
This guide shows you how to configure PingGateway software features.

PingGateway processes requests and responses by using the following JSON files:

admin.json, config.json, Route, and Router.

The following table summarizes the default location of the PingGateway configuration

and logs.

Purpose Default location on Linux Default location on

Windows

Log messages from

PingGateway and third-

party dependencies

$HOME/.openig/logs %appdata%\OpenIG\logs

Administration

(admin.json)

Gateway (config.json)

$HOME/.openig/config %appdata%\OpenIG\conf

ig

Routes (Route) $HOME/.openig/config/

routes

%appdata%\OpenIG\conf

ig\routes

SAML 2.0 $HOME/.openig/SAML %appdata%\OpenIG\Open

IG\SAML

Groovy scripts for scripted

filters and handlers, and

other objects

$HOME/.openig/scripts

/groovy

%appdata%\OpenIG\scri

pts\groovy

Configure

Configuration files and routes

Configuration location

1 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/GatewayHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html
file:///home/pptruser/Downloads/build/site/ig/reference/Router.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/GatewayHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html#AdminHttpApplication

Purpose Default location on Linux Default location on

Windows

Temporary directory

To change the directory,

configure

temporaryDirectory in

admin.json

$HOME/.openig/tmp %appdata%\OpenIG\Open

IG\tmp

JSON schema for custom

audit

To change the directory,

configure

topicsSchemasDirector

y in AuditService.

$HOME/.openig/audit-

schemas

%appdata%\OpenIG\Open

IG\audit-schemas

Allow the following access to $HOME/.openig/logs , $HOME/.openig/tmp , and all

configuration directories:

Highest privilege the PingGateway system account.

Least priviledge for specific accounts, on a case-by-case basis

No priviledge for all other accounts, by default

By default, the base location for PingGateway configuration files is in the following

directory:

Change the location in the following ways:

Edit the prefix property of admin.json.

Use an argument with the startup command. The following example reads the

configuration from the config directory under /path/to/config-dir :

Configuration security

Change the base location

Linux Windows

$HOME/.openig

Linux Windows

2 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditService.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

The filenames of routes have the extension .json, in lowercase.

The router scans the $HOME/.openig/config/routes folder for files with the .json

extension. It uses the route name property to order the routes in the configuration. If

the route does not have a name property, the router uses the route ID.

The route ID is managed as follows:

When you add a route manually to the routes folder, the route ID is the value of the

_id field. If there is no _id field, the route ID is the filename of the added route.

When you add a route through the Common REST endpoint, the route ID is the

value of the mandatory _id field.

When you add a route through Studio, you can edit the default route ID.

Inline objects

An inline object is declared in a route or configuration, outside of the heap.

The following example shows an inline declaration for a handler to route requests:

The name property for inline objects is optional but useful for logging.

Other objects in the configuration can never refer to named or unnamed inline

objects.

$ /path/to/PingGateway-2024.9.0/bin/start.sh

/path/to/config-dir

Route names, IDs, and filenames

The filename of a route can’t be default.json , and the route’s name property

and route ID can’t be default .

CAUTION

Inline and heap objects

{

"handler": {

"name": "My Router",

"type": "Router"

}

}

3 / 64

Heap objects

A heap object is declared inside the heap.

The following example shows a named router in the heap, and a handler that refers

to the router by its name:

The name property for heap objects is required. Other objects in the configuration or

its child configirations can refer to the heap obect by its name property.

JSON format doesn’t specify a notation for comments. If PingGateway does not

recognize a JSON field name, it ignores the field. As a result, it’s possible to use

comments in configuration files.

The following conventions are available for commenting:

A comment field to add text comments. The following example includes a text

comment.

An underscore (_) to comment a field temporarily. The following example

comments out "captureEntity": true , and as a result it uses the default setting

("captureEntity": false).

{

"handler": "My Router",

"heap": [

{

"name": "My Router",

"type": "Router"

}

]

}

Comment the configuration

{

"name": "capture",

"type": "CaptureDecorator",

"comment": "Write request and response information to the

logs",

"config": {

"captureEntity": true

}

}

4 / 64

You can change routes or change a property that’s read at runtime or that relies on a

runtime expression without needing to restart PingGateway to take the change into

account.

Stop and restart PingGateway only when you make the following changes:

Change the configuration of any route, when the scanInterval of Router is

disabled (refer to Router).

Add or change an external object used by the route, such as an environment

variable, system property, external URL, or keystore.

Add or update config.json or admin.json .

To prevent routes from being reloaded after startup, stop PingGateway, edit the router

scanInterval , and restart PingGateway. When the interval is set to disabled , routes

are loaded only at startup:

The following example changes the location where the router looks for the routes:

{

"name": "capture",

"type": "CaptureDecorator",

"config": {

"_captureEntity": true

}

}

Restart after configuration change

Prevent reload of routes

{

"name": "Router",

"type": "Router",

"config": {

"scanInterval": "disabled"

}

}

{

"name": "Router",

"type": "Router",

"config": {

"directory": "/path/to/safe/routes",

5 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/Router.html

For information about reserved routes, refer to Reserved routes.

Through Common REST, you can read, add, delete, and edit routes on PingGateway

without manually accessing the file system. You can also list the routes in the order that

they’re loaded in the configuration, and set fields to filter the information about the

routes.

The following examples show some ways to manage routes through Common REST. For

more information, refer to About Common REST.

Manage routes through Common REST

Before you start, prepare PingGateway as described in the Quick install.

1. Add the following route to PingGateway:

"scanInterval": "disabled"

}

}

Reserved routes

Routes and Common REST

When PingGateway is in production mode, you can’t manage, list, or read routes

through Common REST. For information about switching to development mode,

refer to Operating modes.

NOTE

Linux Windows

$HOME/.openig/config/routes/00-crest.json

{

"name": "crest",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world!"

6 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/preface.html#reserved-routes
file:///home/pptruser/Downloads/build/site/ig/reference/AboutCrest.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/configure/operating-modes.html

To check that the route is working, access the route on:

http://ig.example.com:8080/crest .

2. To read a route through Common REST:

a. Enter the following command in a terminal window:

The route is displayed. Note that the route _id is displayed in the JSON of the

route.

3. To add a route through Common REST:

a. Move $HOME/.openig/config/routes/00-crest.json to /tmp/00-crest

.json .

b. Check in $HOME/.openig/logs/route-system.log that the route has been

removed from the configuration, where $HOME/.openig is the instance

directory. To double check, go to http://ig.example.com:8080/crest . You

should get an HTTP 404 error.

c. Enter the following command in a terminal window:

This command posts the file in /tmp/00-crest.json to the routes

directory.

d. Check in $HOME/.openig/logs/route-system.log that the route has been

added to configuration, where $HOME/.openig is the instance directory. To

double-check, go to http://ig.example.com:8080/crest . You should see the

"Hello world!" message.

4. To edit a route through Common REST:

a. Edit /tmp/00-crest.json to change the message displayed by the response

handler in the route.

}

},

"condition": "${find(request.uri.path, '^/crest')}"

}



$ curl -v

http://ig.example.com:8080/openig/api/system/objects/_rout

er/routes/00-crest\?_prettyPrint\=true



$ curl -X PUT

http://ig.example.com:8080/openig/api/system/objects/_rout

er/routes/00-crest \

-d "@/tmp/00-crest.json" \

--header "Content-Type: application/json"



7 / 64

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

b. Enter the following command in a terminal window:

This command deploys the route with the new configuration. Because the

changes are persisted into the configuration, the existing

$HOME/.openig/config/routes/00-crest.json is replaced with the edited

version in /tmp/00-crest.json .

c. Check in $HOME/.openig/logs/route-system.log that the route has been

updated, where $HOME/.openig is the instance directory. To double-check, go

to http://ig.example.com:8080/crest to confirm that the displayed message

has changed.

5. To delete a route through Common REST:

a. Enter the following command in a terminal window:

b. Check in $HOME/.openig/logs/route-system.log that the route has been

removed from the configuration, where $HOME/.openig is the instance

directory. To double-check, go to http://ig.example.com:8080/crest . You

should get an HTTP 404 error.

6. To list the routes deployed on the router, in the order that they are tried by the

router:

a. Enter the following command in a terminal window:

The list of loaded routes is displayed.

$ curl -X PUT

http://ig.example.com:8080/openig/api/system/objects/_rout

er/routes/00-crest \

-d "@/tmp/00-crest.json" \

--header "Content-Type: application/json" \

--header "If-Match: *"



$ curl -X DELETE

http://ig.example.com:8080/openig/api/system/objects/_rout

er/routes/00-crest



$ curl

"http://ig.example.com:8080/openig/api/system/objects/_rou

ter/routes?_queryFilter=true"

Decorators

8 / 64

http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest
http://ig.example.com:8080/crest

Decorators are heap objects to extend what other objects can do. PingGateway defines

baseURI , capture , timer , and tracing decorators you can use without explicitly

configuring them. For information about available decorators, refer to Decorators.

Use decorations that are compatible with the object type. For example, timer records

the time to process filters and handlers, but does not record information for other

object types. Similarly, baseURI overrides the scheme, host, and ports, but has no other

effect.

In a route, you can decorate individual objects, the route handler, and the heap.

PingGateway applies decorations in this order:

1. Decorations declared on individual objects. Local decorations that are part of an

object’s declaration are inherited wherever the object is used.

2. globalDecorations declared in parent routes, then in child routes, and then in the

current route.

3. Decorations declared on the route handler.

To decorate individual objects, add the decorator’s name value as a top-level field of the

object, next to type and config .

In this example, the decorator captures all requests going into the SingleSignOnFilter,

and all responses coming out of the SingleSignOnFilter:

Decorate individual objects in a route

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

9 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/Decorators.html

To decorate the handler for a route, add the decorator as a top-level field of the route.

In this example, the decorator captures all requests and responses that traverse the

route:

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"capture": "all",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorate the route handler

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"capture": "all",

10 / 64

To decorate all compatible objects in a route, configure globalDecorators as a top-level

field of the route. The globalDecorators field takes a map of the decorations to apply.

To decorate all compatible objects declared in config.json or admin.json , configure

globalDecorators as a top-level field in config.json or admin.json .

In the following example, the route has capture and timer decorations. The capture

decoration applies to AmService, Chain, SingleSignOnFilter, and ReverseProxyHandler.

The timer decoration doesn’t apply to AmService because it is not a filter or handler, but

does apply to Chain, SingleSignOnFilter, and ReverseProxyHandler:

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorate the route heap

{

"globalDecorators":

{

"capture": "all",

"timer": true

},

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

11 / 64

When a filter or handler is configured in config.json or in the heap, it can be used

many times in the configuration. To decorate each use of the filter or handler

individually, use a Delegate.

In the following example, an AmService heap object configures an amHandler to

delegate tasks to ForgeRockClientHandler , and capture all requests and responses

passing through the handler.

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Decorate named objects differently in different parts of the

configuration

{

"type": "AmService",

"config": {

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"amHandler": {

12 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/Delegate.html

You can use the same ForgeRockClientHandler in another part of the configuration,

in a different route for example, without adding a capture decorator. Requests and

responses that pass through that use of the handler are not captured.

To log interactions between PingGateway and AM, delegate message handling to a

ForgeRockClientHandler, and capture the requests and responses passing through the

handler. When the ForgeRockClientHandler communicates with an application, it sends

ForgeRock Common Audit transaction IDs.

In the following example, the accessTokenResolver delegates message handling to a

decorated ForgeRockClientHandler:

To try the example, replace the accessTokenResolver in the PingGateway route of

Validate access tokens with introspection. Test the setup as described for the example,

and note that the route’s log file contains an HTTP call to the introspection endpoint.

"type": "Delegate",

"capture": "all",

"config": {

"delegate": "ForgeRockClientHandler"

}

},

"url": "http://am.example.com:8088/openam"

}

}

Decorate PingGateway’s interactions with AM

"accessTokenResolver": {

"name": "token-resolver-1",

"type": "TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"capture": "all",

"type": "Delegate",

"config": {

"delegate": "ForgeRockClientHandler"

}

}

}

}

Decorate an object multiple times

13 / 64

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-introspect.html

Decorations can apply more than once. For example, if you set a decoration on a route

and another decoration on an object defined within the route, PingGateway applies the

decoration twice. In the following route, the request is captured twice:

When an object has multiple decorations, the decorations are applied in the order they

appear in the JSON.

In the following route, the handler is decorated with a baseURI first, and a capture

second:

The decoration can be represented as capture[baseUri[handler]] . When a

request is processed, it is captured, and then rebased, and then processed by the

handler: The log for this route shows that the capture occurs before the rebase:

{

"handler": {

"type": "ReverseProxyHandler",

"capture": "request"

},

"capture": "all"

}

{

"name": "myroute",

"baseURI": "http://app.example.com:8081",

"capture": "all",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world, from myroute!"

}

},

"condition": "${find(request.uri.path, '^/myroute1')}"

}

2018-09-10T13:23:18,990Z | INFO | http-nio-8080-exec-1 |

o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:f792d2ad-4409-4907-bc46-28e1c3c19ac3-7 --->

14 / 64

Conversely, in the following route, the handler is decorated with a capture first, and a

baseURI second:

The decoration can be represented as baseUri[capture[handler]] . When a

request is processed, it is rebased, and then captured, and then processed by the

handler. The log for this route shows that the rebase occurs before the capture:

To prevent unwanted behavior, consider the following points when you name

decorators:

Avoid decorators named comment or comments , and avoid reserved field names.

Instead of using alphanumeric field names, consider using dots in your decorator

names, such as my.decorator .

GET http://ig.example.com:8080/myroute HTTP/1.1

...

{

"name": "myroute",

"capture": "all",

"baseURI": "http://app.example.com:8081",

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello, world from myroute1!"

}

},

"condition": "${find(request.uri.path, '^/myroute')}"

}

2018-09-10T13:07:07,524Z | INFO | http-nio-8080-exec-1 |

o.f.o.d.c.C.c.top-level-handler | @myroute |

--- (request) id:3c26ab12-3cc0-403e-bec6-43bf5621f657-7 --->

GET http://app.example.com:8081/myroute HTTP/1.1

...

Guidelines for naming decorators

15 / 64

For heap objects, avoid the reserved names config , name , and type .

For routes, avoid the reserved names auditService , baseURI , condition ,

globalDecorators , heap , handler , name , secrets , and session .

In config.json , avoid the reserved name temporaryStorage .

To prevent unwanted changes to the configuration, PingGateway is by default in

production mode after installation. Production mode has the following characteristics:

The /routes endpoint isn’t exposed or accessible.

Studio is effectively disabled. You can’t manage, list, or even read routes through

Common REST.

By default, other endpoints, such as /share and api/info are exposed to the

loopback address only.

To change the default protection for specific endpoints, configure an

ApiProtectionFilter in admin.json and add it to the PingGateway configuration.

In development mode, by default all endpoints are open and accessible.

You can create, edit, and deploy routes through Studio, manage routes through

Common REST without authentication or authorization, and access API descriptors.

Use development mode to evaluate or demo PingGateway, or to develop configurations

on a single instance. This mode isn’t suitable for production.

For information about Restrict access to Studio in development mode, refer to Restrict

access to Studio.

Switch from production mode to development mode in one of the following ways,

applied in order of precedence:

1. Add the following configuration to admin.json , and restart PingGateway:

Operating modes

Production mode (immutable mode)

Development mode (mutable mode)

Switch from production mode to development mode

{

"mode": "DEVELOPMENT",

16 / 64

file:///home/pptruser/Downloads/build/site/ig/studio-guide/preface.html
file:///home/pptruser/Downloads/build/site/ig/configure/crest.html
file:///home/pptruser/Downloads/build/site/ig/about/api-descriptor.html
file:///home/pptruser/Downloads/build/site/ig/studio-guide/restrict-access.html
file:///home/pptruser/Downloads/build/site/ig/studio-guide/restrict-access.html

2. Define an environment variable for the configuration token ig.run.mode , and

then start PingGateway in the same terminal.

If mode is not defined in admin.json , the following example starts an instance of

PingGateway in development mode:

3. Define a system property for the configuration token ig.run.mode when you start

PingGateway.

If mode is not defined in admin.json , or an IG_RUN_MODE environment variable is

not set, the following file starts an instance of PingGateway with the system

property ig.run.mode to force development mode:

Switch from development mode to production mode to prevent unwanted changes to

the configuration.

1. In $HOME/.openig/config/admin.json (on Windows,

%appdata%\OpenIG\config), change the value of mode from DEVELOPMENT to

PRODUCTION :

"connectors": [

{ "port" : 8080 }

]

}

Linux Windows

$ IG_RUN_MODE=development /path/to/PingGateway-

2024.9.0/bin/bin/start.sh

Linux Windows

$HOME/.openig/env.sh

export JAVA_OPTS='-Dig.run.mode=development'

Switch from development mode to production mode

{

"mode": "PRODUCTION"

}

17 / 64

The file changes the operating mode from development mode to production mode.

For more information about the admin.json file, refer to AdminHttpApplication

(admin.json).

The value set in admin.json overrides any value set by the ig.run.mode

configuration token when it is used in an environment variable or system property.

For information about ig.run.mode , refer to Configuration Tokens.

2. (Optional) Prevent routes from being reloaded after startup:

To prevent all routes in the configuration from being reloaded, add a

config.json as described in the Quick install, and configure the

scanInterval property of the main Router.

To prevent individual routes from being reloaded, configure the

scanInterval of the routers in those routes.

For more information, refer to Router.

3. Restart PingGateway.

When PingGateway starts up, the route endpoints are not displayed in the logs, and

are not available. You can’t access Studio on

http://ig.example.com:8080/openig/studio .

This page shows template routes for common configurations. Before you start, set up

PingGateway as described in Quick install.

Modify the template routes for your deployment. Before you use a route in production,

review the points in Security.

When you followed the instructions in Quick install, you enabled PingGateway to proxy

and capture application requests and server responses.

This template route uses a DispatchHandler to change the scheme to HTTPS on login.

{

"type": "Router",

"config": {

"scanInterval": "disabled"

}

}



Configuration templates

Proxy and capture

18 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
file:///home/pptruser/Downloads/build/site/ig/reference/ConfigTokens.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/Router.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/security-guide/preface.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${request.uri.path == '/login'}",

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

},

{

"condition": "${request.uri.scheme == 'http'}",

"handler": "ReverseProxyHandler",

"baseURI": "http://app.example.com:8081"

},

{

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

}

]

}

},

"condition": "${find(request.uri.query, 'demo=capture')}"

}

19 / 64

Try this example with the sample application:

1. Add the following route to PingGateway:

2. Add the following route to PingGateway to serve the sample application .css and

other static resources:

3. Go to http://ig.example.com:8080/login?demo=capture .

The sample application display the login page.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the baseURI settings to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

Linux Windows

$HOME/.openig/config/routes/20-capture.json

Linux Windows

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}



20 / 64

http://ig.example.com:8080/login?demo=capture
http://ig.example.com:8080/login?demo=capture
http://ig.example.com:8080/login?demo=capture

This template route intercepts the login page request, replaces it with a login form, and

logs the user into the target application with hard-coded username and password

credentials.

Simple login form

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

]

21 / 64

Try this example with the sample application:

1. Add the following route to PingGateway:

2. Replace MY_USERNAME with demo , and MY_PASSWORD with Ch4ng31t .

3. Add the following route to PingGateway to serve the sample application .css and

other static resources:

4. Go to http://ig.example.com:8080/login?demo=simple .

The sample application profile page for the demo user displays information about

the request.

To use this as a default route with a real application:

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=simple')}"

}

Linux Windows

$HOME/.openig/config/routes/21-simple.json

Linux Windows

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}



22 / 64

http://ig.example.com:8080/login?demo=simple
http://ig.example.com:8080/login?demo=simple
http://ig.example.com:8080/login?demo=simple

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the uri , form , and baseURI to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route intercepts the login page request, replaces it with the login form,

and logs the user into the target application with hard-coded username and password

credentials.

The route uses a default CookieFilter to manage cookies. By default, the filter intercepts

cookies from the protected application and stores them in the PingGateway session. It

does not send the cookies to the browser.

Login form with cookie from login page

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

23 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/CookieFilter.html

Try this example with the sample application:

1. Add the following route to PingGateway:

2. Replace MY_USERNAME with kramer , and MY_PASSWORD with N3wman12 .

3. Add the following route to PingGateway to serve the sample application .css and

other static resources:

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

]

}

}

}

},

{

"type": "CookieFilter"

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=cookie')}"

}

Linux Windows

$HOME/.openig/config/routes/22-cookie.json

Linux Windows

24 / 64

4. Go to http://ig.example.com:8080/login?demo=cookie .

The sample application page displays.

5. Refresh your connection to http://ig.example.com:8080/login?demo=cookie .

Compared to Login form with cookie from login page, this example displays

additional information about the session cookie:

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the uri and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

When a user without a valid session tries to access a protected application, this template

route works with an application to return a login page.

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}





Cookies session-cookie=123…​

Login form with password replay and cookie filters

25 / 64

http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie
http://ig.example.com:8080/login?demo=cookie

The route uses a PasswordReplayFilter to find the login page with a pattern to match a

mock AM classic UI page.

The route uses a default CookieFilter to manage cookies. The CookieFilter retains

cookies from the browser and doesn’t forward them to the protected application.

Similarly, the CookieFilter retains cookies in set-cookie headers from the protected

application and doesn’t forward them to the browser.

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPageContentMarker": "OpenAM\\s\\(Login\\)",

"request": {

"comments": [

"An example based on OpenAM classic UI: ",

"uri is for the OpenAM login page; ",

"IDToken1 is the username field; ",

"IDToken2 is the password field; ",

"host takes the OpenAM FQDN:port.",

"The sample app simulates OpenAM."

],

"method": "POST",

"uri":

"http://app.example.com:8081/openam/UI/Login",

"form": {

"IDToken0": [

""

],

"IDToken1": [

"demo"

],

"IDToken2": [

"Ch4ng31t"

],

"IDButton": [

"Log+In"

],

"encoded": [

"false"

]

26 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/CookieFilter.html

Try this example with the sample application:

1. Save the file as $HOME/.openig/config/routes/23-classic.json .

2. Use the following curl command to check that it works:

To use this as a default route with a real application:

1. Change the uri and form to match the target application.

2. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route extracts a hidden value from the login page and posts a static login

form to the target application.

},

"headers": {

"host": [

"app.example.com:8081"

]

}

}

}

},

{

"type": "CookieFilter"

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=classic')}"

}

$ curl -D- http://ig.example.com:8080/login?demo=classic

HTTP/1.1 200 OK

Set-Cookie: IG_SESSIONID=24446BA29E866F840197C8E0EAD57A89;

Path=/; HttpOnly

...

Login which requires a hidden value from the login page

{

"properties": {

27 / 64

"appBaseUri": "https://app.example.com:8444"

},

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"loginPageExtractions": [

{

"name": "hidden",

"pattern": "loginToken\\s+value=\"(.*)\""

}

],

"request": {

"method": "POST",

"uri": "${appBaseUri}/login",

"form": {

"username": [

"MY_USERNAME"

],

"password": [

"MY_PASSWORD"

],

28 / 64

The parameters in the PasswordReplayFilter form, MY_USERNAME and MY_PASSWORD ,

take string values or expressions.

Try this example with the sample application:

1. Add the following route to PingGateway:

2. Replace MY_USERNAME with scarter , and MY_PASSWORD with S9rain12 .

3. Add the following route to PingGateway to serve the sample application .css and

other static resources:

"hiddenValue": [

"${attributes.extracted.hidden}"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.query, 'demo=hidden')}",

"baseURI": "${appBaseUri}"

}

Linux Windows

$HOME/.openig/config/routes/24-hidden.json

Linux Windows

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

29 / 64

4. Go to http://ig.example.com:8080/login?demo=hidden .

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the loginPage , loginPageExtractions , uri , and form to match the

target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route proxies traffic to an application with both HTTP and HTTPS ports.

The application uses HTTPS for authentication and HTTP for the general application

features. When all login requests use HTTPS, you must add the login filters and handlers

to the chain.

"handler": "ReverseProxyHandler"

}



HTTP and HTTPS application

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

30 / 64

http://ig.example.com:8080/login?demo=hidden
http://ig.example.com:8080/login?demo=hidden
http://ig.example.com:8080/login?demo=hidden

Try this example with the sample application:

1. Add the following route to PingGateway:

}

}

],

"handler": {

"type": "DispatchHandler",

"config": {

"bindings": [

{

"condition": "${request.uri.scheme == 'http'}",

"handler": "ReverseProxyHandler",

"baseURI": "http://app.example.com:8081"

},

{

"condition": "${request.uri.path == '/login'}",

"handler": {

"type": "Chain",

"config": {

"comment": "Add one or more filters to handle

login.",

"filters": [],

"handler": "ReverseProxyHandler"

}

},

"baseURI": "https://app.example.com:8444"

},

{

"handler": "ReverseProxyHandler",

"baseURI": "https://app.example.com:8444"

}

]

}

},

"condition": "${find(request.uri.query, 'demo=https')}"

}

Linux Windows

$HOME/.openig/config/routes/25-https.json

31 / 64

2. Add the following route to PingGateway to serve the sample application .css and

other static resources:

3. Go to http://ig.example.com:8080/login?demo=https .

The login page of the sample application is displayed.

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the loginPage , loginPageExtractions , uri , and form to match the

target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

This template route logs the user into the target application using headers like those

from AM policy agents. If a header contains only a username or subject to look up in an

external data source, you must add an attribute filter to the chain to retrieve the

credentials.

Linux Windows

$HOME/.openig/config/routes/00-static-resources.json

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}



AM integration with headers

32 / 64

http://ig.example.com:8080/login?demo=https
http://ig.example.com:8080/login?demo=https
http://ig.example.com:8080/login?demo=https

{

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"comment": "Testing only: blindly trust the server cert for

HTTPS.",

"config": {

"tls": {

"type": "ClientTlsOptions",

"config": {

"trustManager": {

"type": "TrustAllManager"

},

"hostnameVerifier": "ALLOW_ALL"

}

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "PasswordReplayFilter",

"config": {

"loginPage": "${request.uri.path == '/login'}",

"request": {

"method": "POST",

"uri": "https://app.example.com:8444/login",

"form": {

"username": [

"${request.headers['username'][0]}"

],

"password": [

"${request.headers['password'][0]}"

]

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

33 / 64

Try this example with the sample application:

1. Add the route to PingGateway:

2. Use the curl command to simulate the headers from a policy agent:

To use this as a default route with a real application:

1. Replace the test ReverseProxyHandler with one that is configured to trust the

application’s public key server certificate. Otherwise, use a ReverseProxyHandler

that references a truststore holding the certificate.

Configure the ReverseProxyHandler to strictly verifiy hostnames for outgoing SSL

connections.

In production, do not use TrustAllManager for trustManager , or ALLOW_ALL

for hostnameVerifier .

2. Change the loginPage , uri , and form to match the target application.

3. Remove the route-level condition on the handler that specifies a demo query string

parameter.

To achieve complex server interactions or intensive data transformations that you can’t

currently achieve with scripts or existing handlers, filters, or expressions, extend

},

"condition": "${find(request.uri.query, 'demo=headers')}"

}

Linux Windows

$HOME/.openig/config/routes/26-headers.json

$ curl \

--header "username: kvaughan" \

--header "password: B5ibery12" \

http://ig.example.com:8080/login?demo=headers

...

<title id="title">Howdy, kvaughan</title>

...

Extend

34 / 64

PingGateway through scripting and customization. The following sections describe how

to extend PingGateway:

PingGateway includes a complete Java application programming interface for extending

your deployment with customizations. For more information, refer to Extend

PingGateway through the Java API

Create a directory to hold .jar files for PingGateway extensions:

When PingGateway starts up, the JVM loads .jar files in the extra directory.

The following sections describe how to extend PingGateway through scripts:

Add .jar files for extensions

Linux Windows

$HOME/.openig/extra

Extend PingGateway through scripts

About scripts

IMPORTANT

35 / 64

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#about-custom-extensions
file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#about-custom-extensions

PingGateway supports the Groovy dynamic scripting language through the use the

scriptable objects. For information about scriptable object types, their configuration, and

properties, refer to Scripts.

Scriptable objects are configured by the script’s Internet media type, and either a source

script included in the JSON configuration, or a file script that PingGateway reads from a

file. The configuration can optionally supply arguments to the script.

PingGateway provides global variables to scripts at runtime, and provides access to

Groovy’s built-in functionality. Scripts can access the request and the context, store

variables across executions, write messages to logs, make requests to a web service, and

access responses returned in promise callback methods.

Before trying the scripts in this chapter, install and configure PingGateway as described

in the Quick install.

When developing and debugging your scripts, consider configuring a capture decorator

to log requests, responses, and context data in JSON form. You can then turn off

capturing when you move to production. For information, refer to CaptureDecorator.

When writing scripts or Java extensions that use the Promise API, avoid the blocking

methods get() , getOrThrow() , and getOrThrowUninterruptibly() . A

promise represents the result of an asynchronous operation; therefore, using a

blocking method to wait for the result can cause deadlocks and/or race issues.

Instead, consider using then() methods, such as thenOnResult() ,

thenAsync() , or thenCatch() , which allow execution blocks to be executed

when the response is available.

Blocking code example

Non-blocking code example

IMPORTANT

def response = next.handle(ctx, req).get() // Blocking method 'get' used

response.headers['new']="new header value"

return response

return next.handle(ctx, req)

//Process result when it is available

.thenOnResult { response ->

response.headers['new']="new header value"

}

Use a reference file script

36 / 64

file:///home/pptruser/Downloads/build/site/ig/reference/Scripts.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/reference/CaptureDecorator.html

The following example defines a ScriptableFilter written in Groovy, and stored in the

following file:

Relative paths in the file field depend on how PingGateway is installed. If PingGateway is

installed in an application server, then paths for Groovy scripts are relative to

$HOME/.openig/scripts/groovy (or %appdata%\OpenIG\scripts\groovy).

The base location $HOME/.openig/scripts/groovy (or

%appdata%\OpenIG\scripts\groovy) is on the classpath when the scripts are

executed. If some Groovy scripts are not in the default package, but instead have their

own package names, they belong in the directory corresponding to their package name.

For example, a script in package com.example.groovy belongs in

$HOME/.openig/scripts/groovy/com/example/groovy/ (or

%appdata%\OpenIG\scripts\groovy\com\example\groovy\).

You can use Studio to configure a ScriptableFilter or scriptableThrottlingPolicy, or use

scripts to configure scopes in OAuth2ResourceServerFilter.

During configuration, you can enter the script directly into the object, or you can use a

stored reference script. Note the following points about creating and using reference

scripts:

When you enter a script directly into an object, the script is added to the list of

reference scripts.

You can use a reference script in multiple objects in a route, but if you edit a

reference script, all objects that use it are updated with the change.

If you delete an object that uses a script, or remove the object from the chain, the

script that it references remains in the list of scripts.

Linux Windows

$HOME/.openig/scripts/groovy/SimpleFormLogin.groovy

{

"name": "SimpleFormLogin",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "SimpleFormLogin.groovy"

}

}

Scripts in Studio

37 / 64

If a reference script is used in an object, you can’t rename or delete the script.

For an example of creating a ScriptableThrottlingPolicy in Studio, refer to Configure

Scriptable Throttling. For information about using Studio, refer to Adding Configuration

to a Route.

To route requests when the conditions are complicated, use a ScriptableHandler

instead of a DispatchHandler as described in DispatchHandler.

1. Add the following script to PingGateway:

Script dispatch

Linux Windows

$HOME/.openig/scripts/groovy/DispatchHandler.groovy

/*

* This simplistic dispatcher matches the path part of the

HTTP request.

* If the path is /mylogin, it checks Username and Password

headers,

* accepting bjensen:H1falutin, and returning HTTP 403

Forbidden to others.

* Otherwise it returns HTTP 401 Unauthorized.

*/

// Rather than returning a Promise of a Response from an

external source,

// this script returns the response itself.

response = new Response(Status.OK);

switch (request.uri.path) {

case "/mylogin":

if (request.headers.Username.values[0] == "bjensen" &&

request.headers.Password.values[0] ==

"H1falutin") {

response.status = Status.OK

response.entity = "<html><p>Welcome back, Babs!

</p></html>"

38 / 64

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-scriptable
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-scriptable
file:///home/pptruser/Downloads/build/site/ig/studio-guide/structured.html#studio-add-filters
file:///home/pptruser/Downloads/build/site/ig/studio-guide/structured.html#studio-add-filters
file:///home/pptruser/Downloads/build/site/ig/reference/DispatchHandler.html

2. Add the following route to PingGateway, to set up headers required by the script

when the user logs in:

} else {

response.status = Status.FORBIDDEN

response.entity = "<html><p>Authorization

required</p></html>"

}

break

default:

response.status = Status.UNAUTHORIZED

response.entity = "<html><p>Please log in.</p></html>"

break

}

// Return the locally created response, no need to wrap it

into a Promise

return response

Linux Windows

$HOME/.openig/config/routes/98-dispatch.json

{

"heap": [

{

"name": "DispatchHandler",

"type": "DispatchHandler",

"config": {

"bindings": [{

"condition": "${find(request.uri.path,

'/mylogin')}",

"handler": {

"type": "Chain",

"config": {

39 / 64

3. Go to http://ig.example.com:8080/dispatch , and click log in .

The HeaderFilter sets Username and Password headers in the request, and passes

the request to the script. The script responds, Welcome back, Babs!

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"Username": [

"bjensen"

],

"Password": [

"H1falutin"

]

}

}

}

],

"handler": "Dispatcher"

}

}

},

{

"handler": "Dispatcher",

"condition": "${find(request.uri.path,

'/dispatch')}"

}

]

}

},

{

"name": "Dispatcher",

"type": "ScriptableHandler",

"config": {

"type": "application/x-groovy",

"file": "DispatchHandler.groovy"

}

}

],

"handler": "DispatchHandler",

"condition": "${find(request.uri.path, '^/dispatch') or

find(request.uri.path, '^/mylogin')}"

}



40 / 64

http://ig.example.com:8080/dispatch
http://ig.example.com:8080/dispatch
http://ig.example.com:8080/dispatch

HTTP basic access authentication is a simple challenge and response mechanism, where

a server requests credentials from a client, and the client passes them to the server in

an Authorization header. The credentials are base-64 encoded. To protect them, use

SSL encryption for the connections between the server and client. For more information,

refer to RFC 2617 .

1. Add the following script to PingGateway, to add an Authorization header based

on a username and password combination:

Script HTTP basic access authentication



Linux Windows

$HOME/.openig/scripts/groovy/BasicAuthFilter.groovy

/*

* Perform basic authentication with the user name and

password

* that are supplied using a configuration like the following:

*

* {

* "name": "BasicAuth",

* "type": "ScriptableFilter",

* "config": {

* "type": "application/x-groovy",

* "file": "BasicAuthFilter.groovy",

* "args": {

* "username": "bjensen",

* "password": "H1falutin"

* }

* }

* }

*/

def userPass = username + ":" + password

def base64UserPass = userPass.getBytes().encodeBase64()

request.headers.add("Authorization", "Basic ${base64UserPass}"

as String)

// Credentials are only base64-encoded, not encrypted: Set

scheme to HTTPS.

/*

41 / 64

https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2617.html

2. Add the following route to PingGateway, to set up headers required by the script

when the user logs in:

* When connecting over HTTPS, by default the client tries to

trust the server.

* If the server has no certificate

* or has a self-signed certificate unknown to the client,

* then the most likely result is an

SSLPeerUnverifiedException.

*

* To avoid an SSLPeerUnverifiedException,

* set up HTTPS correctly on the server.

* Either use a server certificate signed by a well-known CA,

* or set up the gateway to trust the server certificate.

*/

request.uri.scheme = "https"

// Calls the next Handler and returns a Promise of the

Response.

// The Response can be handled with asynchronous Promise

callbacks.

next.handle(context, request)

Linux Windows

$HOME/.openig/config/routes/09-basic.json

{

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthFilter.groovy",

"args": {

"username": "bjensen",

"password": "H1falutin"

}

},

"capture": "filtered_request"

42 / 64

When the request path matches /basic , the route calls the Chain, which runs the

ScriptableFilter. The capture setting captures the request as updated by the

ScriptableFilter. Finally, PingGateway returns a static page.

3. Go to http://ig.example.com:8080/basic .

The captured request in the console log shows that the scheme is now HTTPS, and

that the Authorization header is set for HTTP Basic:

This example builds on Password replay from a database to use scripts to look up

credentials in a database, set the credentials in headers, and set the scheme in HTTPS to

protect the request.

1. Set up and test the example in Password replay from a database.

2. Add the following script to PingGateway, to look up user credentials in the database,

by email address, and set the credentials in the request headers for the next

handler:

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello bjensen!"

}

}

}

},

"condition": "${find(request.uri.path, '^/basic')}"

}



GET https://app.example.com:8081/basic HTTP/1.1

...

Authorization: Basic Ymp...aW4=

Script SQL queries

The example in this section uses SqlClient, which exposes a JdbcDataSource.

Because the JDBC API provides only blocking APIs, the example code offloads

JdbcDataSource calls to another thread.

IMPORTANT

43 / 64

http://ig.example.com:8080/basic
http://ig.example.com:8080/basic
http://ig.example.com:8080/basic
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/credentials-database.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/credentials-database.html
file:///home/pptruser/Downloads/build/site/ig/reference/JdbcDataSource.html

Linux Windows

$HOME/.openig/scripts/groovy/SqlAccessFilter.groovy

/*

* Look up user credentials in a relational database

* based on the user's email address provided in the request

form data,

* and set the credentials in the request headers for the next

handler.

*/

import org.forgerock.openig.http.protocol.ResponseUtils

import org.forgerock.util.promise.Promises

// Return a promise.

Promises

// Submit the task to another thread (asynchronous

execution).

.executeAsync(service) {

// Get the credentials with the synchronous JDBC

APIs.

new

SqlClient(dataSource).getCredentials(request.queryParams?.mail

[0])

}

// When the task completes...

.thenAsync { credentials ->

// ...with a result, it successfully got the

credentials.

// Add the credentials as headers in the request

object.

request.headers.add('Username',

credentials.Username)

request.headers.add('Password',

credentials.Password)

// The credentials are not protected in the

headers, so use HTTPS.

request.uri.scheme = 'https'

// Let the chain continue to process the request.

next.handle(context, request)

} { exception ->

44 / 64

3. Add the following script to PingGateway to access the database, and get credentials:

// ...with a checked exception

// because the dataSource has thrown a JDBC

exception,

// fail the promise with an illegal state

exception.

ResponseUtils.newIllegalStateExceptionPromise(exception)

} { runtimeException ->

// ...with a runtime exception

// because the dataSource had an unrecoverable

error,

// fail the promise with an illegal state

exception.

ResponseUtils.newIllegalStateExceptionPromise(runtimeException

)

}

Linux Windows

$HOME/.openig/scripts/groovy/SqlClient.groovy

import groovy.sql.Sql

import javax.sql.DataSource

/**

* Access a database with a well-known structure,

* in particular to get credentials given an email address.

*/

class SqlClient {

// DataSource supplied as constructor parameter.

def sql

SqlClient(DataSource dataSource) {

if (dataSource == null) {

throw new IllegalArgumentException("DataSource is

null")

}

this.sql = new Sql(dataSource)

45 / 64

4. Add the following route to PingGateway to set up headers required by the scripts

when the user logs in:

}

// The expected table is laid out like the following.

// Table USERS

// --

// | USERNAME | PASSWORD | EMAIL |...|

// --

// | <username>| <passwd> | <mail@...>|...|

// --

String tableName = "USERS"

String usernameColumn = "USERNAME"

String passwordColumn = "PASSWORD"

String mailColumn = "EMAIL"

/**

* Get the Username and Password given an email address.

*

* @param mail Email address used to look up the

credentials

* @return Username and Password from the database

*/

def getCredentials(mail) {

def credentials = [:]

def query = "SELECT " + usernameColumn + ", " +

passwordColumn +

" FROM " + tableName + " WHERE " + mailColumn

+ "='$mail';"

sql.eachRow(query) {

credentials.put("Username", it."$usernameColumn")

credentials.put("Password", it."$passwordColumn")

}

return credentials

}

}

Linux Windows

$HOME/.openig/config/routes/11-db.json

46 / 64

{

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "JdbcDataSource-1",

"type": "JdbcDataSource",

"config": {

"driverClassName": "org.h2.Driver",

"jdbcUrl": "jdbc:h2:tcp://localhost/~/test",

"username": "sa",

"passwordSecretId": "database.password",

"secretsProvider": "SystemAndEnvSecretStore-1"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "ScriptableFilter",

"config": {

"args": {

"dataSource": "${heap['JdbcDataSource-1']}",

"service": "${heap['ScheduledExecutorService']}"

},

"type": "application/x-groovy",

"file": "SqlAccessFilter.groovy"

}

},

{

"type": "StaticRequestFilter",

"config": {

"method": "POST",

"uri": "http://app.example.com:8081/login",

"form": {

"username": [

"${request.headers['Username'][0]}"

],

"password": [

"${request.headers['Password'][0]}"

]

47 / 64

Notice the following features of the route:

The route matches requests to /db .

The JdbcDataSource in the heap sets up the connection to the database.

The ScriptableFilter calls SqlAccessFilter.groovy to look up credentials

over SQL.

SqlAccessFilter.groovy , in turn, calls SqlClient.groovy to access the

database to get the credentials.

The StaticRequestFilter uses the credentials to build a login request.

Although the script sets the scheme to HTTPS, for convenience in this example,

the StaticRequestFilter resets the URI to HTTP.

5. To test the setup, go to a URL with a query string parameter that specifies an email

address in the database, such as http://ig.example.com:8080/db?

mail=george@example.com .

The sample application profile page for the user is displayed.

}

}

}

],

"handler": "ReverseProxyHandler"

}

},

"condition": "${find(request.uri.path, '^/db')}"

}

Extend PingGateway through the Java API

IMPORTANT

48 / 64

PingGateway includes a complete Java application programming interface to allow you

to customize PingGateway to perform complex server interactions or intensive data

transformations that you cannot achieve with scripts or the existing handlers, filters, and

expressions described in Expressions. The following sections describe how to extend

PingGateway through the Java API:

Interface Stability: Evolving, as defined in ForgeRock product stability labels.

The following interfaces are available:

Decorator

A Decorator adds new behavior to another object without changing the base type

of the object.

When suggesting custom Decorator names, know that PingGateway reserves all

field names that use only alphanumeric characters. To avoid clashes, use dots or

dashes in your field names, such as my-decorator .

ExpressionPlugin

An ExpressionPlugin adds a node to the Expression context tree, alongside

env (for environment variables), and system (for system properties). For example,

When writing scripts or Java extensions that use the Promise API, avoid the blocking

methods get() , getOrThrow() , and getOrThrowUninterruptibly() . A

promise represents the result of an asynchronous operation; therefore, using a

blocking method to wait for the result can cause deadlocks and/or race issues.

Instead, consider using then() methods, such as thenOnResult() ,

thenAsync() , or thenCatch() , which allow execution blocks to be executed

when the response is available.

Blocking code example

Non-blocking code example

IMPORTANT

def response = next.handle(ctx, req).get() // Blocking method 'get' used

response.headers['new']="new header value"

return response

return next.handle(ctx, req)

//Process result when it is available

.thenOnResult { response ->

response.headers['new']="new header value"

}

Key extension points

49 / 64

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs
file:///home/pptruser/Downloads/build/site/ig/reference/Expressions.html#Expressions
https://backstage.forgerock.com/docs/ig/latest/release-notes/stability.html#interface-stability
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/decoration/Decorator.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/el/ExpressionPlugin.html

the expression ${system['user.home']} yields the home directory of the user

running the application server for PingGateway.

In your ExpressionPlugin , the getKey() method returns the name of the node,

and the getObject() method returns the unified expression language context

object that contains the values needed to resolve the expression. The plugins for

env and system return Map objects, for example.

When you add your own ExpressionPlugin , you must make it discoverable within

your custom library. You do this by adding a services file named after the plugin

interface, where the file contains the fully qualified class name of your plugin, under

META-INF/services/org.forgerock.openig.el.ExpressionPlugin in the .jar

file for your customizations. When you have more than one plugin, add one fully

qualified class name per line. For information, refer to the reference documentation

for the Java class ServiceLoader . If you build your project using Maven, then you

can add this under the src/main/resources directory. Add custom libraries, as

described in Embed customizations in PingGateway.

Remember to provide documentation for PingGateway administrators on how your

plugin extends expressions.

Filter

A Filter serves to process a request before handing it off to the next element in

the chain, in a similar way to an interceptor programming model.

The Filter interface exposes a filter() method, which takes a Context, a

Request, and the Handler, which is the next filter or handler to dispatch to. The

filter() method returns a Promise that provides access to the Response with

methods for dealing with both success and failure conditions.

A filter can elect not to pass the request to the next filter or handler, and instead

handle the request itself. It can achieve this by merely avoiding a call to

next.handle(context, request) , creating its own response object and returning

that in the promise. The filter is also at liberty to replace a response with another of

its own. A filter can exist in more than one chain, therefore should make no

assumptions or correlations using the chain it is supplied. The only valid use of a

chain by a filter is to call its handle() method to dispatch the request to the rest of

the chain.

Handler

A Handler generates a response for a request.

The Handler interface exposes a handle() method, which takes a Context, and a

Request. It processes the request and returns a Promise that provides access to the

link:../_attachments/apidocs/org/forgerock/http/protocol/Response .html[Response]

with methods for dealing with both success and failure conditions. A handler can

elect to dispatch the request to another handler or chain.



50 / 64

https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ServiceLoader.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ServiceLoader.html
https://docs.oracle.com/en/java/javase/17/docs/api/java.base/java/util/ServiceLoader.html
file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#custom-embed
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Filter.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Context.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Request.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Handler.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/util/Promise.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Response.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Handler.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/Context.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/http/protocol/Request.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/util/promise/Promise.html

ClassAliasResolver

A ClassAliasResolver makes it possible to replace a fully qualified class name

with a short name (an alias) in an object declaration’s type.

The ClassAliasResolver interface exposes a resolve(String) method to do

the following:

Return the class mapped to a given alias

Return null if the given alias is unknown to the resolver

All resolvers available to PingGateway are asked until the first non-null value is

returned or until all resolvers have been contacted.

The order of resolvers is nondeterministic. To prevent conflicts, don’t use the

same alias for different types.

The SampleFilter class implements the Filter interface to set a header in the

incoming request and in the outgoing response.

In the following example, the sample filter adds an arbitrary header:

Implement a customized sample filter

package org.forgerock.openig.doc.examples;

import org.forgerock.http.Filter;

import org.forgerock.http.Handler;

import org.forgerock.http.protocol.Request;

import org.forgerock.http.protocol.Response;

import org.forgerock.openig.heap.GenericHeaplet;

import org.forgerock.openig.heap.HeapException;

import org.forgerock.openig.model.type.service.NoTypeInfo;

import org.forgerock.services.context.Context;

import org.forgerock.util.promise.NeverThrowsException;

import org.forgerock.util.promise.Promise;

/**

* Filter to set a header in the incoming request and in the

outgoing response.

*/

public class SampleFilter implements Filter {

/** Header name. */

String name;

/** Header value. */

51 / 64

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/alias/ClassAliasResolver.html

String value;

/**

* Set a header in the incoming request and in the outgoing

response.

* A configuration example looks something like the following.

*

* <pre>

* {

* "name": "SampleFilter",

* "type": "SampleFilter",

* "config": {

* "name": "X-Greeting",

* "value": "Hello world"

* }

* }

* </pre>

*

* @param context Execution context.

* @param request HTTP Request.

* @param next Next filter or handler in the

chain.

* @return A {@code Promise} representing the response to be

returned to the client.

*/

@Override

public Promise<Response, NeverThrowsException> filter(final

Context context,

final

Request request,

final

Handler next) {

// Set header in the request.

request.getHeaders().put(name, value);

// Pass to the next filter or handler in the chain.

return next.handle(context, request)

// When it has been successfully executed,

execute the following callback

.thenOnResult(response -> {

// Set header in the response.

response.getHeaders().put(name, value);

});

}

52 / 64

The corresponding filter configuration is similar to this:

/**

* Create and initialize the filter, based on the

configuration.

* The filter object is stored in the heap.

*/

@NoTypeInfo(reason = "documentation sample")

public static class Heaplet extends GenericHeaplet {

/**

* Create the filter object in the heap,

* setting the header name and value for the filter,

* based on the configuration.

*

* @return The filter object.

* @throws HeapException Failed to create the object.

*/

@Override

public Object create() throws HeapException {

SampleFilter filter = new SampleFilter();

filter.name =

config.get("name").as(evaluatedWithHeapProperties()).required().as

String();

filter.value =

config.get("value").as(evaluatedWithHeapProperties()).required().a

sString();

return filter;

}

}

}

{

"name": "SampleFilter",

"type": "org.forgerock.openig.doc.examples.SampleFilter",

"config": {

"name": "X-Greeting",

"value": "Hello world"

}

}

53 / 64

Note how type is configured with the fully qualified class name for SampleFilter . To

simplify the configuration, implement a class alias resolver, as described in Implement a

Class Alias Resolver.

To simplify the configuration of a customized object, implement a

ClassAliasResolver to allow the use of short names instead of fully qualified class

names.

In the following example, a ClassAliasResolver is created for the SampleFilter

class:

Implement a class alias resolver

package org.forgerock.openig.doc.examples;

import static java.util.stream.Collectors.toUnmodifiableSet;

import java.util.HashMap;

import java.util.Map;

import java.util.Optional;

import java.util.Set;

import org.forgerock.openig.alias.ClassAliasResolver;

import org.forgerock.openig.heap.Heaplet;

import org.forgerock.openig.heap.Heaplets;

/**

* Allow use of short name aliases in configuration object types.

*

* This allows a configuration with {@code "type": "SampleFilter"}

* instead of {@code "type":

"org.forgerock.openig.doc.examples.SampleFilter"}.

*/

public class SampleClassAliasResolver implements

ClassAliasResolver {

private static final Map<String, Class<?>> ALIASES =

new HashMap<>();

static {

ALIASES.put("SampleFilter", SampleFilter.class);

}

/**

* Get the class for a short name alias.

54 / 64

file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#custom-class-alias-resolver
file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#custom-class-alias-resolver

With this ClassAliasResolver , the filter configuration in Implement a Customized

Sample Filter can use the alias instead of the fully qualified class name, as follows:

To create a customized ClassAliasResolver , add a services file with the following

characteristics:

Name the file after the class resolver interface.

Store the file under META-

INF/services/org.forgerock.openig.alias.ClassAliasResolver , in the

customization .jar file.

If you build your project using Maven, you can add the file under the

src/main/resources directory.

*

* @param alias Short name alias.

* @return The class, or null if the alias is not

defined.

*/

@Override

public Class<?> resolve(final String alias) {

return ALIASES.get(alias);

}

@Override

public Set<Class<? extends Heaplet>> supportedTypes() {

return ALIASES.values()

.stream()

.map(Heaplets::findHeapletClass)

.filter(Optional::isPresent)

.map(Optional::get)

.collect(toUnmodifiableSet());

}

}

{

"name": "SampleFilter",

"type": "SampleFilter",

"config": {

"name": "X-Greeting",

"value": "Hello world"

}

}

55 / 64

file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#custom-sample-filter
file:///home/pptruser/Downloads/build/site/ig/configure/extending.html#custom-sample-filter

In your ClassAliasResolver file, add a line for the fully qualified class name of your

resolver as follows:

If you have more than one resolver in your .jar file, add one line for each fully

qualified class name.

Objects are added to the heap and supplied with configuration artifacts at initialization

time. To be integrated with the configuration, a class must have an accompanying

implementation of the Heaplet interface. The easiest and most common way of exposing

the heaplet is to extend the GenericHeaplet class in a nested class of the class you want

to create and initialize, overriding the heaplet’s create() method.

Within the create() method, you can access the object’s configuration through the

config field.

1. Build your PingGateway extension into a .jar file.

2. Create the directory $HOME/.openig/extra , where $HOME/.openig is the

instance directory:

3. Add the .jar file to the directory. The following example adds sample-filter.jar

to $HOME/.openig/extra :

4. If the extension has dependencies that are not included in PingGateway, also add

them to the directory.

5. Start PingGateway, as described in Start and stop PingGateway.

This section describes how to record a custom audit event to standard output. The

example is based on the example in Validate access tokens with introspection, adding an

audit event for the custom topic OAuth2AccessTopic .

org.forgerock.openig.doc.examples.SampleClassAliasResolver

Configure the heap object for the customization

Embed customizations in PingGateway

$ mkdir $HOME/.openig/extra

$ cp ~/sample-filter/target/sample-filter.jar

$HOME/.openig/extra

Record custom audit events

56 / 64

file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/heap/Heaplet.html
file:///home/pptruser/Downloads/build/site/ig/_attachments/apidocs/org/forgerock/openig/heap/GenericHeaplet.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/start-stop.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-introspect.html

To record custom audit events to other outputs, adapt the route in the following

procedure to use another audit event handler.

For information about how to configure supported audit event handlers, and exclude

sensitive data from log files, refer to Audit the deployment. For more information about

audit event handlers, refer to Audit framework.

Record custom audit events to standard output

Before you start, prepare PingGateway and the sample application as described in the

Quick install.

1. Set up AM as described in Validate access tokens with introspection.

2. Define the schema of an event topic called OAuth2AccessTopic by adding the

following route to PingGateway:

Linux Windows

$HOME/.openig/audit-schemas/OAuth2AccessTopic.json

{

"schema": {

"$schema": "http://json-schema.org/draft-04/schema#",

"id": "OAuth2Access",

"type": "object",

"properties": {

"_id": {

"type": "string"

},

"timestamp": {

"type": "string"

},

"transactionId": {

"type": "string"

},

"eventName": {

"type": "string"

},

"accessToken": {

"type": "object",

"properties": {

"scopes": {

"type": "array",

"items": {

"type": "string"

57 / 64

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-introspect.html

Notice that the schema includes the following fields:

Mandatory fields _id , timestamp , transactionId , and eventName .

accessToken , to include the access token scopes, expiry time, and the

subject.

resource , to include the path and method.

filterPolicies , to specify additional event fields to include in the logs.

}

},

"expiresAt": "number",

"sub": "string"

},

"required": ["scopes"]

},

"resource": {

"type": "object",

"properties": {

"path": {

"type": "string"

},

"method": {

"type": "string"

}

}

}

}

},

"filterPolicies": {

"field": {

"includeIf": [

"/_id",

"/timestamp",

"/eventName",

"/transactionId",

"/accessToken",

"/resource"

]

}

},

"required": ["_id", "timestamp", "transactionId",

"eventName"]

}

58 / 64

3. Define a script to generate audit events on the topic named OAuth2AccessTopic ,

by adding the following file to the PingGateway configuration as:

Linux Windows

$HOME/.openig/scripts/groovy/OAuth2Access.groovy

import static

org.forgerock.json.resource.Requests.newCreateRequest;

import static

org.forgerock.json.resource.ResourcePath.resourcePath;

// Helper functions

def String transactionId() {

return contexts.transactionId.transactionId.value;

}

def JsonValue auditEvent(String eventName) {

return json(object(field('eventName', eventName),

field('transactionId', transactionId()),

field('timestamp',

clock.instant().toEpochMilli())));

}

def auditEventRequest(String topicName, JsonValue auditEvent)

{

return newCreateRequest(resourcePath("/" + topicName),

auditEvent);

}

def accessTokenInfo() {

def accessTokenInfo = contexts.oauth2.accessToken;

return object(field('scopes', accessTokenInfo.scopes as

List),

field('expiresAt', accessTokenInfo.expiresAt),

field('subname', accessTokenInfo.info.subname));

}

def resourceEvent() {

return object(field('path', request.uri.path),

field('method', request.method));

}

59 / 64

The script generates audit events named OAuth2AccessEvent , on a topic named

OAuth2AccessTopic . The events conform to the topic schema.

4. Set an environment variable for the PingGateway agent password, and then restart

PingGateway:

The password is retrieved by a SystemAndEnvSecretStore, and must be base64-

encoded.

5. Add the following route to PingGateway:

// --

// Build the event

JsonValue auditEvent = auditEvent('OAuth2AccessEvent')

.add('accessToken', accessTokenInfo())

.add('resource', resourceEvent());

// Send the event, and log a message if there is an error

auditService.handleCreate(context,

auditEventRequest("OAuth2AccessTopic", auditEvent))

.thenOnException(e -> logger.warn("An error occurred

while sending the audit event", e));

// Continue onto the next filter

return next.handle(context, request)

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

Linux Windows

$HOME/.openig/config/routes/30-custom.json

{

"name": "30-custom",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-introspect-

audit')}",

"heap": [

{

"name": "AuditService-1",

"type": "AuditService",

"config": {

"config": {},

60 / 64

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEvent

Handler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"OAuth2AccessTopic"

]

}

}

]

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

61 / 64

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type": "TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService-1",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type":

"HttpBasicAuthenticationClientFilter",

"config": {

"username": "ig_agent",

"passwordSecretId":

"agent.secret.id",

"secretsProvider":

"SystemAndEnvSecretStore-1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "OAuth2Access.groovy",

"args": {

"auditService": "${heap['AuditService-1']}",

"clock": "${heap['Clock']}"

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

62 / 64

Notice the following features of the route:

The route matches requests to /rs-introspect-audit .

The accessTokenResolver uses the token introspection endpoint to validate

the access token.

The HttpBasicAuthenticationClientFilter adds the credentials to the outgoing

token introspection request.

The ScriptableFilter uses the Groovy script OAuth2Access.groovy to generate

audit events named OAuth2AccessEvent , with a topic named

OAuth2AccessTopic .

The audit service publishes the custom audit event to the

JsonStdoutAuditEventHandler. A single line per audit event is published to

standard output.

6. Test the setup

a. In a terminal window, use a curl command similar to the following to retrieve

an access token:

b. Access the route, with the access_token returned in the previous step:

Information about the decoded access_token is returned.

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><h2>Decoded access_token:

${contexts.oauth2.accessToken.info}</h2></body></html>"

}

}

}

}

}

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&scope

=mail%20employeenumber" \

http://am.example.com:8088/openam/oauth2/access_token | jq

-r ".access_token")

$ curl -v http://ig.example.com:8080/rs-introspect-audit -

-header "Authorization: Bearer ${mytoken}"

63 / 64

c. Search the standard output for an audit message like the following example,

that includes an audit event on the topic OAuth2AccessTopic :

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

{

"_id": "fa2...-14",

"timestamp": 155...541,

"eventName": "OAuth2AccessEvent",

"transactionId": "fa2...-13",

"accessToken": {

"scopes": ["employeenumber", "mail"],

"expiresAt": 155...000,

"subname": "demo"

},

"resource": {

"path": "/rs-introspect-audit",

"method": "GET"

},

"source": "audit",

"topic": "OAuth2AccessTopic",

"level": "INFO"

}

64 / 64

