
This guide describes how to install and remove PingGateway software. For information

about how to install PingGateway for evaluation, refer to the Quick install.

Read the Release notes before you install.

Product names changed when ForgeRock became part of Ping Identity. PingGateway

was formerly known as ForgeRock Identity Gateway, for example. Learn more about the

name changes from New names for ForgeRock products .

Before you install, make sure your installation meets the requirements in the release

notes.

To limit the impact of a security breach, install and run PingGateway from a dedicated

service account. This is optional when evaluating PingGateway, but essential in

production installations.

A hacker is constrained by the rights granted to the user account where PingGateway

runs; therefore, never run PingGateway as root user.

1. In a terminal window, use a command similar to the following to create a service

account:

2. Apply the principle of least privilege to the account, for example:

Install



Prepare to install

Create a PingGateway service account

Linux Windows

$ sudo /usr/sbin/useradd \

--create-home \

--comment "Account for running PingGateway" \

--shell /bin/bash PingGateway

1 / 47

file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://backstage.forgerock.com/docs/ig/latest/release-notes/preface.html
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://support.pingidentity.com/s/article/new-names-for-forgerock-products
https://backstage.forgerock.com/docs/ig/latest/release-notes
https://backstage.forgerock.com/docs/ig/latest/release-notes

Read/write permissions on the installation directory, /path/to/identity-

gateway-2024.11.0 .

Execute permissions on the scripts in the installation bin directory,

/path/to/identity-gateway-2024.11.0/bin .

Configure the network to include hosts for PingGateway, AM, and the sample

application. Learn more about host files from the Wikipedia entry, Hosts (file) .

1. Add the following entry to your host file:

This documentation contains procedures for setting up items in PingOne Advanced

Identity Cloud that you can use with PingGateway. For more information about setting

up PingOne Advanced Identity Cloud, refer to the PingOne Advanced Identity Cloud

documentation.

Prepare the network



Linux Windows

/etc/hosts

127.0.0.1 localhost ig.example.com app.example.com

am.example.com

Set up PingOne Advanced Identity Cloud

Authenticate a PingGateway agent to PingOne Advanced Identity Cloud

PingGateway agents are automatically authenticated to PingOne Advanced Identity

Cloud by a non-configurable authentication module. Authentication chains and

modules are deprecated in PingOne Advanced Identity Cloud and replaced by

journeys.

You can now authenticate PingGateway agents to PingOne Advanced Identity Cloud

with a journey. The procedure is currently optional, but will be required when

authentication chains and modules are removed in a future release of PingOne

Advanced Identity Cloud.

Learn more in the PingOne Advanced Identity Cloud documentation on Journeys.

IMPORTANT

2 / 47

https://en.wikipedia.org/wiki/Hosts_(file)
https://en.wikipedia.org/wiki/Hosts_(file)
https://en.wikipedia.org/wiki/Hosts_(file)
https://backstage.forgerock.com/docs/idcloud/latest/home.html
https://backstage.forgerock.com/docs/idcloud/latest/home.html
https://backstage.forgerock.com/docs/idcloud/latest/realms/journeys.html

This section describes how to create a journey to authenticate an PingGateway agent to

PingOne Advanced Identity Cloud. The journey has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a journey in PingOne Advanced Identity Cloud, that same journey is

used for all instances of PingGateway, Java agent, and Web agent. Consider this point if

you change the journey configuration.

1. Log in to the PingOne Advanced Identity Cloud admin UI as an administrator.

2. Click Journeys > New Journey.

3. Add a journey with the following information and click Create journey:

Name: Agent

Identity Object: The user or device to authenticate.

(Optional) Description: Authenticate a PingGateway agent to PingOne

Advanced Identity Cloud

The journey designer is displayed, with the Start entry point connected to the

Failure exit point, and a Success node.

4. Using the  Filter nodes bar, find and then drag the following nodes from the

Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are

provided in the incoming authentication request, and use their values in the

following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they aren’t provided in the

incoming authentication request, and use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the

registered PingGateway agent profile.

5. Drag the following nodes from the Components panel into the Page node:

Platform Username node to prompt the user to enter their username.

Platform Password node to prompt the user to enter their password.

6. Connect the nodes as follows and save the journey:

Many nodes can be configured in the panel on the right side of the page.

Unless otherwise stated, don’t configure the nodes, and use only the default

values.

IMPORTANT

3 / 47

https://backstage.forgerock.com/docs/auth-node-ref/latest/auth-node-zero-page-login-collector.html
https://backstage.forgerock.com/docs/auth-node-ref/latest/auth-node-page.html
https://backstage.forgerock.com/docs/auth-node-ref/latest/auth-node-agent-data-store-decision.html
https://backstage.forgerock.com/docs/auth-node-ref/latest/auth-node-platform-username.html
https://backstage.forgerock.com/docs/auth-node-ref/latest/auth-node-platform-password.html

This procedure registers an agent profile for PingGateway.

1. Log in to the PingOne Advanced Identity Cloud admin UI as an administrator.

2. Click Gateways & Agents > + New Gateway/Agent > Identity Gateway >

Next and use the hints in the following table to create the agent profile:

Field Description Example

ID Set the unique agent profile name

PingGateway uses to connect.

ig_agent

Password Store the password PingGateway uses

to connect in the agent profile.

Record the password to use when

configuring PingGateway.

A strong

password.

The examples in

the

documentation

use password

and its base64-

encoding

cGFzc3dvcmQ= .

Use Secret Store

for password

Store the password in a secret and

reference the secret by its label.

Follow the steps in Use the secret store

for the password after you create the

agent profile.

Click to enable

Register a PingGateway agent in PingOne Advanced Identity Cloud

verified_user

4 / 47

Field Description Example

Secret Label

Identifier

This field appears when you select Use

Secret Store for password.

This value represents the identifier

part of the secret label for the agent.

PingOne Advanced Identity Cloud uses

the identifier to generate a secret label

in the following format:

am.application.agents.identifie

r.secret . Learn more in Secret labels.

After setting this, add an ESV secret for

the password and map the ESV to the

secret label.

ig

3. Click Save Profile > Done to display the new agent profile.

4. (Optional) Add the list of Redirect URLs used in PingGateway routes and click Save

to update the profile.

When you select Use Secret Store for password and set a secret label for the agent

profile, PingOne Advanced Identity Cloud creates the secret label but the secret isn’t yet

defined or mapped to the label:

1. Define an ESV secret, such as esv-ig_agent , holding the password for

PingGateway to connect.

The examples in the documentation use password .

Learn how in creating ESV secrets. In production deployments, restrict access to the

password from configuration placeholder and script contexts.

2. Map the ESV to the label created when you set the Secret Label Identifier:

a. Click Native Consoles > Access Management > Secret Stores > ESV >

Mappings > + Add mappings.

b. In the Add Mapping modal, select the label, such as

am.application.agents.ig.secret , in the Secret Label list.

c. In the aliases field, enter the ESV secret, such as esv-ig_agent , and click

Add.

Use secure passwords in a production environment. Consider using a

password manager to generate secure passwords.

IMPORTANT

Use the secret store for the password

open_in_new

5 / 47

https://backstage.forgerock.com/docs/idcloud/latest/tenants/esvs-signing-encryption.html#secret-labels
https://backstage.forgerock.com/docs/idcloud/latest/tenants/esvs-manage-ui.html#create_secrets
https://backstage.forgerock.com/docs/idcloud/latest/tenants/esvs.html#control-access-to-secrets
https://backstage.forgerock.com/docs/idcloud/latest/tenants/esvs.html#control-access-to-secrets

d. Click Create to add the mapping:

Learn more in Map ESV secrets to secret labels.

Note the following points:

If you update or delete the Secret Label Identifier, AM updates or deletes the

corresponding mapping for the previous identifier unless another agent shares the

mapping.

When you rotate a secret, update the corresponding mapping.

In the AM admin UI, consider the following additional optional settings for the agent

profile under Applications > Agents > Identity Gateway > agent ID:

1. To direct login to a custom URL instead of the default AM login page, configure

Login URL Template for CDSSO.

2. To apply a different introspection scope, click Token Introspection and select a

scope from the list.

3. Click Save to update the profile.

This procedure sets up a demo user in the alpha realm.

a. Log in to the PingOne Advanced Identity Cloud admin UI as an administrator.

b. Go to Identities > Manage > Alpha realm - Users, and add a user with the

following values:

Username: demo

First name: demo

Last name: user

Email Address: demo@example.com

Optional settings

Set up a demo user in PingOne Advanced Identity Cloud

group settings_system_daydream

6 / 47

https://backstage.forgerock.com/docs/idcloud/latest/tenants/esvs-signing-encryption.html#map-esv-secrets-to-secret-labels

Password: Ch4ng3!t

Use PingGateway with PingOne Advanced Identity Cloud as you would with any other

service.

During updates, individual PingOne Advanced Identity Cloud tenant servers go

offline temporarily. PingGateway can receive HTTP 502 Bad Gateway responses for

some requests during the update.

In your ClientHandler and ReverseProxyHandler configurations, configure

PingGateway to retry operations when this occurs:

Update PingGateway to use the latest version you can to benefit from fixes and

improvements.

This documentation contains procedures for setting up items in AM that you can use

with PingGateway. You can find more information in the Access Management

documentation.

Recommendations

"retries": {

"enabled": true,

"condition": "${response.status.code == 502}"

}

Set up AM

Authenticate a PingGateway agent to AM

From AM 7.3

When AM 7.3 is installed with a default configuration, as described in Evaluation,

PingGateway is automatically authenticated to AM by an authentication tree.

Otherwise, PingGateway is authenticated to AM by an AM authentication

module.

Authentication chains and modules were deprecated in AM 7. When they are

removed in a future release of AM, it will be necessary to configure an

appropriate authentication tree when you aren’t using the default configuration.

You can find more information in AM documentation on Authentication nodes

and trees.

IMPORTANT

7 / 47

file:///home/pptruser/Downloads/build/site/ig/reference/ClientHandler.html
file:///home/pptruser/Downloads/build/site/ig/reference/ReverseProxyHandler.html
https://backstage.forgerock.com/docs/am/7.5
https://backstage.forgerock.com/docs/am/7.5
https://backstage.forgerock.com/docs/am/7.5/eval-guide/preface.html
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/about-authentication-trees.html
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/about-authentication-trees.html

This section describes how to create an authentication tree to authenticate a

PingGateway agent to AM. The tree has the following requirements:

It must be called Agent

Its nodes must pass the agent credentials to the Agent Data Store Decision node.

When you define a tree in AM, that same tree is used for all instances of PingGateway,

Java agent, and Web agent. Consider this point if you change the tree configuration.

1. On the Realms page of the AM admin UI, choose the realm in which to create the

authentication tree.

2. On the Realm Overview page, click  Authentication > Trees > + Create tree.

3. Create a tree named Agent .

The authentication tree designer is displayed, with the Start entry point

connected to the Failure exit point and a Success node.

The authentication tree designer provides the following features on the toolbar:

Button Usage

Lay out and align nodes according to the order they are

connected.

Toggle the designer window between normal and full-screen

layout.

Remove the selected node. Note that the Start entry point

cannot be deleted.

4. Using the  Filter bar, find and then drag the following nodes from the

Components panel into the designer area:

Zero Page Login Collector node to check whether the agent credentials are

provided in the incoming authentication request, and use their values in the

following nodes.

This node is required for compatibility with Java agent and Web agent.

Page node to collect the agent credentials if they aren’t provided in the

incoming authentication request, and use their values in the following nodes.

Agent Data Store Decision node to verify the agent credentials match the

registered PingGateway agent profile.

IMPORTANT

8 / 47

https://backstage.forgerock.com/docs/auth-node-ref/7.5/auth-node-zero-page-login-collector.html
https://backstage.forgerock.com/docs/auth-node-ref/7.5/auth-node-page.html
https://backstage.forgerock.com/docs/auth-node-ref/7.5/auth-node-agent-data-store-decision.html

5. Drag the following nodes from the Components panel into the Page node:

Username Collector node to prompt the user to enter their username.

Password Collector node to prompt the user to enter their password.

6. Connect the nodes as follows and save the tree:

In AM 7 and later versions, follow these steps to register an agent that acts on behalf of

PingGateway.

1. In the AM admin UI, select the top-level realm, and then select Applications >

Agents > Identity Gateway.

2. Add an agent with the following configuration, leaving other options blank or with

the default value:

1. Agent ID : ig_agent

2. Password : password

3. (Optional - From AM 7.5) Use AM’s secret service to manage the agent profile

password. If AM finds a matching secret in a secret store, it uses that secret instead

of the agent password configured in Step 2.

a. In the agent profile page, set a label for the agent password in Secret Label

Identifier.

AM uses the identifier to generate a secret label for the agent.

Many nodes can be configured in the panel on the right side of the page.

Unless otherwise stated, don’t configure the nodes and use only the default

values.

IMPORTANT

Register a PingGateway agent in AM

For SSO For CDSSO

9 / 47

The secret label has the format

am.application.agents.identifier.secret , where identifier is the Secret

Label Identifier.

The Secret Label Identifier can contain only characters a-z , A-Z , 0-9 , and

periods (.). It can’t start or end with a period.

b. Select  Secret Stores and configure a secret store.

c. Map the label to the secret. Learn more from AM’s mapping.

Note the following points for using AM’s secret service:

Set a Secret Label Identifier that clearly identifies the agent.

If you update or delete the Secret Label Identifier, AM updates or deletes the

corresponding mapping for the previous identifier provided no other agent

shares the mapping.

When you rotate a secret, update the corresponding mapping.

AM is provided with a demo user in the top-level realm, with the following credentials:

ID/username: demo

Last name: user

Password: Ch4ng31t

Email address: demo@example.com

Employee number: 123

For information about how to manage identities in AM, refer to AM’s Identity stores.

In routes that use AmService, PingGateway retrieves AM’s SSO cookie name from the

ssoTokenHeader property or from AM’s /serverinfo/* endpoint.

In other circumstances where you need to find the SSO cookie name, access

http://am-base-url/serverinfo/* . For example, access the AM endpoint with

curl :

Set up a demo user in AM

Find the AM session cookie name

$ curl http://am.example.com:8088/openam/json/serverinfo/*

Download PingGateway

10 / 47

https://backstage.forgerock.com/docs/am/7.5/security-guide/secret-mapping.html
https://backstage.forgerock.com/docs/am/7.5/setup-guide/setting-up-identity-stores.html

The .zip file unpacks into a /path/to/identity-gateway-2024.11.0 directory with

the following content:

bin : Start and stop executables

classes : Initially empty; used to install patches from ForgeRock support

docker/Dockerfile : Dockerfile and README to build a PingGateway Docker

image

legal-notices : Licenses and copyrights

lib : PingGateway and third-party libraries

1. Create a local installation directory for PingGateway. The examples in this

section use /path/to .

2. Download PingGateway-2024.11.0.zip from the BackStage download site

, and copy the .zip file to the installation directory:

3. Unzip the file:

The directory /path/to/identity-gateway-2024.11.0 is created.

Use the following step to start the instance of PingGateway, specifying the configuration

directory where PingGateway looks for configuration files.

1. Start PingGateway:

The installation directory should be a new, empty directory. Installing

PingGateway into an existing installation directory can cause errors.

IMPORTANT



$ cp PingGateway-2024.11.0.zip /path/to/PingGateway-

2024.11.0.zip

$ unzip PingGateway-2024.11.0.zip

Start and stop PingGateway

Start PingGateway with default settings

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/start.sh

11 / 47

https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads
https://backstage.forgerock.com/downloads

By default, PingGateway configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Configuration location.

2. Check that PingGateway is running in one of the following ways:

Ping PingGateway at http://ig.example.com:8080/openig/ping and make

sure an HTTP 200 is returned.

Display the product version and build information at

http://ig.example.com:8080/openig/api/info .

By default, PingGateway runs on HTTP, on port 8080 , from the instance directory

$HOME/.openig .

To start PingGateway with custom settings, add the configuration file admin.json with

the following properties, and restart PingGateway:

vertx : Finely tune Vert.x instances.

connectors : Customize server port, TLS, and Vert.x-specific configurations. Each

connectors object represents the configuration of an individual port.

The following example starts PingGateway on non-default ports, and configures Vert.x-

specific options for the connection on port 9091:

For more information, refer to AdminHttpApplication (admin.json).

...

... started in 1234ms on ports : [8080]

Start PingGateway with custom settings

{

"connectors": [{

"port": 9090

},

{

"port": 9091,

"vertx": {

"maxWebSocketFrameSize": 128000,

"maxWebSocketMessageSize": 256000,

"compressionLevel": 4

}

}]

}

12 / 47

file:///home/pptruser/Downloads/build/site/ig/configure/configure.html#configuration-location
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

By default, if there is an existing PID file during startup the startup fails. Use one of the

following ways to allow startup when there is an existing PID file. PingGateway then

removes the existing PID file and creates a new one during startup.

1. Add the following configuration to admin.json and restart PingGateway:

2. Define an environment variable for the configuration token ig.pid.file.mode ,

and then start PingGateway in the same terminal:

3. Define a system property for the configuration token ig.pid.file.mode when

you start PingGateway:

Use the stop.sh script to stop an instance of PingGateway, specifying the instance

directory as an argument. If the instance directory isn’t specified, PingGateway uses the

default instance directory:

Allow startup when there is an existing PID file

{

"pidFileMode": "override"

}

Linux Windows

$ IG_PID_FILE_MODE=override /path/to/identity-gateway-

2024.11.0/bin/start.sh

Linux Windows

$HOME/.openig/env.sh

export "IG_OPTS=-Dig.pid.file.mode=override"

Stop PingGateway

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/stop.sh

$HOME/.openig

13 / 47

By default, the stop.sh or stop.bat script waits up to 2.5 seconds before forcing the

PingGateway process to terminate. Technically, the script sleeps 500 milliseconds up to

five times.

To give PingGateway more time to shut down gracefully, specify the sleep time in

milliseconds and the number of intervals after the instance directory argument. The

following example causes the script to wait up to 10 seconds before forcing termination:

When you specify the sleep time in milliseconds without the number of intervals, the

number of intervals defaults to five.

Configure environment variables and system properties as follows:

By adding environment variables on the command line when you start

PingGateway.

By adding environment variables in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory. After changing env.sh , restart

PingGateway to load the new configuration.

By default, PingGateway scans every 10 seconds for changes to the route configuration

files. Any changes to the files are automatically loaded into the configuration without

restarting PingGateway. Learn more about the router scan interval in Router.

The following example overwrites the default value of the Router scan interval to 2

seconds when you start up PingGateway:

Graceful shutdown

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/stop.sh

$HOME/.openig 1000 10

Set up environment variables and system properties

Start PingGateway with a customized router scan interval

Linux Windows

$ IG_ROUTER_SCAN_INTERVAL='2 seconds' /path/to/identity-

gateway-2024.11.0/bin/start.sh

14 / 47

file:///home/pptruser/Downloads/build/site/ig/reference/Router.html

PingGateway provides the following environment variables for Java runtime options:

IG_OPTS

(Optional) Java runtime options for PingGateway and its startup process, such as JVM

memory sizing options.

Include all options that aren’t shared with the stop script.

The following example specifies environment variables in the env.sh file to

customize JVM options and keys:

JAVA_OPTS

(Optional) Java runtime options for PingGateway include all options that are shared

by the start and stop script.

PingGateway stateless sessions store session information in JWT cookies on the user-

agent. Learn more in Sessions.

This page describes how to set authenticated encryption for stateless sessions using

symmetric keys.

With authenticated encryption , PingGateway encrypts data and signs it with HMAC in a

single step.

Define environment variables for startup, runtime, and stop

Linux Windows

Specify JVM options

JVM_OPTS="-Xms256m -Xmx2048m"

Specify the DH key size for stronger ephemeral DH keys

and to protect against weak keys

JSSE_OPTS="-Djdk.tls.ephemeralDHKeySize=2048"

Wrap them up into the IG_OPTS environment variable

export IG_OPTS="${IG_OPTS} ${JVM_OPTS} ${JSSE_OPTS}"

Encrypt and share JWT sessions



Encrypt JWT sessions

15 / 47

file:///home/pptruser/Downloads/build/site/ig/about/about-sessions.html
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption
https://en.wikipedia.org/wiki/Authenticated_encryption

This section describes how to set up a keystore with a symmetric key for authenticated

encryption of a JWT session.

1. Set up a keystore to contain the encryption key, where the keystore and the key

have the password password :

a. Locate a directory for secrets, and go to it:

b. Generate the key:

2. Add the following route to PingGateway:

$ cd /path/to/secrets

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias definitions of a keystore.

NOTE

Linux Windows

$HOME/.openig/config/routes/jwt-session-encrypt.json

{

"name": "jwt-session-encrypt",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

16 / 47

Notice the following features of the route:

The route matches requests to /jwt-session-encrypt .

The KeyStoreSecretStore uses the SystemAndEnvSecretStore in the heap to

manage the store password.

The JWTSessionManager uses the KeyStoreSecretStore in the heap to manage

the session encryption secret.

3. In the terminal where you will run the PingGateway instance, create an environment

variable for the value of the keystore password:

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSessionManager",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world!"

}

},

"condition": "${request.uri.path == '/jwt-session-encrypt'}"

}

17 / 47

The password is retrieved by the SystemAndEnvSecretStore, and must be base64-

encoded.

This section shows how to set up a deployment with three PingGateway servers sharing

stateless sessions.

Request
 p

ath

/w
ebapp/b

ro
wsin

g a
nd

/w
ebapp/b

ro
wsin

g?one

Instance 1
Load balancer

8001

Instance 2
Retrieve session username

8082

Instance 3
Retrieve session username

8083

Request path

/webapp/browsing?two

All requests

Request path
/log-in-and-generate-session

1. Set up a keystore to contain the encryption key, where the keystore and the key

have the password password :

a. Locate a directory for secrets, and go to it:

b. Generate the key:

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Share JWT sessions between multiple instances of PingGateway

$ cd /path/to/secrets

$ keytool \

-genseckey \

-alias symmetric-key \

-keystore jwtsessionkeystore.pkcs12 \

-storepass password \

18 / 47

2. Prepare the PingGateway installation:

a. Create an installation directory for PingGateway in /path/to .

b. Download and unzip PingGateway-2024.11.0.zip in /path/to , as described in

the Install. The directory /path/to/identity-gateway-2024.11.0 is

created.

3. Set up the first instance of PingGateway, which acts as the load balancer:

a. Create a configuration directory for the instance and go to it:

b. Add the following route:

-storetype pkcs12 \

-keyalg HmacSHA512 \

-keysize 512

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias definitions of a keystore.

NOTE

$ mkdir -p /path/to/config-instance1/config/routes

Linux Windows

/path/to/config-instance1/config/routes/instance1-

loadbalancer.json

{

"name": "instance1-loadbalancer",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

19 / 47

file:///home/pptruser/Downloads/build/site/ig/installation-guide/preface.html

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSessionManager",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [{

"condition": "${find(request.uri.path,

'/webapp/browsing') and (contains(request.uri.query,

'one') or empty(request.uri.query))}",

"baseURI": "http://ig.example.com:8002",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path,

'/webapp/browsing') and contains(request.uri.query,

'two')}",

"baseURI": "http://ig.example.com:8003",

"handler": "ReverseProxyHandler"

}, {

"condition": "${find(request.uri.path, '/log-in-

and-generate-session')}",

"handler": {

"type": "Chain",

"config": {

"filters": [{

"type": "AssignmentFilter",

"config": {

"onRequest": [{

"target": "${session.authUsername}",

20 / 47

Notice the following features of the route:

The route has no condition, so it matches all requests.

When the request matches /log-in-and-generate-session , the

DispatchHandler creates a JWT session, whose authUsername attribute

contains the name Sam Carter .

When the request matches /webapp/browsing , the DispatchHandler

dispatches the request to instance 2 or instance 3, depending on the rest

of the request path.

c. Add the following configuration:

"value": "Sam Carter"

}]

}

}],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html;

charset=UTF-8"]

},

"entity": "<html><body>Sam Carter logged

IN. (JWT session generated)</body></html>"

}

}

}

}

}]

}

},

"capture": "all"

}

Linux Windows

/path/to/config-instance1/config/admin.json

{

"connectors": [{

"port": 8001

21 / 47

d. In the terminal where you will run the PingGateway instance, create an

environment variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start PingGateway:

4. Set up and start the second instance of PingGateway:

a. Create a configuration directory for the instance:

b. Add the following route:

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/start.sh

/path/to/config-instance1/

$ mkdir -p /path/to/config-instance2/config/routes

Linux Windows

/path/to/config-instance2/config/routes/instance2-

retrieve-session-username.json

{

"name": "instance2-retrieve-session-username",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

22 / 47

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSessionManager",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": [

"<html>",

" <body>",

" ${session.authUsername!= null?'Hello,

'.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance2)",

" </body>",

"</html>"

]

}

},

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

23 / 47

Notice the following features of the route compared to the route for instance 1:

The route matches the condition /webapp/browsing . When a request

matches /webapp/browsing , the DispatchHandler dispatches it to

instance 2.

The StaticResponseHandler displays information from the session context.

c. Add the following configuration:

d. In the terminal where you will run the PingGateway instance, create an

environment variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start PingGateway:

5. Set up and start the third instance of PingGateway:

a. Create a configuration directory:

b. Add the following route:

Linux Windows

/path/to/config-instance2/config/admin.json

{

"connectors": [{

"port": 8002

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/start.sh

/path/to/config-instance2/

$ mkdir -p /path/to/config-instance3/config/routes

Linux Windows

24 / 47

/path/to/config-instance3/config/routes/instance3-

retrieve-session-username.json

{

"name": "instance3-retrieve-session-username",

"heap": [{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file":

"/path/to/secrets/jwtsessionkeystore.pkcs12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": ["SystemAndEnvSecretStore-1"],

"mappings": [{

"secretId": "jwtsession.symmetric.secret.id",

"aliases": ["symmetric-key"]

}]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"session": {

"type": "JwtSessionManager",

"config": {

"authenticatedEncryptionSecretId":

"jwtsession.symmetric.secret.id",

"encryptionMethod": "A256CBC-HS512",

"secretsProvider": ["KeyStoreSecretStore-1"],

"cookie": {

"name": "IG",

"domain": ".example.com"

}

}

},

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

25 / 47

Notice that the route is the same as for instance 2, apart from the text in the

entity of the StaticResponseHandler.

c. Add the following configuration:

d. In the terminal where you will run the PingGateway instance, create an

environment variable for the value of the keystore password:

The password is retrieved by the SystemAndEnvSecretStore, and must be

base64-encoded.

e. Start PingGateway:

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": [

"<html>",

" <body>",

" ${session.authUsername!= null?'Hello,

'.concat(session.authUsername).concat('

!'):'Session.authUsername is not defined'}! (instance3)",

" </body>",

"</html>"

]

}

},

"condition": "${find(request.uri.path,

'/webapp/browsing')}",

"capture": "all"

}

Linux Windows

/path/to/config-instance3/config/admin.json

{

"connectors": [{

"port": 8003

}]

}

$ export KEYSTORE_SECRET_ID='cGFzc3dvcmQ='

26 / 47

6. Test the setup:

a. Access instance 1, to generate a session:

b. Using the JWT cookie returned in the previous step, access instance 2:

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access instance 3:

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/start.sh

/path/to/config-instance3/

$ curl -v http://ig.example.com:8001/log-in-and-generate-

session

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

...

Sam Carter logged IN. (JWT session generated)

$ curl -v http://ig.example.com:8001/webapp/browsing\?one

--header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?one HTTP/1.1

...

cookie: IG=eyJ...HyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

$ curl -v http://ig.example.com:8001/webapp/browsing\?two

--header "cookie:IG=eyJ...HyI"

GET /webapp/browsing?two HTTP/1.1

...

27 / 47

Note that instance 3 can access the session info.

For high scale or highly available deployments, consider using a pool of PingGateway

servers with nearly identical configurations. Load balance requests across the pool to

handle more load. Route around any servers that become unavailable.

Before spreading requests across multiple servers, decide how to manage state

information. PingGateway manages state information in the following ways:

Stores state information in a context

By using filters that can store information in the context. Most filters depend on

information in the request, response, or context, some of which is first stored by

PingGateway. For a summary of filters that can populate a context, refer to Summary

of contexts.

By using a handler such as the ScriptableHandler that can store state information in

the context. Most handlers depend on information in the context, some of which is

first stored by PingGateway.

Retrieves state information to local memory

By using filters and handlers that depend on the configuration of the local file

system, such as the following filters:

FileAttributesFilter

ScriptableFilter

ScriptableHandler

SqlAttributesFilter

When a server becomes unavailable, state information held in local memory is lost.

To prevent data loss when a server becomes unavailable, set up failover. Server

failover should be transparent to client applications.

cookie: IG=eyJ...HyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

Prepare for load balancing and failover

Manage state information

28 / 47

file:///home/pptruser/Downloads/build/site/ig/reference/Contexts.html#contexts-summary
file:///home/pptruser/Downloads/build/site/ig/reference/Contexts.html#contexts-summary
file:///home/pptruser/Downloads/build/site/ig/reference/ScriptableHandler.html
file:///home/pptruser/Downloads/build/site/ig/reference/FileAttributesFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ScriptableFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ScriptableHandler.html
file:///home/pptruser/Downloads/build/site/ig/reference/SqlAttributesFilter.html

For example configurations, refer to Encrypt and share JWT sessions.

Stateless sessions

Use a JwtSessionManager. PingGateway stores session content in a JWT cookie on the

user-agent.

So that any server can read or update a JWT cookie from any other server in the

same cookie domain, encrypt JWT sessions and share keys and secret across all

PingGateway configurations.

Encrypt JWT sessions. The maximum size of the JWT session cookie is 4 KBytes, as

defined by the browser. If the cookie exceeds this size, PingGateway automatically

splits it into multiple cookies.

Session stickiness

Session stickiness helps to ensure that a client request goes to the server holding the

original session data.

If data attached to a context must be stored on the server-side, configure session

stickiness so that the load balancer sends all requests from the same client session

to the same server.

For an example configuration, refer to Share JWT sessions between multiple

instances of PingGateway.

PingGateway uses AM federation libraries to implement SAML. When PingGateway acts

as a SAML service provider, some internal state information is maintained in the fedlet

instead of the session cookie. In deployments that use multiple instances of

PingGateway as a SAML service provider, set up sticky sessions so that requests go to

the server that started the SAML interaction.

For information, refer to Session state considerations in AM’s SAML v2.0 guide.

PingGateway is often deployed to replay credentials or other security information. In a

real world deployment, this information must be communicated over a secure

connection using HTTPS, meaning HTTP over encrypted Transport Layer Security (TLS).

Prepare stateless sessions

SAML in deployments with multiple instances of PingGateway

Secure connections

29 / 47

file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html
file:///home/pptruser/Downloads/build/site/ig/reference/JwtSessionManager.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-encrypt
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
https://backstage.forgerock.com/docs/am/7.5/saml2-guide/saml2-configuration.html#saml2-and-session-state

Never send real credentials, bearer tokens, or other security information unprotected

over HTTP.

Learn about how to use well-known CA-signed certificates from the documentation for

the Java Virtual Machine (JVM).

After installing certificates for client-server trust, consider which cipher suites to use.

PingGateway inherits the list of cipher suites from the underlying Java environment.

PingGateway uses the JSSE to secure connections. You can set security and system

properties to configure the JSSE. For a list of properties to customize the JSSE in Oracle

Java, refer to the Customization section of the JSSE Reference guide .

When PingGateway sends requests over HTTP to a proxied application, or requests

services from a third-party application, PingGateway is acting as a client of the

application, and the application is acting as a server. PingGateway is client-side.

When PingGateway sends requests securely over HTTPS, PingGateway must be able to

trust the server. By default, PingGateway uses the Java environment truststore to trust

server certificates. The Java environment truststore includes public key signing

certificates from many well-known Certificate Authorities (CAs).

When servers present certificates signed by trusted CAs, then PingGateway can send

requests over HTTPS to those servers, without any configuration to set up the HTTPS

client connection. When server certificates are self-signed or signed by a CA whose

certificate is not automatically trusted, the following objects can be required to configure

the connection:

KeyStoreSecretStore, to manage a secret store for cryptographic keys and

certificates, based on a standard Java keystore.

SecretsTrustManager, to manage trust material that verifies the credentials

presented by a peer.

(Optional) SecretsKeyManager, to manage keys that authenticate a TLS connection

to a peer.

ClientHandler and ReverseProxyHandler reference to ClientTlsOptions, for

connecting to TLS-protected endpoints.

The following procedure describes how to set up PingGateway for HTTPS (client-side),

when server certificates are self-signed or signed by untrusted CAs.

Set up PingGateway for HTTPS (client-side) for untrusted servers

1. Locate or set up the following directories:

Directory containing the sample application .jar: sampleapp_install_dir



Configure PingGateway for TLS (client-side)

30 / 47

https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9
https://docs.oracle.com/en/java/javase/17/security/java-secure-socket-extension-jsse-reference-guide.html#GUID-A41282C3-19A3-400A-A40F-86F4DA22ABA9
file:///home/pptruser/Downloads/build/site/ig/reference/KeyStoreSecretStore.html
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsTrustManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsKeyManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/ClientTlsOptions.html

Directory to store the sample application certificate and PingGateway keystore:

/path/to/secrets

2. Extract the public certificate from the sample application:

The file /path/to/secrets/tls/sampleapp-cert.pem is created.

3. Import the certificate into the PingGateway keystore, and answer yes to trust the

certificate:

4. List the keys in the PingGateway keystore to make sure that a key with the alias ig-

sampleapp is present:

$ cd /path/to/secrets

$ jar --verbose --extract \

--file sampleapp_install_dir/PingGateway-sample-application-

2024.11.0-jar-with-dependencies.jar tls/sampleapp-cert.pem

inflated: tls/sampleapp-cert.pem

$ keytool -importcert \

-alias ig-sampleapp \

-file tls/sampleapp-cert.pem \

-keystore reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

...

Trust this certificate? [no]: yes

Certificate was added to keystore

Because keytool converts all characters in its key aliases to lowercase, use only

lowercase in alias definitions of a keystore.

NOTE

$ keytool -list \

-v \

-keystore /path/to/secrets/reverseproxy-truststore.p12 \

-storetype pkcs12 \

-storepass password

Keystore type: PKCS12

31 / 47

5. Add the following route to PingGateway to serve the sample application .css and

other static resources:

6. Add the following route to PingGateway:

Keystore provider: SUN

Your keystore contains 1 entry

Alias name: ig-sampleapp

...

Linux Windows

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}

Linux Windows

$HOME/.openig/config/routes/client-side-https.json

{

"name": "client-side-https",

"condition": "${find(request.uri.path, '/home/client-side-

https')}",

"baseURI": "https://app.example.com:8444",

"heap": [

{

"name": "Base64EncodedSecretStore-1",

"type": "Base64EncodedSecretStore",

"config": {

"secrets": {

"keystore.secret.id": "cGFzc3dvcmQ="

}

}

},

32 / 47

Notice the following features of the route:

The route matches requests to /home/client-side-https .

{

"name": "KeyStoreSecretStore-1",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/reverseproxy-

truststore.p12",

"storeType": "PKCS12",

"storePasswordSecretId": "keystore.secret.id",

"secretsProvider": "Base64EncodedSecretStore-1",

"mappings": [

{

"secretId": "trust.manager.secret.id",

"aliases": ["ig-sampleapp"]

}

]

}

},

{

"name": "SecretsTrustManager-1",

"type": "SecretsTrustManager",

"config": {

"verificationSecretId": "trust.manager.secret.id",

"secretsProvider":"KeyStoreSecretStore-1"

}

},

{

"name": "ReverseProxyHandler-1",

"type": "ReverseProxyHandler",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": "SecretsTrustManager-1"

}

},

"hostnameVerifier": "ALLOW_ALL"

},

"capture": "all"

}

],

"handler": "ReverseProxyHandler-1"

}

33 / 47

The baseURI changes the request URI to point to the HTTPS port for the

sample application.

The Base64EncodedSecretStore provides the keystore password.

The SecretsTrustManager points to the secret bound to the sample application

certificate, coming from the KeyStoreSecretStore.

The KeyStoreSecretStore contains the sample application certificate to validate

the TLS connection. The password to access the keystore is provided by the

SystemAndEnvSecretStore.

The ReverseProxyHandler uses the SecretsTrustManager for the connection to

TLS-protected endpoints. All hostnames are allowed.

7. Test the setup:

a. Start the sample application

b. Go to http://ig.example.com:8080/home/client-side-https .

The request is proxied transparently to the sample application, on the TLS port

8444 .

c. Check the route log for a line like this:

When PingGateway is server-side, applications send requests to PingGateway or request

services from PingGateway. PingGateway is acting as a server of the application, and the

application is acting as a client.

To run PingGateway as a server over TLS:

In the admin.json heap, add a SecretsKeyManager to authenticate PingGateway

to the client. Key material is a private key and its certificate for PingGateway.

In admin.json , update the connectors list to include a connector for the HTTPS

port. The connector tls property must refer to a ServerTlsOptions.

The ServerTlsOptions must configure keyManager to refer to the

SecretsKeyManager.

The following example connector includes a ServerTlsOptions that refers to a

SecretsKeyManager in the heap:

$ java -jar sampleapp_install_dir/PingGateway-sample-

application-2024.11.0-jar-with-dependencies.jar



GET https://app.example.com:8444/home/client-side-https

Configure PingGateway for TLS (server-side)

34 / 47

http://ig.example.com:8080/home/client-side-https
http://ig.example.com:8080/home/client-side-https
http://ig.example.com:8080/home/client-side-https
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsKeyManager.html
file:///home/pptruser/Downloads/build/site/ig/reference/ServerTlsOptions.html

Learn more from About keys and certificates.

This example uses PEM files and a PKCS#12 keystore for self-signed certificates, but you

can adapt it to use official (non self-signed) keys and certificates.

Before you start, install PingGateway, as described in the Install.

1. Locate a directory for the secrets, for example, /path/to/secrets .

2. Create self-signed keys in one of the following ways. If you have your own keys, use

them and skip this step.

If you have your own keys, use them and skip this step.

1. Create the keystore, replacing /path/to/secrets with your path:

"connectors": [

{

"port": 8443,

"tls": {

"type": "ServerTlsOptions",

"config": {

"keyManager": "SecretsKeyManager-1"

}

}

}

]

Serve one certificate for TLS connections to all server names

Use your own keys

Set up a self-signed certificate in a (PKCS#12) keystore

$ keytool \

-genkey \

-alias https-connector-key \

-keyalg RSA \

-keystore /path/to/secrets/keystore.pkcs12 \

-storepass password \

-keypass password \

-dname "CN=ig.example.com,O=Example Corp,C=FR"

Because keytool converts all characters in its key aliases to lowercase,

use only lowercase in alias definitions of a keystore.

NOTE

35 / 47

file:///home/pptruser/Downloads/build/site/ig/security-guide/keys.html#using-certs-in-examples
file:///home/pptruser/Downloads/build/site/ig/installation-guide/preface.html

2. In the secrets directory, add a file called keystore.pass , containing the

keystore password password :

Make sure the password file contains only the password, with no trailing

spaces or carriage returns.

a. Locate a directory for secrets, and go to it:

b. Create the following secret key and certificate pair as PEM files:

Two PEM files are created, one for the secret key, and another for the

associated certificate.

c. Map the key and certificate to the same secret ID in PingGateway:

3. Set up TLS on PingGateway in one of the following ways:

Add the following file to PingGateway, replacing /path/to/secrets with your

path:

$ cd /path/to/secrets/

$ echo -n 'password' > keystore.pass

Set up self-signed certificate stored in PEM file

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout ig.example.com-key.pem \

-out ig.example.com-certificate.pem

$ cat ig.example.com-key.pem ig.example.com-

certificate.pem > key.manager.secret.id.pem

Keys stored in a (PKCS#12) keystore

Linux Windows

36 / 47

$HOME/.openig/config/admin.json

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

},

{

"type": "FileSystemSecretStore",

"name": "SecretsPasswords",

"config": {

"directory": "/path/to/secrets",

"format": "PLAIN"

}

},

{

"name": "ServerIdentityStore",

"type": "KeyStoreSecretStore",

"config": {

"file": "/path/to/secrets/IG-keystore",

"storePasswordSecretId": "keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

37 / 47

Notice the following features of the file:

PingGateway starts on port 8080 , and on 8443 over TLS.

PingGateway’s private keys for TLS are managed by the SecretsKeyManager,

whose ServerIdentityStore references a KeyStoreSecretStore.

The KeyStoreSecretStore maps the keystore alias to the secret ID for

retrieving the server keys (private key + certificate).

The password of the KeyStoreSecretStore is provided by the

FileSystemSecretStore.

Add the following file to PingGateway, replacing /path/to/secrets with your

path:

{

"secretId": "key.manager.secret.id",

"aliases": ["https-connector-key"]

}

]

}

}

]

}

Keys stored in PEM file

Linux Windows

$HOME/.openig/config/admin.json

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

38 / 47

Notice how this file differs to that for the keystore-based approach:

The ServerIdentityStore is a FileSystemSecretStore.

The FileSystemSecretStore reads the keys that are stored as file in the PEM

standard format.

4. Start PingGateway:

By default, PingGateway configuration files are located under $HOME/.openig (on

Windows %appdata%\OpenIG). For information about how to use a different

location, refer to Configuration location.

5. Test the connection in one of the following ways:

Ping PingGateway and make sure an HTTP 200 is returned:

"keyManager": {

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

}

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "/path/to/secrets",

"suffix": ".pem",

"mappings": [{

"secretId": "key.manager.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}]

}

}

]

}

Linux Windows

$ /path/to/identity-gateway-2024.11.0/bin/start.sh

39 / 47

file:///home/pptruser/Downloads/build/site/ig/configure/configure.html#configuration-location

Display the product version and build information:

This example uses PEM files for self-signed certificates, but you can adapt it to use

official (non self-signed) keys and certificates.

Before you start, install PingGateway, as described in the Install.

1. Locate a directory for secrets, for example, /path/to/secrets , and go to it.

2. Create the following secret key and certificate pair as PEM files:

a. For ig.example.com :

i. Create a key and certificate:

Two PEM files are created, one for the secret key, and another for the

associated certificate.

ii. Map the key and certificate to the same secret ID in PingGateway:

$ curl -v --cacert /path/to/secrets/ig.example.com-

certificate.pem \

https://ig.example.com:8443/openig/ping

$ curl --cacert /path/to/secrets/ig.example.com-

certificate.pem \

https://ig.example.com:8443/openig/api/info

Use Server Name Indication (SNI) to serve different certificates for TLS

connections to different server names

$ cd /path/to/secrets

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout ig.example.com-key.pem \

-out ig.example.com-certificate.pem

40 / 47

file:///home/pptruser/Downloads/build/site/ig/installation-guide/preface.html

b. For servers grouped by a wildcard:

i. Create a key and certificate:

ii. Map the key and certificate to the same secret ID in PingGateway:

c. For other, unmapped servers

i. Create a key and certificate:

ii. Map the key and certificate to the same secret ID in PingGateway:

$ cat ig.example.com-key.pem ig.example.com-

certificate.pem > key.manager.secret.id.pem

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout wildcard.example.com-key.pem \

-out wildcard.example.com-certificate.pem

$ cat wildcard.example.com-key.pem

wildcard.example.com-certificate.pem >

wildcard.secret.id.pem

$ openssl req \

-newkey rsa:2048 \

-new \

-nodes \

-x509 \

-days 3650 \

-subj

"/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout default.example.com-key.pem \

-out default.example.com-certificate.pem

$ cat default.example.com-key.pem default.example.com-

certificate.pem > default.secret.id.pem

41 / 47

3. Add the following file to PingGateway, replacing /path/to/secrets with your

path, and then restart PingGateway:

Linux Windows

$HOME/.openig/config/admin.json

{

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": "ServerTlsOptions-1"

}

],

"heap": [

{

"name": "ServerTlsOptions-1",

"type": "ServerTlsOptions",

"config": {

"sni": {

"serverNames": {

"ig.example.com": "key.manager.secret.id",

"*.example.com": "wildcard.secret.id"

},

"defaultSecretId" : "default.secret.id",

"secretsProvider": "ServerIdentityStore"

}

}

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "path/to/secrets",

"suffix": ".pem",

"mappings": [

{

"secretId": "key.manager.secret.id",

"format": {

42 / 47

Notice the following features of the file:

The ServerTlsOptions object maps two servers to secret IDs, and includes a

default secret ID

The secret IDs correspond to the secret IDs in the FileSystemSecretStore, and

the PEM files generated in an earlier step.

4. Run the following commands to request TLS connections to different servers, using

different certificates:

a. Connect to ig.example.com , and note that the certificate subject corresponds

to the certificate created for ig.example.com :

"type": "PemPropertyFormat"

}

},

{

"secretId": "wildcard.secret.id",

"format": {

"type": "PemPropertyFormat"

}

},

{

"secretId": "default.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}

]

}

}

]

}

$ openssl s_client -connect localhost:8443 -servername

ig.example.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII...dZC

-----END CERTIFICATE-----

subject=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=f

r

issuer=/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

43 / 47

file:///home/pptruser/Downloads/build/site/ig/reference/ServerTlsOptions.html

b. Connect to other.example.com , and note that the certificate subject

corresponds to the certificate created with the wildcard, *.example.com :

c. Connect to unmapped.site.com , and note that the certificate subject

corresponds to the certificate created for the default secret ID:

When PingGateway is server-side, applications send requests to PingGateway or request

services from PingGateway. PingGateway is acting as a server of the application, and the

application is acting as a client.

To run PingGateway as a server for mutual TLS:

Using information from Configure PingGateway for TLS (server-side), configure

PingGateway for TLS connections.

In admin.json , add a SecretsTrustManager to verify the credentials presented by

the client:

The trust material is a public key certificate for a client or certificate authority.

The SecretsTrustManager must refer to a secret in a secrets store, where the

secret is mapped to the certificate.

$ openssl s_client -connect localhost:8443 -servername

other.example.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII...fY=

-----END CERTIFICATE-----

subject=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

issuer=/CN=*.example.com/OU=example/O=com/L=fr/ST=fr/C=fr

$ openssl s_client -connect localhost:8443 -servername

unmapped.site.com

...

Server certificate

-----BEGIN CERTIFICATE-----

MII..rON

-----END CERTIFICATE-----

subject=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr

issuer=/CN=un.mapped.com/OU=example/O=com/L=fr/ST=fr/C=fr

Configure PingGateway for mutual TLS (server-side)

44 / 47

file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/reference/SecretsTrustManager.html

ServerTlsOptions must configure trustManager to refer to that

SecretsTrustManager and clientAuth to require or request the client to

authenticate.

The following example is used in Mutual TLS.

Linux Windows

$HOME/.openig/config/admin.json

{

"mode": "DEVELOPMENT",

"properties": {

"ig_keystore_directory": "/path/to/ig/secrets",

"oauth2_client_keystore_directory":

"/path/to/client/secrets"

},

"connectors": [

{

"port": 8080

},

{

"port": 8443,

"tls": {

"type": "ServerTlsOptions",

"config": {

"alpn": {

"enabled": true

},

"clientAuth": "REQUEST",

"keyManager": "SecretsKeyManager-1",

"trustManager": "SecretsTrustManager-1"

}

}

}

],

"heap": [

{

"name": "SecretsPasswords",

"type": "FileSystemSecretStore",

"config": {

"directory": "&{ig_keystore_directory}",

"format": "PLAIN"

}

45 / 47

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-introspect-mtls.html

},

{

"name": "SecretsKeyManager-1",

"type": "SecretsKeyManager",

"config": {

"signingSecretId": "key.manager.secret.id",

"secretsProvider": "ServerIdentityStore"

}

},

{

"name": "SecretsTrustManager-1",

"type": "SecretsTrustManager",

"config": {

"verificationSecretId": "trust.manager.secret.id",

"secretsProvider": {

"type": "KeyStoreSecretStore",

"config": {

"file": "&

{oauth2_client_keystore_directory}/cacerts.p12",

"storePasswordSecretId": "keystore.pass",

"secretsProvider": "SecretsPasswords",

"mappings": [

{

"secretId": "trust.manager.secret.id",

"aliases": ["client-cert"]

}

]

}

}

}

},

{

"name": "ServerIdentityStore",

"type": "FileSystemSecretStore",

"config": {

"format": "PLAIN",

"directory": "&{ig_keystore_directory}",

"suffix": ".pem",

"mappings": [{

"secretId": "key.manager.secret.id",

"format": {

"type": "PemPropertyFormat"

}

}]

}

46 / 47

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

}

]

}

47 / 47

