
PingGateway integrates web applications, APIs, and microservices with the Ping Identity

Platform. PingGateway enforces security and access control in conjunction with PingAM

modules.

This guide shows you an overview of PingGateway.

PingGateway as a reverse proxy server is an intermediate connection point between

external clients and internal services. PingGateway intercepts client requests and server

responses, enforcing policies, and routing and shaping traffic. The following image

illustrates PingGateway as a reverse proxy:

Service

PingGateway

Service Zone

Client

Request Response

Adapt request for service
Enforce policies

Route and shape traffic
Adapt response

PingGateway provides the following features as a reverse proxy:

About PingGateway

PingGateway as a reverse proxy

1 / 12

Access management integration

Application and API security

Credential replay

OAuth 2.0 support

OpenID Connect 1.0 support

Network traffic control

Proxy with request and response capture

Request and response rewriting

SAML 2.0 federation support

Single sign-on (SSO)

In contrast, PingGateway as a forward proxy is an intermediate connection point

between an internal client and an external service. PingGateway regulates outbound

traffic to the service, and can adapt and enrich requests. The following image illustrates

PingGateway as a forward proxy:

PingGateway

IG

Client Zone 1

Service

Regulate traffic
Enrich or adapt requests

Request

Cient

PingGateway

IG

Client Zone 2

Request

Cient

PingGateway provides the following features as a forward proxy:

PingGateway as a forward proxy

2 / 12

Addition of authentication or authorization to the request

Addition of tracer IDs to the requests

Addition or removal of request headers or scopes

PingGateway is optimized to run as a microgateway in containerized environments. Use

PingGateway with business microservices to separate the security concerns of your

applications from their business logic. For example, use PingGateway with the

ForgeRock Token Validation Microservice to provide access token validation at the edge

of your namespace.

For an example, refer to PingGateway as a microgateway. The following image illustrates

the request flow in an example deployment:

OAuth 2.0
Authorization

Server

Cluster/Namespace

2

1

3 4

5

6

9

7 8

10

Microservice Client Bearer token

Token Validation
Microservice

Secured
Microservice B

PingGateway as
Microgateway B

Secured
Microservice A

PingGateway as
Microgateway A

Bearer to
ken

/introspect endpoint

HTTP Basic Authentication

PingGateway processes the request in the following steps:

1. A client requests access to Secured Microservice A, providing a stateful OAuth 2.0

access token as credentials.

2. Microgateway A intercepts the request, and passes the access token for validation

to the Token Validation Microservice, using the /introspect endpoint.

PingGateway as a microgateway

3 / 12

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/microgateway-protect-service.html

3. The Token Validation Microservice requests the Authorization Server to validate the

token.

4. The Authorization Server introspects the token, and sends the introspection result

to the Token Validation Microservice.

5. The Token Validation Microservice caches the introspection result, and sends it to

Microgateway A, which forwards the result to Secured Microservice A.

6. Secured Microservice A uses the introspection result to decide how to process the

request. In this case, it continues processing the request. Secured Microservice A

asks for additional information from Secured Microservice B, providing the

validated token as credentials.

7. Microgateway B intercepts the request, and passes the access token to the Token

Validation Microservice for validation, using the /introspect endpoint.

8. The Token Validation Microservice retrieves the introspection result from the cache,

and sends it back to Microgateway B, which forwards the result to Secured

Microservice B.

9. Secured Microservice B uses the introspection result to decide how to process the

request. In this case it passes its response to Secured Microservice A, through

Microgateway B.

10. Secured Microservice A passes its response to the client, through Microgateway A.

PingGateway processes HTTP requests and responses by passing them through user-

defined chains of filters and handlers. The filters and handlers provide access to the

request and response at each step in the chain, and make it possible to alter the request

or response, and collect contextual information.

The following image illustrates a typical sequence of events when PingGateway

processes a request and response through a chain:

Object model

4 / 12

PingGateway chain

Client

Client

Request fi lter

Request fi lter

Response fi l ter

Response fi l ter

Handler

Handler

Protected application

Protected application

Request

Transform request, possibly
modify the object representation,
or enrich runtime context with computed information

Transformed request, context

Transformed request, context

Log transformed request

Transformed request

Response

Log response

Request, context, response

Transform response,
build a response representation with headers and entity

Request, context, transformed response

Transformed response

When PingGateway processes a request, it first builds an object representation of the

request, including parsed query/form parameters, cookies, headers, and the entity.

PingGateway initializes a runtime context to provide additional metadata about the

request and applied transformations. PingGateway then passes the request

representation into the chain.

In the request flow, filters modify the request representation and can enrich the runtime

context with computed information. In the ClientHandler, the entity content is serialized,

and additional query parameters can be encoded as described in RFC 3986: Query .

In the response flow, filters build a response representation with headers and the entity.

The route configuration in Adding headers and logging results shows the flow through a

chain to a protected application.

PingGateway uses sessions to group requests from a user-agent or other source and to

collect and share information across the requests.

PingGateway supports stateful and stateless sessions.

For stateful sessions, PingGateway stores the session data (default). It sets a session

cookie on the user-agent that references the session.

For stateless sessions, the user-agent stores the session data, and PingGateway

puts the session data in a JWT stored as one or more session cookies on the user-

agent.

Handlers and filters can access session data through the SessionContext.

Session sharing is not thread-safe, so it is not suitable for concurrent exchanges.



Sessions

5 / 12

https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc3986#section-3.4
https://www.rfc-editor.org/rfc/rfc3986#section-3.4
file:///home/pptruser/Downloads/build/site/ig/reference/HeaderFilter.html#HeaderFilter-example-logging
file:///home/pptruser/Downloads/build/site/ig/reference/SessionContext.html

Stateful and stateless sessions

Feature Stateful sessions Stateless sessions

Cookie size Unlimited The maximum size of the

JWT session cookie for a

user-agent is 4 KBytes.

If the cookie exceeds this

size, PingGateway

automatically splits it into

multiple cookies.

Default session cookie

name

IG_SESSIONID openig-jwt-session

Data types the session can

store

All types JSON-compatible types ,

such as strings, numbers,

booleans, null, and arrays,

lists, and maps containing

only JSON-compatible

types.

Session sharing between

PingGateway servers for

load balancing and failover

Possible using session

stickiness

Possible because the

session is a cookie on the

user-agent; PingGateway

servers must share any

encryption keys.

Risk of data inconsistency

when simultaneous

requests modify the

content of a session

Low because PingGateway

stores the session content

for all exchanges.

Processing is not thread-

safe.

Higher because the

session content is

reconstructed from the

JWT for each request.

Concurrent exchanges

don’t have the same

content.

PingGateway uses stateful sessions by default.

To configure sessions explicitly, use an InMemorySessionManager as the "session" in

the AdminHttpApplication (admin.json) for administrative requests and the

GatewayHttpApplication (config.json) or individual Route for other requests.



Stateful sessions

6 / 12

https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
file:///home/pptruser/Downloads/build/site/ig/reference/InMemorySessionManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/GatewayHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html

The default session duration is 30 minutes. Even if the session is empty, the session

remains usable until the timeout.

PingGateway can store any object type in a stateful session.

Because PingGateway stores stateful session content and shares it across all exchanges,

simultaneous requests can update the session with low risk of the data becoming

inconsistent. Sessions aren’t thread-safe, however; different requests can

simultaneously read and modify a shared session.

To configure stateless sessions, use a JwtSessionManager for the "session" in the

AdminHttpApplication (admin.json) for administrative requests and the

GatewayHttpApplication (config.json) or individual Route for other requests.

PingGateway serializes session information as a JWT that is encrypted using

authenticated encryption and optionally compressed. PingGateway stores the JWT in

one or more session cookies on the user-agent. The JWT contains session attributes as

JSON with a marker for the session timeout:

PingGateway can only serialize JSON-compatible types in JWT session cookies.

The maximum size of the JWT session cookie for a user-agent is 4 KBytes. If the

cookie exceeds this size, PingGateway automatically splits it into multiple cookies.

When PingGateway serializes an empty session, it marks the supporting cookie as

expired, so the user-agent effectively discards it.

To prevent PingGateway from cleaning up empty session cookies, add information

to the session context with an AssignmentFilter.

PingGateway manages stateless sessions as follows:

When a request enters a route using stateless sessions, PingGateway creates the

SessionContext, verifies the cookie signature, decrypts the content of the cookie,

and checks the current date is before the session timeout.

As the request passes through the filters and handlers in the route, the filters and

handlers can read and modify the session content.

When the request returns to the point where the session was created, such the

entrance to a route or config.json , PingGateway updates the cookie as follows:

If the session content has changed, PingGateway serializes the session, creates

one or more new JWT session cookies with the new content, encrypts the

cookies using authenticated encryption, assigns them an appropriate

expiration time, and returns them in the response.

If the session is empty, PingGateway deletes the session, creates a new expired

JWT session cookie, and returns the cookie in the response.

Stateless sessions



7 / 12

file:///home/pptruser/Downloads/build/site/ig/reference/JwtSessionManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/GatewayHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
https://www.json.org/json-en.html
file:///home/pptruser/Downloads/build/site/ig/reference/AssignmentFilter.html#AssignmentFilter-example-addinfo

If the session content has not changed, PingGateway does nothing.

Because the session content is stored on the user-agent, PingGateway servers can easily

share stateless sessions. The user-agent returns the JWT cookies and any PingGateway

server can unpack and use the session content.

When PingGateway updates stateless sessions in simultaneous requests, there is a high

risk of the data becoming inconsistent. PingGateway reconstructs the session content

for each exchange. Concurrent exchanges don’t have the same content. PingGateway

doesn’t share sessions across requests. Each request has its own session objects that it

modifies as necessary, writing its own session to the session cookie regardless of what

other requests do.

Session stickiness helps ensure a client request goes to the server holding the original

session data. With session stickiness, a load balancer in front of multiple PingGateway

servers sends all requests from the same client session to the same server.

How you configure session stickiness depends on your load balancer.

Configure session stickiness whenever PingGateway stores session data attached to a

server-side context. For example, configure session stickiness when using stateful

sessions and multiple PingGateway servers.

Common REST endpoints in PingGateway serve API descriptors at runtime. When you

retrieve an API descriptor for an endpoint, a JSON that describes the API for that

endpoint is returned.

To discover and understand APIs, use the API descriptor with a tool such as Swagger UI

 to generate a web page that helps you to view and test the different endpoints.

When you start PingGateway, or add or edit routes, registered endpoint locations for the

routes hosted by the main router are written in $HOME/.openig/logs/route-

system.log , where $HOME/.openig is the instance directory. Endpoint locations for

subroutes are written to other log files. To retrieve the API descriptor for a specific

endpoint, append one of the following query string parameters to the endpoint:

_api , to represent the API accessible over HTTP. This OpenAPI descriptor can be

used with endpoints that are complete or partial URLs.

The returned JSON respects the OpenAPI specification and can be consumed by

Swagger tools, such as Swagger UI .

Session stickiness

API descriptors





8 / 12

https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/
https://swagger.io/tools/swagger-ui/

_crestapi , to provide a compact representation that is independent of the

transport protocol. This ForgeRock® Common REST (Common REST) API descriptor

can’t be used with partial URLs.

The returned JSON respects a ForgeRock proprietary specification dedicated to

describe Common REST endpoints.

For more information about Common REST API descriptors, refer to Common REST API

documentation.

With PingGateway running as described in the Quick install, run the following query to

generate a JSON that describes the router operations supported by the endpoint:

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query

string.

Retrieve API descriptors for a router

Switch to development mode to retrieve these API descriptors.

IMPORTANT

$ curl

http://ig.example.com:8080/openig/api/system/objects/_router/route

s\?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "0:0:0:0:0:0:0:1",

"basePath": "/openig/api/system/objects/_router/routes",

"tags": [{

"name": "Routes Endpoint"

}],

. . .

Retrieve API descriptors for the UMA service

Switch to development mode to retrieve these API descriptors.

IMPORTANT

9 / 12

file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#about-crest-api-descriptors
file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#about-crest-api-descriptors
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/configure/operating-modes.html#development-mode
file:///home/pptruser/Downloads/build/site/ig/configure/operating-modes.html#development-mode

With the UMA tutorial running as described in UMA support, run the following query to

generate a JSON that describes the UMA share API:

Alternatively, generate a Common REST API descriptor by using the ?_crestapi query

string.

Run a query to generate a JSON that describes the API for the main router and its

subsequent endpoints. For example:

$ curl

http://ig.example.com:8080/openig/api/system/objects/_router/route

s/00-uma/objects/umaservice/share\?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "0:0:0:0:0:0:0:1",

"basePath": "/openig/api/system/objects/_router/routes/00-

uma/objects/umaservice/share",

"tags": [{

"name": "Manage UMA Share objects"

}],

. . .

Retrieve API descriptors for the main router

$ curl

http://ig.example.com:8080/openig/api/system/objects/_router\?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "ig.example.com:8080",

"basePath": "/openig/api/system/objects/_router",

"tags": [{

"name": "Monitoring endpoint"

}, {

"name": "Manage UMA Share objects"

10 / 12

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/uma.html

Because the above URL is a partial URL, you cannot use the ?_crestapi query string to

generate a Common REST API descriptor.

Run a query to generate a JSON that describes the APIs provided by the PingGateway

instance that’s responding to a request. For example:

If routes are added after the request is performed, they aren’t included in the returned

JSON.

Because the above URL is a partial URL, you can’t use the ?_crestapi query string to

generate a Common REST API descriptor.

}, {

"name": "Routes Endpoint"

}],

. . .

Retrieve API descriptors for PingGateway instances

$ curl http://ig.example.com:8080/openig/api\?_api

{

"swagger": "2.0",

"info": {

"version": "IG version",

"title": "IG"

},

"host": "ig.example.com:8080",

"basePath": "/openig/api",

"tags": [{

"name": "Internal Storage for UI Models"

}, {

"name": "Monitoring endpoint"

}, {

"name": "Manage UMA Share objects"

}, {

"name": "Routes Endpoint"

}, {

"name": "Server Info"

}],

. . .

11 / 12

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

12 / 12

