services from IG. IG is

acting as a server of the application, and the application is acting as a client.

To run IG as a server over HTTPS, you must configure connections to TLS-protected

endpoints, based on ServerTlsOptions.

The examples in this doc set use self-signed certificates, but your deployment is likely to

use certificates issued by a certificate authority (CA certificates).

The way to obtain CA certificates depends on the certificate authority that you are using,

and is not described in this document. As an example, refer to Let’s Encrypt .

Integrate CA certificates by using secret stores:

For PEM files, use a FileSystemSecretStore and PemPropertyFormat

For PKCS12 keystores, use a KeyStoreSecretStore

For examples, refer to Serve the same certificate for TLS connections to all server names.

Note the following points about using secrets:

When IG starts up, it listens for HTTPS connections, using the ServerTlsOptions

configuration in admin.json . The keys and certificates are fetched at startup.

Keys and certificates must be present at startup.

If keys or certificates change, you must to restart IG.

When the autoRefresh property of FileSystemSecretStore or KeyStoreSecretStore is

enabled, the secret store is automatically reloaded when the filesystem or keystore is

changed.

$ /path/to/identity-gateway/bin/stop.sh $HOME/.openig

C:\path\to\identity-gateway\bin\stop.bat %appdata%\OpenIG

Configure IG for HTTPS (server-side)

Using keys and certificates



file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#ServerTlsOptions
https://letsencrypt.org/getting-started.html
file:///home/pptruser/Downloads/build/site/ig/reference/FileSystemSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/reference/PemPropertyFormat.html
file:///home/pptruser/Downloads/build/site/ig/reference/KeyStoreSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#standalone-https-keyManager

20 / 53

For information about secret stores provided in IG, refer to Secrets object and secret

stores.

This example uses PEM files and a PKCS#12 keystore for self-signed certificates, but you

can adapt it to use official (non self-signed) keys and certificates.

Before you start, install IG, as described in Download and start IG.

1. Locate a directory for the secrets, for example, /path/to/secrets .

2. Create self-signed keys in one of the following ways. If you have your own keys,

use them and skip this step.

If you have your own keys, use them and skip this step.

1. Create the keystore, replacing /path/to/secrets with your path:

2. In the secrets directory, add a file called keystore.pass , containing the

keystore password password :

Make sure the password file contains only the password, with no trailing

spaces or carriage returns.

Serve the same certificate for TLS connections to all server names

Use your own keys

Set up a self-signed certificate in a (PKCS#12) keystore

$ keytool \

-genkey \

-alias https-connector-key \

-keyalg RSA \

-keystore /path/to/secrets/IG-keystore \

-storepass password \

-keypass password \

-dname "CN=ig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to

lowercase, use only lowercase in alias definitions of a keystore.

NOTE

$ cd /path/to/secrets/

$ echo -n 'password' > keystore.pass

Set up self-signed certificate stored in PEM file

file:///home/pptruser/Downloads/build/site/ig/reference/secrets.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone

21 / 53

a. Locate a directory for secrets, and go to it:

b. Create the following secret key and certificate pair as PEM files:

Two PEM files are created, one for the secret key, and another for the

associated certificate.

c. Map the key and certificate to the same secret ID in IG:

3. Set up TLS on IG in one of the following ways:

Add the following file to IG, replacing /path/to/secrets with your path:

1. Linux

2. Windows

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr"

\

-keyout ig.example.com-key.pem \

-out ig.example.com-certificate.pem

$ cat ig.example.com-key.pem ig.example.com-

certificate.pem > key.manager.secret.id.pem

Keys stored in a (PKCS#12) keystore

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

{

"connectors": [

{

"port": 8080

},

22 / 53

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

},

{

"type": "FileSystemSecretStore",

"name": "SecretsPasswords",

"config": {

"directory": "/path/to/secrets",

"format": "PLAIN"

}

},

{

"name": "ServerIdentityStore",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/IG-keystore",

"storePasswordSecretId": "keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

{

"secretId": "key.manager.secret.id",

"aliases": ["https-connector-key"]

}

]

}

}

]

}

23 / 53

Notice the following features of the file:

IG starts on port 8080 , and on 8443 over TLS.

IG’s private keys for TLS are managed by the SecretsKeyManager, whose

ServerIdentityStore references a KeyStoreSecretStore.

The KeyStoreSecretStore maps the keystore alias to the secret ID for

retrieving the server keys (private key + certificate).

The password of the KeyStoreSecretStore is provided by the

FileSystemSecretStore.

Add the following file to IG, replacing /path/to/secrets with your path:

1. Linux

2. Windows

Keys stored in PEM file

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

24 / 53

Notice how this file differs to that for the keystore-based approach:

The ServerIdentityStore is a FileSystemSecretStore.

The FileSystemSecretStore reads the keys that are stored as file in the

PEM standard format.

4. Start IG:

1. Linux

2. Windows

By default, IG configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Change the base location of the IG configuration.

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "/path/to/secrets",

"suffix": ".pem",

"mappings": [{

"secretId": "key.manager.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}]

}

}

]

}

$ /path/to/identity-gateway/bin/start.sh

...

... started in 1234ms on ports : [8080 8443]

C:\path\to\identity-gateway\bin\start.bat

Serve different certificates for TLS connections to different server names

file:///home/pptruser/Downloads/build/site/ig/installation-guide/configure.html#configure-default-location

25 / 53

This example uses PEM files for self-signed certificates, but you can adapt it to use official

(non self-signed) keys and certificates.

Before you start, install IG, as described in Download and start IG.

1. Locate a directory for secrets, for example, /path/to/secrets , and go to it.

2. Create the following secret key and certificate pair as PEM files:

a. For ig.example.com :

i. Create a key and certificate:

Two PEM files are created, one for the secret key, and another for the

associated certificate.

ii. Map the key and certificate to the same secret ID in IG:

b. For servers grouped by a wildcard:

i. Create a key and certificate:

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=f

r" \

-keyout ig.example.com-key.pem \

-out ig.example.com-certificate.pem

$ cat ig.example.com-key.pem ig.example.com-

certificate.pem > key.manager.secret.id.pem

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

file:///home/pptruser/Downloads/build/site/ig/getting-started/start-product.html#starting-standalone

26 / 53

ii. Map the key and certificate to the same secret ID in IG:

c. For other, unmapped servers

i. Create a key and certificate:

ii. Map the key and certificate to the same secret ID in IG:

3. Add the following file to IG, replacing /path/to/secrets with your path, and

then restart IG:

1. Linux

2. Windows

"/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

" \

-keyout wildcard.example.com-key.pem \

-out wildcard.example.com-certificate.pem

$ cat wildcard.example.com-key.pem

wildcard.example.com-certificate.pem >

wildcard.secret.id.pem

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr

" \

-keyout default.example.com-key.pem \

-out default.example.com-certificate.pem

$ cat default.example.com-key.pem

default.example.com-certificate.pem >

default.secret.id.pem

$HOME/.openig/config/admin.json

%appdata%\OpenIG\config\admin.json

27 / 53

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"sni": {

"serverNames": {

"ig.example.com": "key.manager.secret.id",

"*.example.com": "wildcard.secret.id"

},

"defaultSecretId" : "default.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "path/to/secrets",

"suffix": ".pem",

"mappings": [

{

"secretId": "key.manager.secret.id",

"format": {

"type": "PemPropertyFormat"

}

},

{

"secretId": "wildcard.secret.id",

"format": {

"type": "PemPropertyFormat"

}

},

28 / 53

Notice the following features of the file:

The ServerTlsOptions object maps two servers to secret IDs, and includes a

default secret ID

The secret IDs correspond to the secret IDs in the FileSystemSecretStore,

and the PEM files generated in an earlier step.

4. Run the following commands to request TLS connections to different servers,

using different certificates:

a. Connect to ig.example.com , and note that the certificate subject

corresponds to the certificate created for ig.example.com :

b. Connect to other.example.com , and note that the certificate subject

corresponds to the certificate created with the wildcard, *.example.com :

{

"secretId": "default.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}

]

}

}

]

}

$ openssl s_client -connect localhost:8443 -servername

ig.example.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII...dZC

-----END CERTIFICATE-----

subject=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/

C=fr

issuer=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C

=fr

$ openssl s_client -connect localhost:8443 -servername

other.example.com

...

Server certificate

file:///home/pptruser/Downloads/build/site/ig/reference/ServerTlsOptions.html

29 / 53

c. Connect to unmapped.site.com , and note that the certificate subject

corresponds to the certificate created for the default secret ID:

Configure environment variables and system properties as follows:

By adding environment variables on the command line when you start IG.

By adding environment variables in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory. After changing env.sh , restart IG to load

the new configuration.

By default, IG scans every 10 seconds for changes to the route configuration files. Any

changes to the files are automatically loaded into the configuration without restarting IG.

For more information about the router scan interval, refer to Router.

The following example overwrites the default value of the Router scan interval to two

seconds when you start up IG:

1. Linux

2. Windows

-----BEGIN CERTIFICATE-----

MII...fY=

-----END CERTIFICATE-----

subject=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C

=fr

issuer=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=

fr

$ openssl s_client -connect localhost:8443 -servername

unmapped.site.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII..rON

-----END CERTIFICATE-----

subject=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C

=fr

issuer=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=

fr

Configure environment variables and system properties

Start IG with a customized router scan interval

file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Router

30 / 53

IG provides the following environment variables for Java runtime options:

IG_OPTS

(Optional) Java runtime options for IG and its startup process, such as JVM memory

sizing options.

Include all options that are not shared with the stop script.

The following example specifies environment variables in the env.sh file to

customize JVM options and keys:

1. Linux

2. Windows

JAVA_OPTS

(Optional) Java runtime options for IG include all options that are shared by the

start and stop script.

$ IG_ROUTER_SCAN_INTERVAL='2 seconds' /path/to/identity-

gateway/bin/start.sh

C:\IG_ROUTER_SCAN_INTERVAL='2 seconds'

C:\start.bat %appdata%\OpenIG

Define environment variables for startup, runtime, and stop

Specify JVM options

JVM_OPTS="-Xms256m -Xmx2048m"

Specify the DH key size for stronger ephemeral DH keys, and

to protect against weak keys

JSSE_OPTS="-Djdk.tls.ephemeralDHKeySize=2048"

Wrap them up into the IG_OPTS environment variable

export IG_OPTS="${IG_OPTS} ${JVM_OPTS} ${JSSE_OPTS}"

C:\set "JVM_OPTS=-Xms256m -Xmx2048m"

C:\set "JSSE_OPTS=-Djdk.tls.ephemeralDHKeySize=2048"

C:\set "IG_OPTS=%IG_OPTS% %JVM_OPTS% %JSSE_OPTS%"

Add .jar files for IG extensions

31 / 53

IG includes a complete Java application programming interface for extending your

deployment with customizations. For more information, refer to Extend IG through the

Java API

Create a directory to hold .jar files for IG extensions:

1. Linux

2. Windows

When IG starts up, the JVM loads .jar files in the extra directory.

The following table summarizes the default location of the IG configuration and logs.

Purpose Default location on Linux Default location on

Windows

Log messages from IG and

third-party dependencies

$HOME/.openig/logs %appdata%\OpenIG\logs

Administration

(admin.json)

Gateway (config.json)

$HOME/.openig/config %appdata%

\OpenIG\config

Routes (Route) $HOME/.openig/config/ro

utes

%appdata%

\OpenIG\config\routes

SAML 2.0 $HOME/.openig/SAML %appdata%

\OpenIG\OpenIG\SAML

Groovy scripts for scripted

filters and handlers, and

other objects

$HOME/.openig/scripts/g

roovy

%appdata%

\OpenIG\scripts\groovy

$HOME/.openig/extra

%appdata%\OpenIG\extra

Set up logs and configuration files

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/extending.html#about-custom-extensions
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/GatewayHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html#AdminHttpApplication

32 / 53

Purpose Default location on Linux Default location on

Windows

Temporary directory

To change the directory,

configure

temporaryDirectory in

admin.json

$HOME/.openig/tmp %appdata%

\OpenIG\OpenIG\tmp

JSON schema for custom

audit

To change the directory,

configure

topicsSchemasDirectory

in AuditService.

$HOME/.openig/audit-

schemas

%appdata%

\OpenIG\OpenIG\audit-

schemas

For the /logs , /tmp , and all configuration directories, allow the following access:

Highest privilege the IG system account.

Least priviledge for specific accounts, on a case-by-case basis

No priviledge for all other accounts, by default

By default, the base location for IG configuration files is in the following directory:

1. Linux

2. Windows

To change the location use an argument with the startup command. The following

example reads the configuration from the config directory under /path/to/config-

dir :

+

1. Linux

Secure the configuration and logs

Change the base location of the IG configuration

$HOME/.openig

%appdata%\OpenIG

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html#AuditService

33 / 53

2. Windows

When IG sends requests over HTTP to a proxied application, or requests services from a

third-party application, IG is acting as a client of the application, and the application is

acting as a server. IG is client-side.

When IG sends requests securely over HTTPS, IG must be able to trust the server. By

default, IG uses the Java environment truststore to trust server certificates. The Java

environment truststore includes public key signing certificates from many well-known

Certificate Authorities (CAs).

When servers present certificates signed by trusted CAs, then IG can send requests over

HTTPS to those servers, without any configuration to set up the HTTPS client connection.

When server certificates are self-signed or signed by a CA whose certificate is not

automatically trusted, the following objects can be required to configure the connection:

KeyStoreSecretStore, to manage a secret store for cryptographic keys and

certificates, based on a standard Java keystore.

SecretsTrustManager, to manage trust material that verifies the credentials presented

by a peer.

(Optional) SecretsKeyManager, to manage keys that authenticate a TLS connection to

a peer.

ClientHandler and ReverseProxyHandler reference to ClientTlsOptions, for

connecting to TLS-protected endpoints.

The following procedure describes how to set up IG for HTTPS (client-side), when server

certificates are self-signed or signed by untrusted CAs.

Set up IG for HTTPS (client-side) for untrusted servers

1. Locate or set up the following directories:

Directory containing the sample application .jar: sampleapp_install_dir

Directory to store the sample application certificate and IG keystore:

/path/to/secrets

2. Extract the public certificate from the sample application:

$ /path/to/identity-gateway/bin/start.sh /path/to/config-dir

C:\path\to\identity-gateway\bin\start.bat /path/to/config-dir

Configure IG For HTTPS (client-side)

file:///home/pptruser/Downloads/build/site/ig/reference/KeyStoreSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsTrustManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsKeyManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#ClientTlsOptions

34 / 53

The file /path/to/secrets/tls/sampleapp-cert.pem is created.

3. From the same directory, import the certificate into the IG keystore, and answer

yes to trust the certificate:

4. List the keys in the IG keystore to make sure that a key with the alias ig-

sampleapp is present:

$ cd /path/to/secrets

$ jar --verbose --extract \

--file sampleapp_install_dir/IG-sample-application-

2023.4.0-SNAPSHOT.jar tls/sampleapp-cert.pem

inflated: tls/sampleapp-cert.pem

$ keytool -importcert \

-alias ig-sampleapp \

-file tls/sampleapp-cert.pem \

-keystore reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

...

Trust this certificate? [no]: yes

Certificate was added to keystore

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias definitions of a keystore.

NOTE

$ keytool -list \

-v \

-keystore /path/to/secrets/reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

Keystore type: PKCS12

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: ig-sampleapp

...

35 / 53

5. In the terminal where you run IG, create an environment variable for the value

of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

6. Add the following route to serve static resources, such as .css, for the sample

application:

1. Linux

2. Windows

7. Add the following route to IG:

1. Linux

2. Windows

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$HOME/.openig/config/routes/static-resources.json

%appdata%\OpenIG\config\routes\static-resources.json

{

"name" : "sampleapp-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css')}",

"handler": "ReverseProxyHandler"

}

$HOME/.openig/config/routes/client-side-https.json

%appdata%\OpenIG\config\routes\client-side-https.json

{

"name": "client-side-https",

"condition": "${find(request.uri.path, '/home/client-

side-https')}",

"baseURI": "https://app.example.com:8444",

"heap": [

{

"name": "Base64EncodedSecretStore-1",

36 / 53

"type": "Base64EncodedSecretStore",

"config": {

"secrets": {

"keystore.secret.id": "cGFzc3dvcmQ="

}

}

},

{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/reverseproxy-

truststore.p12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": "Base64EncodedSecretStore-1",

"mappings": [

{

"secretId": "trust.manager.secret.id",

"aliases": ["ig-sampleapp"]

}

]

}

},

{

"name": "SecretsTrustManager-1",

"type": "SecretsTrustManager",

"config": {

"verificationSecretId": "trust.manager.secret.id",

"secretsProvider":"KeyStoreSecretStore-1"

}

},

{

"name": "ReverseProxyHandler-1",

"type": "ReverseProxyHandler",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": "SecretsTrustManager-1"

}

},

"hostnameVerifier": "ALLOW_ALL"

},

"capture": "all"

37 / 53

Notice the following features of the route:

The route matches requests to /home/client-side-https .

The baseURI changes the request URI to point to the HTTPS port for the

sample application.

The Base64EncodedSecretStore provides the keystore password.

The SecretsTrustManager uses a KeyStoreSecretStore to manage the trust

material.

The KeyStoreSecretStore points to the sample application certificate. The

password to access the keystore is provided by the

SystemAndEnvSecretStore.

The ReverseProxyHandler uses the SecretsTrustManager for the connection

to TLS-protected endpoints. All hostnames are allowed.

8. Test the setup:

a. Start the sample application

b. Go to http://ig.example.com:8080/home/client-side-https .

The request is proxied transparently to the sample application, on the TLS

port 8444 .

c. Check the route log for a line like this:

JwtSession objects store session information in JWT cookies on the user agent. The

following sections describe how to set authenticated encryption for JwtSession, using

symmetric keys.

Authenticated encryption encrypts data and then signs it with HMAC, in a single step. For

more information, refer to Authenticated Encryption . For information about JwtSession,

}

],

"handler": "ReverseProxyHandler-1"

}

$ java -jar sampleapp_install_dir/IG-sample-

application-2023.4.0-SNAPSHOT.jar



GET https://app.example.com:8444/home/client-side-https

Encrypt and share JWT sessions



http://ig.example.com:8080/home/client-side-https
https://en.wikipedia.org/wiki/Authenticated_encryption

38 / 53

refer to JwtSession.

This section describes how to set up a keystore with a symmetric key for authenticated

encryption of a JWT session.

1. Set up a keystore to contain the encryption key, where the keystore and the key

have the password password :

a. Locate a directory for secrets, and go to it:

b. Generate the key:

2. Add the following route to IG:

1. Linux

2. Windows

Encrypt JWT sessions

$ cd /path/to/secrets

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase,

use only lowercase in alias definitions of a keystore.

NOTE

$HOME/.openig/config/routes/jwt-session-encrypt.json

%appdata%\OpenIG\config\routes\jwt-session-encrypt.json

{

"name": "jwt-session-encrypt",

"heap": [{

"name": "KeyStoreSecretStore-1",

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession

39 / 53

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world!"

}

},

"condition": "${request.uri.path == '/jwt-session-

encrypt'}"

}

40 / 53

Notice the following features of the route:

The route matches requests to /jwt-session-encrypt .

The KeyStoreSecretStore uses the SystemAndEnvSecretStore in the heap to

manage the store password.

The JwtSession uses the KeyStoreSecretStore in the heap to manage the

session encryption secret.

3. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

When a session is shared between multiple instances of IG, the instances are able to

share the session information for load balancing and failover.

This section gives an example of how to set up a deployment with three instances of IG

that share a JwtSession.

R
eq

ue
st

 p
ath

/w
eb

app/b
ro

w
si

ng
 a

nd

/w
eb

app/b
ro

w
si

ng
?on

e

Instance 1
Load balancer

8001

Instance 2
Retrieve session username

8082

Instance 3
Retrieve session username

8083

R
equest path

/w
ebapp/brow

sing?tw
o

All requests

Request path
/log-in-and-generate-session

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Share JWT sessions between multiple instances of IG

41 / 53

1. Set up a keystore to contain the encryption key, where the keystore and the key

have the password password :

a. Locate a directory for secrets, and go to it:

b. Generate the key:

2. Prepare the IG installation:

a. Create an installation directory for IG in /path/to .

b. Download and unzip IG-2023.4.0.zip in /path/to , as described in

Download and start IG. The directory /path/to/identity-gateway is

created.

3. Set up the first instance of IG, which acts as the load balancer:

a. Create a configuration directory for the instance and go to it:

b. Add the following route:

1. Linux

2. Windows

$ cd /path/to/secrets

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase,

use only lowercase in alias definitions of a keystore.

NOTE

$ mkdir -p /path/to/config-instance1/config/routes

/path/to/config-instance1/config/routes/instance1-

loadbalancer.json

file:///home/pptruser/Downloads/build/site/ig/installation-guide/install-standalone.html#starting-standalone

42 / 53

%appdata%\path\to\config-

instance1\config\routes\instance1-loadbalancer.json

{

"name": "instance1-loadbalancer",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [{

"condition": "${find(request.uri.path,

'/webapp/browsing') and (contains(request.uri.query,

43 / 53

Notice the following features of the route:

'one') or empty(request.uri.query))}",

"baseURI": "http://ig.example.com:8002",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path,

'/webapp/browsing') and contains(request.uri.query,

'two')}",

"baseURI": "http://ig.example.com:8003",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path, '/log-

in-and-generate-session')}",

"handler": {

"type": "Chain",

"config": {

"filters": [{

"type": "AssignmentFilter",

"config": {

"onRequest": [{

"target": "${session.authUsername}",

"value": "Sam Carter"

}]

}

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html;

charset=UTF-8"]

},

"entity": "<html><body>Sam Carter

logged IN. (JWT session generated)</body></html>"

}

}

}

}

}]

}

},

"capture": "all"

}

44 / 53

The route has no condition, so it matches all requests.

When the request matches /log-in-and-generate-session , the

DispatchHandler creates a JWT session, whose authUsername attribute

contains the name Sam Carter .

When the request matches /webapp/browsing , the DispatchHandler

dispatches the request to instance 2 or instance 3, depending on the

rest of the request path.

c. Add the following configuration:

1. Linux

2. Windows

d. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start IG:

1. Linux

2. Windows

/path/to/config-instance1/config/admin.json

%appdata%\path\to\config-instance1\config\admin.json

{

"connectors": [{

"port": 8001

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$ /path/to/identity-gateway/bin/start.sh

/path/to/config-instance1/

...

... started in 1234ms on ports : [8001]

45 / 53

4. Set up and start the second instance of IG:

a. Create a configuration directory for the instance:

b. Add the following route:

1. Linux

2. Windows

C:\path\to\identity-gateway\bin\start.bat

%appdata%/path/to/config-instance1

$ mkdir -p /path/to/config-instance2/config/routes

/path/to/config-instance2/config/routes/instance2-

retrieve-session-username.json

%appdata%\path\to\config-

instance2\config\routes\instance2-retrieve-session-

username.json

{

"name": "instance2-retrieve-session-username",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

46 / 53

Notice the following features of the route compared to the route for

instance 1:

The route matches the condition /webapp/browsing . When a request

matches /webapp/browsing , the DispatchHandler dispatches it to

instance 2.

The StaticResponseHandler displays information from the session

context.

c. Add the following configuration:

1. Linux

2. Windows

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body>${session.authUsername!=

null?'Hello, '.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance2)

</body></html>"

}

},

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

/path/to/config-instance2/config/admin.json

47 / 53

d. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start IG:

1. Linux

2. Windows

5. Set up and start the third instance of IG:

a. Create a configuration directory:

b. Add the following route:

1. Linux

2. Windows

%appdata%\path\to\config-instance2\config\admin.json

{

"connectors": [{

"port": 8002

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

$ /path/to/identity-gateway/bin/start.sh

/path/to/config-instance2/

...

... started in 1234ms on ports : [8002]

C:\path\to\identity-gateway\bin\start.bat

%appdata%/path/to/config-instance2

$ mkdir -p /path/to/config-instance3/config/routes

/path/to/config-instance3/config/routes/instance3-

retrieve-session-username.json

48 / 53

%appdata%\path\to\config-

instance3\config\routes\instance3-retrieve-session-

username.json

{

"name": "instance3-retrieve-session-username",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSession",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

49 / 53

Notice that the route is the same as that for instance 2, apart from the text

in the entity of the StaticResponseHandler.

c. Add the following configuration:

1. Linux

2. Windows

d. In the terminal where you will run the IG instance, create an environment

variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start IG:

1. Linux

2. Windows

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body>${session.authUsername!=

null?'Hello, '.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance3)

</body></html>"

}

},

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

/path/to/config-instance3/config/admin.json

%appdata%\path\to\config-instance3\config\admin.json

{

"connectors": [{

"port": 8003

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

50 / 53

6. Test the setup:

a. Access instance 1, to generate a session:

b. Using the JWT cookie returned in the previous step, access instance 2:

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access instance 3:

$ /path/to/identity-gateway/bin/start.sh

/path/to/config-instance3/

...

... started in 1234ms on ports : [8003]

C:\path\to\identity-gateway\bin\start.bat

%appdata%/path/to/config-instance3

$ curl -v http://ig.example.com:8001/log-in-and-

generate-session

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

...

Sam Carter logged IN. (JWT session generated)

$ curl -v http://ig.example.com:8001/webapp/browsing\?

one --header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?one HTTP/1.1

...

cookie: IG=eyJ...HyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

51 / 53

Note that instance 3 can access the session info.

For a high scale or highly available deployment, you can prepare a pool of IG servers with

nearly identical configurations, and then load balance requests across the pool, routing

around any servers that become unavailable. Load balancing allows the service to handle

more load.

Before you spread requests across multiple servers, however, you must determine what

to do with state information that IG saves in the context, or retrieves locally from the IG

server system. If information is retrieved locally, then consider setting up failover. If one

server becomes unavailable, another server in the pool can take its place. The benefit of

failover is that a server failure can be invisible to client applications.

IG saves state information in the following ways:

By using a handler, such as a custom ScriptableHandler, that can store information

in the context. Most handlers depend on information in the context, some of which

is first stored by IG.

By using filters, such as AssignmentFilters, HeaderFilters,

AuthorizationCodeOAuth2ClientFilters, OAuth2ResourceServerFilters,

ScriptableFilters, SqlAttributesFilters, and StaticRequestFilters, that can store

information in the context. Most filters depend on information in the request,

response, or context, some of which is first stored by IG.

IG retrieves information locally in the following ways:

By using filters and handlers, such as FileAttributesFilters, ScriptableFilters,

ScriptableHandlers, and SqlAttributesFilters, that depend on local system files or

container configuration.

$ curl -v http://ig.example.com:8001/webapp/browsing\?

two --header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?two HTTP/1.1

...

cookie: IG=eyJ...HyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

Prepare for load balancing and failover

52 / 53

By default, the context data, including storage of the default session implementation,

resides in memory. For information about whether to store session data on the user

agent instead, refer to JwtSession.

When using JwtSession with a cookie domain, share the encryption keys and the

signature symmetric secret across all IG configurations so that any server can read or

update JWT cookies from any other server in the same cookie domain.

If your data does not fit in an HTTP cookie, for example, because when encrypted it is

larger than 4 KB, consider storing a reference in the cookie, and then retrieve the data by

using another filter. IG logs warning messages if the JwtSession cookie is too large. Using

a reference can also work when a server becomes unavailable, and the load balancer

must fail requests over to another server in the pool.

If some data attached to a context must be stored on the server-side, then you have

additional configuration steps to perform for session stickiness and for session

replication. Session stickiness means that the load balancer sends all requests from the

same client session to the same server. Session stickiness helps to ensure that a client

request goes to the server holding the original session data. Session replication involves

writing session data either to other servers or to a data store, so that if one server goes

down, other servers can read the session data and continue processing. Session

replication helps when one server fails, allowing another server to take its place without

having to start the session over again. If you set up session stickiness but not session

replication, when a server crashes, the client session information for that server is lost,

and the client must start again with a new session.

IG is often deployed to replay credentials or other security information. In a real world

deployment, that information must be communicated over a secure connection using

HTTPS, meaning in effect HTTP over encrypted Transport Layer Security (TLS). Never send

real credentials, bearer tokens, or other security information unprotected over HTTP.

When IG is acting as a server, the TLS connection is configured in admin.json .

When IG is acting as a client, the TLS connection is configured in the

ReverseProxyHandler. For information, refer to Configure IG For HTTPS (client-side) and

ReverseProxyHandler.

TLS depends on the use of digital certificates (public keys). In typical use of TLS, the client

authenticates the server by its X.509 digital certificate as the first step to establishing

communication. Once trust is established, then the client and server can set up a

symmetric key to encrypt communications.

In order for the client to trust the server certificate, the client needs first to trust the

certificate of the party who signed the server’s certificate. This means that either the client

Secure connections

file:///home/pptruser/Downloads/build/site/ig/reference/MiscellaneousConfigurationObjects.html#JwtSession
file:///home/pptruser/Downloads/build/site/ig/installation-guide/client-side-https.html
file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#ReverseProxyHandler

53 / 53

has a trusted copy of the signer’s certificate, or the client has a trusted copy of the

certificate of the party who signed the signer’s certificate.

Certificate Authorities (CAs) are trusted signers with well-known certificates. Browsers

generally ship with many well-known CA certificates. Java distributions also ship with

many well-known CA certificates. Getting a certificate signed by a well-known CA is often

expensive.

It is also possible for you to self-sign certificates. The trade-off is that although there is no

monetary expense, the certificate is not trusted by any clients until they have a copy.

Whereas it is often enough to install a certificate signed by a well-known CA in the server

keystore as the basis of trust for HTTPS connections, self-signed certificates must also be

installed in all clients.

Like self-signed certificates, the signing certificates of less well-known CAs are also

unlikely to be found in the default truststore. You might therefore need to install those

signing certificates on the client-side as well.

This guide describes how to install self-signed certificates, that are suitable for trying out

the software, or for deployments where you manage all clients that access IG. For

information about how to use well-known CA-signed certificates, refer to the

documentation for the Java Virtual Machine (JVM).

After certificates are properly installed to allow client-server trust, consider the cipher

suites configured for use. The cipher suite determines the security settings for the

communication. Initial TLS negotiations bring the client and server to agreement on

which cipher suite to use. Basically the client and server share their preferred cipher

suites to compare and to choose. If you therefore have a preference concerning the

cipher suites to use, you must set up your deployment to use only your preferred cipher

suites. IG inherits the list of cipher suites from the underlying Java environment.

The Java Secure Socket Extension (JSSE), part of the Java environment, provides security

services that IG uses to secure connections. You can set security and system properties to

configure the JSSE. For a list of properties you can use to customize the JSSE in Oracle

Java, refer to the Customization section of the JSSE Reference guide .

Copyright © 2010-2023 ForgeRock, all rights reserved.



https://docs.oracle.com/en/java/javase/11/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9

