
This guide describes tasks and configurations you might repeat throughout the life cycle

of a deployment in your organization. It is for people who maintain PingGateway

services for their organization.

The following sections describe how to set up auditing for your deployment. For

information about how to include user ID in audit logs, refer to Recording User ID in

Audit Events.

For information about the audit framework and each event handler, refer to Audit

framework.

This section describes how to record access audit events in a CSV file, using tamper-

evident logging. For information about the CSV audit event handler, refer to

CsvAuditEventHandler.

Before you start, prepare PingGateway and the sample application as described in the

Quick install.

1. Set up secrets for tamper-evident logging:

a. Locate a directory for secrets, and go to it:

b. Generate a key pair in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of

signature for the signing key, where the key is generated with the RSA key

Maintenance

Audit the deployment

Record access audit events in CSV

The CSV handler does not sanitize messages when writing to CSV log files.

Do not open CSV logs in spreadsheets or other applications that treat data as code.

IMPORTANT

$ cd /path/to/secrets

1 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-userid
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-userid
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/reference/AuditFramework.html
file:///home/pptruser/Downloads/build/site/ig/reference/CsvAuditEventHandler.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

algorithm and the SHA256withRSA signature algorithm:

c. Generate a secret key in the keystore.

The CSV event handler expects a JCEKS-type keystore with a key alias of csv-

key-2 for the symmetric key, where the key is generated with the

HmacSHA256 key algorithm and 256-bit key size:

d. Verify the content of the keystore:

$ keytool \

-genkeypair \

-keyalg RSA \

-sigalg SHA256withRSA \

-alias "signature" \

-dname "CN=ig.example.com,O=Example Corp,C=FR" \

-keystore audit-keystore \

-storetype JCEKS \

-storepass password \

-keypass password

Because keytool converts all characters in its key aliases to lowercase, use

only lowercase in alias definitions of a keystore.

NOTE

$ keytool \

-genseckey \

-keyalg HmacSHA256 \

-keysize 256 \

-alias "password" \

-keystore audit-keystore \

-storetype JCEKS \

-storepass password \

-keypass password

$ keytool \

-list \

-keystore audit-keystore \

-storetype JCEKS \

-storepass password

Keystore type: JCEKS

Keystore provider: SunJCE

Your keystore contains 2 entries

2 / 77

2. Set up PingGateway

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Add the following route to PingGateway, replacing /path/to/secrets/audit-

keystore with your path:

password, ... SecretKeyEntry,

signature, ... PrivateKeyEntry,

Certificate fingerprint (SHA1): 4D:...:D1

Linux Windows

$HOME/.openig/config/routes/30-csv.json

{

"name": "30-csv",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/csv-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.csv.CsvAuditEventHandler",

"config": {

"name": "csv",

"logDirectory": "/tmp/logs",

"security": {

"enabled": "true",

"filename": "/path/to/secrets/audit-

keystore",

"password": "password",

"signatureInterval": "1 day"

},

"topics": [

"access"

]

}

3 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

The route calls an audit service configuration for publishing log messages to

the CSV file, /tmp/logs/access.csv .

When a request matches audit , audit events are logged to the CSV file.

The route uses the ForgeRockClientHandler as its handler, to send the X-

ForgeRock-TransactionId header with its requests to external services.

3. Test the setup:

a. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/csv-audit .

The home page of the sample application is displayed, and the file

/tmp/logs/tamper-evident-access.csv is updated.

For information about configuring the JMS event handler, refer to

JmsAuditEventHandler.

Before you start, prepare PingGateway as described in the Quick install.

1. Download the following files:

ActiveMQ binary . PingGateway is tested with ActiveMQ Classic 5.15.11.

ActiveMQ Client . Use a version that corresponds to your ActiveMQ version.

Apache Geronimo J2EE management bundle .

hawtbuf-1.11 JAR .

2. Add the files to the configuration:

}

],

"config": { }

}

}

],

"auditService": "AuditService",

"handler": "ForgeRockClientHandler"

}



Record access audit events with a JMS audit event handler

This procedure is an example of how to record access audit events with a JMS audit

event handler configured to use the ActiveMQ message broker. This example is not

tested on all configurations, and can be more or less relevant to your configuration.

IMPORTANT









4 / 77

https://ig.example.com:8443/home/csv-audit
https://ig.example.com:8443/home/csv-audit
https://ig.example.com:8443/home/csv-audit
file:///home/pptruser/Downloads/build/site/ig/reference/JmsAuditEventHandler.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://activemq.apache.org/components/classic/download/
https://activemq.apache.org/components/classic/download/
https://activemq.apache.org/components/classic/download/
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repository.apache.org/content/repositories/releases/org/apache/activemq/activemq-client
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/apache/geronimo/specs/geronimo-j2ee-management_1.1_spec/1.0.1/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/
https://repo1.maven.org/maven2/org/fusesource/hawtbuf/hawtbuf/1.11/

Create the directory $HOME/.openig/extra , where $HOME/.openig is the

instance directory, and add .jar files to the directory.

3. Create a consumer that subscribes to the audit topic.

From the ActiveMQ installation directory, run the following command:

4. Set up PingGateway

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Add the following route to PingGateway:

$./bin/activemq consumer --destination topic://audit

Linux Windows

$HOME/.openig/config/routes/30-jms.json

{

"name": "30-jms",

"MyCapture" : "all",

"baseURI": "http://app.example.com:8081",

"condition" : "${request.uri.path ==

'/activemq_event_handler'}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers" : [

{

"class" :

"org.forgerock.audit.handlers.jms.JmsAuditEventHandler",

"config" : {

"name" : "jms",

"topics": ["access"],

"deliveryMode" : "NON_PERSISTENT",

"sessionMode" : "AUTO",

"jndi" : {

"contextProperties" : {

"java.naming.factory.initial" :

"org.apache.activemq.jndi.ActiveMQInitialContextFactory",

"java.naming.provider.url" :

5 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

When a request matches the /activemq_event_handler route, this

configuration publishes JMS messages containing audit event data to an

ActiveMQ managed JMS topic, and the StaticResponseHandler displays a

message.

5. Test the setup:

a. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/activemq_event_handler .

Depending on how ActiveMQ is configured, audit events are displayed on the

ActiveMQ console or written to file.

This section describes how to record access audit events with a JSON audit event

handler. For information about configuring the JSON event handler, refer to

JsonAuditEventHandler.

1. Set up PingGateway

"tcp://am.example.com:61616",

"topic.audit" : "audit"

},

"topicName" : "audit",

"connectionFactoryName" :

"ConnectionFactory"

}

}

}

],

"config" : { }

}

}

],

"auditService": "AuditService",

"handler" : {

"type" : "StaticResponseHandler",

"config" : {

"status" : 200,

"headers" : {

"Content-Type" : ["text/plain; charset=UTF-8"]

},

"entity" : "Message from audited route"

}

}

}



Record access audit events with a JSON audit event handler

6 / 77

https://ig.example.com:8443/activemq_event_handler
https://ig.example.com:8443/activemq_event_handler
https://ig.example.com:8443/activemq_event_handler
file:///home/pptruser/Downloads/build/site/ig/reference/JsonAuditEventHandler.html

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Add the following route to PingGateway:

Linux Windows

$HOME/.openig/config/routes/30-json.json

{

"name": "30-json",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-

audit')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"rotationRetentionCheckInterval": "1

minute",

"buffering": {

"maxSize": 100000,

"writeInterval": "100 ms"

}

}

}

]

}

}

],

"auditService": "AuditService",

7 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

Notice the following features of the route:

The route calls an audit service configuration for publishing log messages

to the JSON file, /tmp/audit/access.audit.json . When a request

matches /home/json-audit , a single line per audit event is logged to the

JSON file.

The route uses the ForgeRockClientHandler as its handler, to send the

X-ForgeRock-TransactionId header with its requests to external

services.

2. Test the setup:

a. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/json-audit .

The home page of the sample application is displayed and the file

/tmp/logs/access.audit.json is created or updated with a message. The

following example message is formatted for easy reading, but it is produced as

a single line for each event:

"handler": "ReverseProxyHandler"

}



{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://ig.example.com:8080/home/json-

audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,/;

q=0.8"],

"host": ["ig.example.com:8080"],

8 / 77

https://ig.example.com:8443/home/json-audit
https://ig.example.com:8443/home/json-audit
https://ig.example.com:8443/home/json-audit

This section describes how to record access audit events to standard output. For more

information about the event handler, refer to JsonStdoutAuditEventHandler.

Before you start, prepare PingGateway and the sample application as described in the

Quick install.

1. Set up PingGateway

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Add the following route to PingGateway:

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 212,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "b3f...-29",

"routeId": "30-json",

"routeName": "30-json"

}

}

Record access audit events to standard output

Linux Windows

$HOME/.openig/config/routes/30-jsonstdout.json

{

"name": "30-jsonstdout",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/jsonstdout-audit')}",

"heap": [

{

"name": "AuditService",

9 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/JsonStdoutAuditEventHandler.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

Notice the following features of the route:

The route matches requests to /home/jsonstdout-audit .

The route calls the audit service configuration for publishing access log

messages to standard output. When a request matches

/home/jsonstdout-audit , a single line per audit event is logged.

2. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/jsonstdout-audit .

The home page of the sample application is displayed, and a message like this is

published to standard output:

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditE

ventHandler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}



{

"_id": "830...-61",

"timestamp": "2019-...89Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-60",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51876

},

10 / 77

https://ig.example.com:8443/home/jsonstdout-audit
https://ig.example.com:8443/home/jsonstdout-audit
https://ig.example.com:8443/home/jsonstdout-audit

Each audit event is identified by a unique transaction ID that can be communicated

across products and recorded for each local event. By using the transaction ID, requests

can be tracked as they traverse the platform, making it easier to monitor activity and to

enrich reports.

The X-ForgeRock-TransactionId header is automatically set in all outgoing HTTP calls

from one ForgeRock product to another. Customers can also set this header themselves

from their own applications or scripts that call into the Ping Identity Platform.

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://ig.example.com:8080/home/jsonstdout-

audit",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,/;q=0.

8"],

"host": ["ig.example.com:8080"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 10,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "b3f...-41",

"routeId": "30-jsonstdout",

"routeName": "30-jsonstdout"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Trust transaction IDs from other products

11 / 77

To reduce the risk of malicious attacks, by default PingGateway does not trust

transaction ID headers from client applications.

If you trust the transaction IDs sent by your client applications, consider setting Java

system property org.forgerock.http.TrustTransactionHeader to true .

Add the following system property in env.sh :

All incoming X-ForgeRock-TransactionId headers are trusted, and monitoring or

reporting systems that consume the logs can allow requests to be correlated as they

traverse multiple servers.

To prevent logging of sensitive data for an audit event, the Common Audit Framework

uses a safelist to specify which audit event fields appear in the logs.

By default, only safelisted audit event fields are included in the logs. For information

about how to include non-safelisted audit event fields, or exclude safelisted audit event

fields, refer to Including or excluding audit event fields in logs.

Audit event fields use JSON pointer notation, and are taken from the JSON schema for

the audit event content. The following event fields are safelisted:

/_id

/timestamp

/eventName

/transactionId

/trackingIds

/userId

/client

/server

/ig/exchangeId

/ig/routeId

/ig/routeName

/http/request/secure

Specify a JVM option

TX_HEADER_OPT="-Dorg.forgerock.http.TrustTransactionHeader=true"

Include it into the JAVA_OPTS environment variable

export JAVA_OPTS="${TX_HEADER_OPT}"

Safelist audit event fields for the logs

12 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#maint-audit-include-exclude

/http/request/method

/http/request/path

/http/request/headers/accept

/http/request/headers/accept-api-version

/http/request/headers/content-type

/http/request/headers/host

/http/request/headers/user-agent

/http/request/headers/x-forwarded-for

/http/request/headers/x-forwarded-host

/http/request/headers/x-forwarded-port

/http/request/headers/x-forwarded-proto

/http/request/headers/x-original-uri

/http/request/headers/x-real-ip

/http/request/headers/x-request-id

/http/request/headers/x-requested-with

/http/request/headers/x-scheme

/request

/response

The safelist is designed to prevent logging of sensitive data for audit events by specifying

which audit event fields appear in the logs. You can add or remove messages from the

logs as follows:

To include audit event fields in logs that are not safelisted, configure the

includeIf property of AuditService.

To exclude safelisted audit event fields from the logs, configure the excludeIf

property of AuditService. For an example, refer to Exclude safelisted audit event

fields from logs.

Exclude safelisted audit event fields from logs

Include or exclude audit event fields in logs

Before you include non-safelisted audit event fields in the logs, consider the

impact on security. Including some headers, query parameters, or cookies in

the logs could cause credentials or tokens to be logged, and allow anyone with

access to the logs to impersonate the holder of these credentials or tokens.

IMPORTANT

13 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#proc-audit-exclude
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#proc-audit-exclude

Before you start, set up and test the example in Recording access audit events in JSON.

Note the audit event fields in the log file access.audit.json .

1. Replace 30-json.json with the following route:

Linux Windows

$HOME/.openig/config/routes/30-json-excludeif.json

{

"name": "30-json-excludeif",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/json-audit-

excludeif$')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"config": {

"filterPolicies": {

"field": {

"excludeIf": [

"/access/http/request/headers/host",

"/access/http/request/path",

"/access/server",

"/access/response"

]

}

}

},

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.JsonAuditEventHandler",

"config": {

"name": "json",

"logDirectory": "/tmp/logs",

"topics": [

"access"

],

"rotationRetentionCheckInterval": "1 minute",

"buffering": {

"maxSize": 100000,

14 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json

Notice that the AuditService is configured with an excludeIf property to exclude

audit event fields from the logs.

2. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/json-audit-excludeif .

The home page of the sample application is displayed and the file

/tmp/logs/access.audit.json is updated:

"writeInterval": "100 ms"

}

}

}

]

}

}

],

"auditService": "AuditService",

"handler": "ReverseProxyHandler"

}



{

"_id": "830...-41",

"timestamp": "2019-...540Z",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "830...-40",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 51666

},

"http": {

"request": {

"secure": false,

"method": "GET",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,*/*;q=

0.8"],

"user-agent": ["Mozilla/5.0 ... Firefox/66.0"]

}

}

},

"ig": {

"exchangeId": "b3f...-56",

"routeId": "30-json-excludeif",

"routeName": "30-json-excludeif"

15 / 77

https://ig.example.com:8443/home/json-audit-excludeif
https://ig.example.com:8443/home/json-audit-excludeif
https://ig.example.com:8443/home/json-audit-excludeif

3. Compare the audit event fields in access.audit.json with those produced in

Recording access audit events in JSON, and note that the audit event fields specified

by the excludeIf property no longer appear in the logs.

The following sections provide examples of how to capture the AM user ID in audit logs.

Sample scripts are available in the openig-samples.jar file, to capture the user ID

after SSO, CDSSO, OpenID, or SAML authentication. The scripts inject the user ID into the

RequestAuditContext so that it is available when the audit event is written.

Using the notes in the sample scripts, adapt the script for your deployment. For

example, configure which user_info field to capture in the audit event.

The audit service in these examples use a JsonStdoutAuditEventHandler, which writes

audit events to standard output, but can be any other audit service.

Before you start, set up and test the example in Cross-domain single sign-on (CDSSO).

1. Add the following script to PingGateway:

}

}

Record user ID in audit events

Record user ID in audit logs after SSO authentication

Linux Windows

$HOME/.openig/scripts/groovy/InjectUserIdSso.groovy

package scripts.groovy

import org.forgerock.openig.openam.SsoTokenContext

import org.forgerock.services.context.RequestAuditContext

/**

* Sample ScriptableFilter implementation to capture the user

id from the session

* and inject it into the RequestAuditContext for later use

when the audit event

* is written.

*

* This ScriptableFilter should be added in the filter chain

16 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/auditing.html#audit-json
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/cdsso.html

at whatever point the

* desired user id is available - e.g. on the session after

SSO.

*

* "handler": {

* "type": "Chain",

* "config": {

* "filters": [{

* "name": "SingleSignOnFilter-1",

* "type": "SingleSignOnFilter",

* "config": {

* "amService": "AmService-1"

* }

* }, {

* "type" : "ScriptableFilter",

* "config" : {

* "file" : "InjectUserIdSso.groovy",

* "type": "application/x-groovy"

* }

* }

*],

* "handler" : "ReverseProxyHandler",

* }

*

* When using the SSO/ CDSSO flow then the SsoTokenContext is

guaranteed to exist and

* be populated if there was no error. The RequestAuditContext

is also guaranteed to

* be available. Note also that if the SessionInfoFilter is

present in the route then

* a SessionInfoContext would be available in the context

chain and could be queried

* for user info.

*

* Implementors may decide which user id field to capture in

the audit event:

* - The sessionInfo universalId - 'universalId' - is always

available as

* provided by AM and resembles -

* e.g.

"id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=forgeroc

k,dc=org".

* - The sessionInfo username - mapped to 'username')

resembles - e.g. "bonnie".

* Field 'username' should be preferred to 'uid', which also

17 / 77

The script captures the user ID after SSO or CDSSO authentication, and injects it

into the RequestAuditContext so that it is available when the audit event is written.

2. Replace sso.json with the following route:

points to 'username'.

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see SsoTokenContext

* @see org.forgerock.openig.openam.SessionInfoContext

*/

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def ssoTokenContext = context.asContext(SsoTokenContext.class)

// The sessionInfo 'universalId' is always available, though

'username' may be unknown

requestAuditContext.setUserId(ssoTokenContext.universalId)

// Propagate the request to the next filter/ handler in the

chain

next.handle(context, request)

Linux Windows

$HOME/.openig/config/routes/audit-sso.json

{

"name": "audit-sso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/audit-

sso$')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEvent

18 / 77

Handler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/"

}

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type" : "ScriptableFilter",

"config" : {

19 / 77

Notice the following features of the route compared to sso.json :

The route matches requests to /home/audit-sso .

An audit service is included to publish access log messages to standard output.

The chain includes a scriptable filter that refers to InjectUserIdSso.groovy .

3. Test the setup:

a. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/audit-sso . The SingleSignOnFilter

redirects the request to AM for authentication.

b. Log in to AM as user demo , password Ch4ng31t , and then allow the

application to access user information.

The profile page of the sample application is displayed. The script captures the

user ID from the session, and the audit service includes it with the audit event.

c. Search the standard output for a message like this, containing the user ID:

"file" : "InjectUserIdSso.groovy",

"type": "application/x-groovy"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}



{

"_id": "23a...-23",

"timestamp": "...",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "23a...-22",

"userId":

"id=demo,ou=user,dc=openam,dc=forgerock,dc=org",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 57843

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

20 / 77

https://ig.example.com:8443/home/audit-sso
https://ig.example.com:8443/home/audit-sso
https://ig.example.com:8443/home/audit-sso

Before you start, set up and test the example in AM as OIDC provider.

1. Set up the script:

a. Add the following example script to PingGateway:

"method": "GET",

"path": "http://ig.example.com/home/audit-sso",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,im

age/webp,/;q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 276,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "1dc...-26",

"routeId": "audit-sso",

"routeName": "audit-sso"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Record user ID in audit logs after OpenID connect authentication

Linux Windows

$HOME/.openig/scripts/groovy/InjectUserIdOpenId.groovy

package scripts.groovy

import org.forgerock.services.context.AttributesContext

import org.forgerock.services.context.RequestAuditContext

21 / 77

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc-am.html

/**

* Sample script implementation supporting user id

injection in an OpenId scenario.

* This sample captures the user id and injects it into

the RequestAuditContext for

* later use when the audit event is written.

*

* This ScriptableFilter should be added in the filter

chain at whatever point the

* desired user id is available - e.g. after OpenId client

authentication (in the

* OAuth2 authentication filter chain) - as follows:

*

* "handler" : {

* "type" : "Chain",

* "config" : {

* "filters" : [{

* "type" : "OAuth2ClientFilter",

* "config" : {

* ...

* "target" : "${attributes.target}",

* "registrations" : [

"ClientRegistrationWithOpenIdScope"],

* }

* }, {

* "type" : "ScriptableFilter",

* "config" : {

* "file" : "InjectUserIdOpenId.groovy",

* "type": "application/x-groovy"

* }

* }],

* "handler" : "display-user-info-groovy-handler"

* }

* }

*

* The ClientRegistration associated with the above

OAuth2ClientFilter config will

* require the 'openid' scope. The OAuth2SessionContext is

guaranteed to exist and

* be populated on successful authentication. The userinfo

will then be populated

* according to the OAuth2ClientFilter OpenId 'target'

configuration (e.g. in this

* sample, on the AttributesContext). The 'target'

22 / 77

referenced will be populated

* with a 'user_info' JSON value containing the userinfo.

It should be noted that

* the OAuth2ClientFilter 'target' config is a config-time

expression, and cannot

* be used in a ScriptableFilter to read runtime data. The

RequestAuditContext is

* also guaranteed to be available.

*

* Implementors may decide which 'user_info' field to

capture in the audit event:

* - The userinfo 'sub' field is the user's "complex" ID

marked with a type - e.g.

* "(usr!bonnie)".

* - The userinfo 'subName' field is the user's username

(or resource name) - e.g.

* "bonnie".

* - To capture the universalId (consistent with the

session info universalId),

* it is necessary to configure AM to provide it as a

claim in the id-token. To

* do this, edit the OIDC Claims Script to include the

following line just prior

* to the UserInfoClaims creation:

* computedClaims["universalId"] =

identity.universalId

* - This will include 'universalId' in the userinfo which

we can use with audit

* e.g.

"id=bonnie,ou=user,o=myrealm,ou=services,dc=openam,dc=forg

erock,dc=org"

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see AttributesContext

*/

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def attributesContext =

context.asContext(AttributesContext.class)

// The OAuth2ClientFilter captures userinfo based on its

'target' configuration.

23 / 77

The script captures the user ID from the AuthorizationCodeOAuth2ClientFilter

target object, by default at ${attributes.openid} , and injects it into the

RequestAuditContext so that it is available when the audit event is written.

b. Edit the script to get the attributes from the openid target:

Replace attributesContext.getAttributes().get("target")

with attributesContext.getAttributes().get("openid") .

2. Replace 07-openid.json with the following route:

// In this sample 'target' is configured as the

AttributesContext with key "target".

// We can query this for 'user_info' values: 'sub',

'subName' or anything else

// made available via the OIDC Claims Script (see above).

def oauth2UserInfo =

attributesContext.getAttributes().get("target")

requestAuditContext.setUserId(oauth2UserInfo.get("user_inf

o").get("sub"))

// Propagate the request to the next filter/ handler in

the chain

next.handle(context, request)

Linux Windows

$HOME/.openig/config/routes/audit-oidc.json

{

"name": "audit-oidc",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/id_token')}",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEvent

Handler",

"config": {

24 / 77

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

},

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-1",

"type": "AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

25 / 77

Notice the following features of the route compared to 07-openid.json :

An audit service is included to publish access log messages to standard output.

The chain includes a scriptable filter that refers to

InjectUserIdOpenId.groovy .

3. Test the setup:

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-known/openid-

configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"secretsProvider": "SystemAndEnvSecretStore-

1",

"tokenEndpointAuthMethod":

"client_secret_basic"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

},

{

"type" : "ScriptableFilter",

"config" : {

"file" : "InjectUserIdOpenId.groovy",

"type": "application/x-groovy"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

26 / 77

a. In your browser’s privacy or incognito mode, go to

https://ig.example.com:8443/home/id_token . The AM login page is displayed.

b. Log in to AM as user demo , password Ch4ng31t , and then allow the

application to access user information.

The home page of the sample application is displayed. The script captures the

user ID from the openid target, and the audit service includes it with the audit

event.

c. Search the standard output for a message like this, containing the user ID:



{

"_id": "b64...-25",

"timestamp": "2021...",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "b64...-24",

"userId": "(usr!demo)",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 64443

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "GET",

"path": "http://ig.example.com:8080/home/id_token",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,im

age/webp,/;q=0.8"],

"host": ["ig.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "200",

"elapsedTime": 199,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

27 / 77

https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token
https://ig.example.com:8443/home/id_token

Before you start, set up and test the SamlFederationHandler example under SAML.

1. Set up the script:

a. Add the following example script to PingGateway:

"exchangeId": "1dc...-26",

"routeId": "audit-oidc",

"routeName": "audit-oidc"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Record user ID in audit logs after SAML authentication

This example uses the deprecated SamlFederationHandler. The

SamlFederationHandler is replaced by the SamlFederationFilter and will be

removed in a future release.

IMPORTANT

Linux Windows

$HOME/.openig/scripts/groovy/InjectUserIdSaml.groovy

package scripts.groovy

import org.forgerock.http.session.SessionContext

import org.forgerock.services.context.RequestAuditContext

/**

* Sample ScriptableFilter implementation to capture the

user id obtained from a

* SAML assertion. The IG SamlFederationHandler captures

this and locates it on

* the SessionContext with the key as the configured SAML

2 user id key. We then

* take this and inject it into the RequestAuditContext

for later use when the

* audit event is written.

*

* This ScriptableFilter should be added in the filter

28 / 77

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/saml.html
file:///home/pptruser/Downloads/build/site/ig/reference/SamlFederationFilter.html

chain together with the

* SamlFederationHandler, as follows. Note that the

InjectUserIdSaml.groovy script

* operates on the response, injecting the userId as

captured by the handler.

*

* {

* "condition" :

"${matches(request.uri.path,'^/api/saml')}",

* "handler" : {

* "type" : "Chain",

* "config" : {

* "filters" : [{

* "type" : "ScriptableFilter",

* "config" : {

* "file" : "InjectUserIdSaml.groovy",

* "type": "application/x-groovy"

* }

* }],

* "handler" : {

* "name" : "saml_handler_SPOne",

* "type" : "SamlFederationHandler",

* "config" : {

* "assertionMapping" : {

* "SPOne_userName" : "uid",

* "SPOne_password" : "mail"

* },

* "redirectURI" : "/api/home",

* "logoutURI" :

"http://openig.example.com:8082/api/after_logout",

* "subjectMapping" :

"SubjectName_SPOne",

* "authnContext" :

"AuthnContext_SPOne",

* "sessionIndexMapping" :

"SessionIndex_SPOne"

* }

* }

* }

* }

* }

*

* The SessionContext and RequestAuditContext are

guaranteed to be available and the

* SessionContext will have been populated with userinfo

29 / 77

The script captures the user ID from the SessionContext subject or attribute

mappings, provided by the SamlFederationHandler from the inbound

assertions. It injects the user ID into the RequestAuditContext so that it is

available when the audit event is written.

b. Replace get("SPOne_userName")) with get("username")) .

The script captures the user ID from the assertionMapping username , which is

mapped in the route to cn .

2. Replace saml.json with the following route:

on successful authentication.

*

* Implementors may decide which user id field to capture

in the audit event:

* - This should be based on SAML attribute mappings and/

or the subject mapping (if

* transient names are not used).

* - Other attributes are available, such as 'uid' and

'userName', though it must be

* noted that there is an expectation that the IDP makes

available the user id.

* - In this sample, 'SPOne_userName' maps to the 'uid'.

*

* Additional error handling may be required.

*

* @see RequestAuditContext

* @see SessionContext

*/

// Propagate the request to the next filter/ handler in

the chain

next.handle(context, request)

.then({ response ->

def requestAuditContext =

context.asContext(RequestAuditContext.class)

def sessionContext =

context.asContext(SessionContext.class)

// Inject the user id as captured by the

SamlFederationHandler

requestAuditContext.setUserId(sessionContext.getSession().

get("SPOne_userName"))

return response

})

30 / 77

Linux Windows

$HOME/.openig/config/routes/audit-saml.json

{

"name": "audit-saml",

"condition": "${find(request.uri.path, '^/saml')}",

"session": "JwtSession",

"heap": [

{

"name": "AuditService",

"type": "AuditService",

"config": {

"eventHandlers": [

{

"class":

"org.forgerock.audit.handlers.json.stdout.JsonStdoutAuditEvent

Handler",

"config": {

"name": "jsonstdout",

"elasticsearchCompatible": false,

"topics": [

"access"

]

}

}

],

"config": {}

}

}

],

"auditService": "AuditService",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"type" : "ScriptableFilter",

"config" : {

"file" : "InjectUserIdSaml.groovy",

"type": "application/x-groovy"

}

}

31 / 77

Notice the following features of the route compared to saml.json :

An audit service is included to publish access log messages to standard output.

The main Handler is a Chain, that includes a scriptable filter to refer to

InjectUserIdSaml.groovy .

The script uses the assertionMapping username to capture the user ID.

3. Test the setup:

a. In your browser’s privacy or incognito mode, go to IDP-initiated SSO .

b. Log in to AM with username demo and password Ch4ng31t .

PingGateway returns the response page showing that the the demo user has

logged in. The script captures the user ID from the session, and the audit

service includes it with the audit event.

c. Search the standard output for a message like this, containing the user ID:

],

"handler": {

"type": "SamlFederationHandler",

"config": {

"useOriginalUri": true,

"assertionMapping": {

"username": "cn",

"password": "sn"

},

"subjectMapping": "sp-subject-name",

"redirectURI": "/home/federate"

}

}

}

}

}



{

"_id": "82f...-14",

"timestamp": "2021-...",

"eventName": "OPENIG-HTTP-ACCESS",

"transactionId": "82f...-13",

"userId": "demo",

"client": {

"ip": "0:0:0:0:0:0:0:1",

"port": 60655

},

"server": {

"ip": "0:0:0:0:0:0:0:1",

32 / 77

http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp
http://am.example.com:8088/openam/idpssoinit?metaAlias=/idp&spEntityID=sp

This page describes how to set up and maintain monitoring in your deployment.

"port": 8080

},

"http": {

"request": {

"secure": false,

"method": "POST",

"path":

"http://sp.example.com:8080/saml/fedletapplication/metaAli

as/sp",

"headers": {

"accept":

["text/html,application/xhtml+xml,application/xml;q=0.9,im

age/webp,/;q=0.8"],

"content-type": ["application/x-www-form-

urlencoded"],

"host": ["sp.example.com:8080"],

"user-agent": [...]

}

}

},

"response": {

"status": "SUCCESSFUL",

"statusCode": "302",

"elapsedTime": 2112,

"elapsedTimeUnits": "MILLISECONDS"

},

"ig": {

"exchangeId": "1dc...-26",

"routeId": "audit-saml",

"routeName": "audit-saml"

},

"source": "audit",

"topic": "access",

"level": "INFO"

}

Monitor services

Push to an OpenTelemetry service

33 / 77

PingGateway can push traces to an OpenTelemetry Protocol (OTLP) endpoint over

HTTP. When you use it with other applications with OpenTelemetry support, the service

helps you analyze the flows through PingGateway and the other applications to

understand performance and system behavior.

OpenTelemetry support is disabled by default. Enable it with the "openTelemetry"

setting in AdminHttpApplication (admin.json). Make sure the OTLP exporter targets

the endpoint for the OpenTelemetry service in your deployment. The following example

targets the default endpoint:

When tracing is enabled, traces always span requests entering PingGateway and any

requests started by PingGateway; for example, proxied requests to the sample

application. The span ends when PingGateway receives or returns a response or when

an error arises during processing. If a ClientHandler or ReverseProxyHandler has the

retry feature enabled, PingGateway records the number of retries as a

http.request.resend_count span attribute in the trace.

Trace sampling is alwaysOn by default, meaning PingGateway samples every operation.

Adjust this in the configuration settings as required for your deployment and traffic.

Use the "tracing": true decoration on other configuration objects or in

"globalDecorators" to activate additional tracing points.

All ForgeRock products automatically expose a monitoring endpoint to expose metrics in

a standard Prometheus format, and as a JSON format monitoring resource.



This capability is available in Technology preview. It isn’t yet supported, may be

functionally incomplete, and is subject to change without notice.

IMPORTANT

{

"openTelemetry": {

"tracing": {

"enabled": true,

"exporter": {

"type": "otlp",

"config": {

"endpoint": "http://localhost:4318/v1/traces"

}

}

}

}

}

Access the monitoring endpoints

34 / 77

https://opentelemetry.io/
https://opentelemetry.io/
https://opentelemetry.io/
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html
https://backstage.forgerock.com/docs/ig/latest/release-notes/stability.html#interface-stability

In PingGateway, metrics are available for each router, subrouter, and route in the

configuration. When a TimerDecorator is configured, timer metrics are also available.

Learn more about PingGateway monitoring endpoints and available metrics in

Monitoring.

All ForgeRock products automatically expose a monitoring endpoint where Prometheus

can scrape metrics, in a standard Prometheus format.

When PingGateway is set up as described in the Quick install, the Prometheus Scrape

Endpoint is available at the following endpoints:

http://ig.example.com:8080/openig/metrics/prometheus/0.0.4

http://ig.example.com:8080/openig/metrics/prometheus (deprecated)

By default, no special setup or configuration is required to access metrics at these

endpoints. The following example queries the Prometheus Scrape Endpoint for a route.

Tools such as Grafana are available to create customized charts and graphs based on

the information collected by Prometheus. For more information on installing and

running Grafana, refer to the Grafana website .

1. Set up PingGateway:

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Add the following route to PingGateway:

Monitor at the Prometheus Scrape Endpoint

Prometheus metric names are deprecated and expected to be replaced with names

ending in _total. The information provided by the metric is not deprecated. Other

Prometheus metrics are not affected.

NOTE







Linux Windows

$HOME/.openig/config/routes/myroute1.json

{

"name": "myroute1",

"handler": {

"type": "StaticResponseHandler",

"config": {

35 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://ig.example.com:8080/openig/metrics/prometheus/0.0.4
http://ig.example.com:8080/openig/metrics/prometheus/0.0.4
http://ig.example.com:8080/openig/metrics/prometheus/0.0.4
http://ig.example.com:8080/openig/metrics/prometheus
http://ig.example.com:8080/openig/metrics/prometheus
http://ig.example.com:8080/openig/metrics/prometheus
https://grafana.com/
https://grafana.com/
https://grafana.com/
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

The route contains a StaticResponseHandler to display a simple message.

2. Test the setup:

a. Access the route a few times, on https://ig.example.com:8443/myroute1 .

b. Query the Prometheus Scrape Endpoint:

Metrics for myroute1 and _router are displayed.

Vert.x monitoring is enabled by default to provide additional metrics for HTTP,

TCP, and the internal component pool. The metrics provide low-level

information about requests and responses, such as the number of bytes,

duration, and the number of concurrent requests.

All ForgeRock products expose a monitoring endpoint where metrics are exposed as a

JSON format monitoring resource.

When PingGateway is set up as described in Quick install, the Common REST Monitoring

Endpoint is available at https://ig.example.com:8443/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true

By default, no special setup or configuration is required to access metrics at this

endpoint. The following example queries the Common REST Monitoring Endpoint for a

route, and restricts the query to specific metrics only.

Before you start, prepare PingGateway as described in the Quick install.

1. Set up PingGateway and some example routes, as described in the first few steps of

Monitor the Prometheus Scrape Endpoint.

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "Hello world, from myroute1!"

}

},

"condition": "${find(request.uri.path, '^/myroute1')}"

}



$ curl -v \

--cacert /path/to/secrets/ig.example.com-certificate.pem \

https://ig.example.com:8443/openig/metrics/prometheus/0.0.

4

Monitor the Common REST Monitoring Endpoint (deprecated)



36 / 77

https://ig.example.com:8443/myroute1
https://ig.example.com:8443/myroute1
https://ig.example.com:8443/myroute1
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=true
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html

2. Query the Common REST Monitoring Endpoint:

Metrics for myroute1 and _router are displayed:

$ curl "https://ig.example.com:8443/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=true"

{

"result" : [{

"_id" : "gateway._router.deployed-routes",

"value" : 1.0,

"_type" : "gauge"

}, {

"_id" : "gateway._router.route.default.request",

"count" : 204,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.default.request.active",

"value" : 0.0,

"_type" : "gauge"

}, {

"...": "...",

"_id" :

"gateway._router.route.myroute1.response.status.unknown",

"count" : 0,

"_type" : "counter"

}, {

"_id" : "gateway._router.route.myroute1.response.time",

"count" : 204,

"max" : 0.420135,

"mean" : 0.08624678327176545,

"min" : 0.045079999999999995,

"p50" : 0.070241,

"p75" : 0.096049,

"p95" : 0.178534,

"p98" : 0.227217,

"p99" : 0.242554,

"p999" : 0.420135,

"stddev" : 0.046611762381930474,

"m15_rate" : 0.2004491450567003,

"m1_rate" : 2.8726563452698075,

"m5_rate" : 0.5974045160056258,

"mean_rate" : 0.010877725092634833,

"duration_units" : "milliseconds",

37 / 77

Vert.x monitoring is enabled by default to provide additional metrics for HTTP, TCP,

and the internal component pool. The metrics provide low-level information about

requests and responses, such as the number of bytes, duration, the number of

concurrent requests, and so on.

3. Change the query to access metrics only for myroute1 :

https://ig.example.com:8443/openig/metrics/api?

_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+"gateway._router.route.myro

ute1" ;.

Note that metric for the router, "_id" : "gateway._router.deployed-routes" ,

is no longer displayed.

Vert.x monitoring is enabled by default to provide metrics for HTTP, TCP, and the

internal component pool. The metrics provide low-level information about requests and

responses, such as the number of bytes, duration, the number of concurrent requests,

and so on.

To disable Vert.x monitoring, add the following lines to admin.json , and restart

PingGateway:

"rate_units" : "calls/second",

"total" : 17.721825,

"_type" : "timer"

}],

"resultCount" : 11,

"pagedResultsCookie" : null,

"totalPagedResultsPolicy" : "EXACT",

"totalPagedResults" : 11,

"remainingPagedResults" : -1

}



Monitor Vert.x metrics

Vert.x metric names are deprecated and expected to be replaced with names

ending in _total. The information provided by the metric is not deprecated. Other

Prometheus metrics are not affected.

NOTE

{

"vertx": {

"metricsEnabled": false

}

}

38 / 77

https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22
https://ig.example.com:8443/openig/metrics/api?_prettyPrint=true&_sortKeys=_id&_queryFilter=_id+sw+%22gateway._router.route.myroute1%22

For more information, refer to AdminHttpApplication (admin.json).

By default, no special credentials or privileges are required for read-access to the

Prometheus Scrape Endpoint and Common REST Monitoring Endpoint.

To protect the monitoring endpoints, add an admin.json file to your configuration,

with a filter declared in the heap and named MetricsProtectionFilter . The following

procedure gives an example of how to manage access to the monitoring endpoints.

1. Set up the procedure in Monitor at the Prometheus Scrape Endpoint, query the

Prometheus Scrape Endpoint, and note that metrics for myroute1 and _router

are displayed:

2. Add the following script to the PingGateway configuration:

Protect monitoring endpoints

$ curl -v

"https://ig.example.com:8443/openig/metrics/prometheus"

Linux Windows

$HOME/.openig/scripts/groovy/BasicAuthResourceServerFilter

.groovy

/*

* This script is a simple implementation of HTTP basic access

authentication on

* server side.

* It expects the following arguments:

* - realm: the realm to display when the user agent prompts

for

* username and password if none were provided.

* - username: the expected username

* - passwordSecretId: the secretId to find the password

* - secretsProvider: the SecretsProvider to query for the

password

*/

import static

org.forgerock.util.promise.Promises.newResultPromise;

import java.nio.charset.Charset;

import org.forgerock.util.encode.Base64;

39 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

The script is a simple implementation of the HTTP basic access authentication

scheme. For information about scripting filters and handlers, refer to Extend.

3. Add the following heap configuration for MetricsProtectionFilter to admin.json :

import org.forgerock.secrets.Purpose;

import org.forgerock.secrets.GenericSecret;

String authorizationHeader =

request.getHeaders().getFirst("Authorization");

if (authorizationHeader == null) {

// No credentials provided, return 401 Unauthorized

Response response = new Response(Status.UNAUTHORIZED);

response.getHeaders().put("WWW-Authenticate", "Basic

realm=\"" + realm + "\"");

return newResultPromise(response);

}

return secretsProvider.getNamed(Purpose.PASSWORD,

passwordSecretId)

.thenAsync(password -> {

// Build basic authentication string ->

username:password

StringBuilder basicAuthString = new

StringBuilder(username).append(":");

password.revealAsUtf8{ p ->

basicAuthString.append(new String(p).trim()) };

String expectedAuthorization = "Basic " +

Base64.encode(basicAuthString.toString().getBytes(Charset.defa

ultCharset()));

// Incorrect credentials provided, return 403

forbidden

if

(!expectedAuthorization.equals(authorizationHeader)) {

return newResultPromise(new

Response(Status.FORBIDDEN));

}

// Correct credentials provided, continue.

return next.handle(context, request);

},

noSuchSecretException -> { throw new

RuntimeException(noSuchSecretException); });

{

...,

40 / 77

file:///home/pptruser/Downloads/build/site/ig/configure/extending.html

Notice the following features of the configuration:

The MetricsProtectionFilter uses the script to protect the monitoring endpoint.

The MetricsProtectionFilter requires the username myUsername , and a

password provided by the SecretsProvider in the heap.

4. Restart PingGateway.

5. Query the Prometheus Scrape Endpoint without providing credentials, and note

that an HTTP 401 Unauthorized is returned:

"heap": [

{

"name": "ClientHandler",

"type": "ClientHandler"

},

{

"name": "mySecretsProvider",

"type": "Base64EncodedSecretStore",

"config": {

"secrets": {

"password.secret.id": "cGFzc3dvcmQ="

}

}

},

{

"name": "MetricsProtectionFilter",

"type": "ScriptableFilter",

"config": {

"type": "application/x-groovy",

"file": "BasicAuthResourceServerFilter.groovy",

"args": {

"realm": "/",

"username": "myUsername",

"passwordSecretId": "password.secret.id",

"secretsProvider": "${heap['mySecretsProvider']}"

}

}

}

],

...

}

$ curl -v

"https://ig.example.com:8443/openig/metrics/prometheus"

41 / 77

6. Query the Prometheus Scrape Endpoint by providing correct credentials, and note

that metrics are displayed:

7. Query the Prometheus Scrape Endpoint by providing incorrect credentials`, and

note that an HTTP 403 Forbidden is returned:

For information about PingGateway sessions, refer to Sessions. Change PingGateway

session properties in the following ways:

Mode To change the session properties

Stateless sessions Configure the JwtSession object in the route that

processes a request, or in its ascending configuration.

For example, define the cookie property to configure

the PingGateway session name.

$ curl -v

"https://ig.example.com:8443/openig/metrics/prometheus" -u

myUsername:password

$ curl -v

"https://ig.example.com:8443/openig/metrics/prometheus" -u

myUsername:wrong-password

Manage sessions

{

"name": "JwtSession",

"type": "JwtSession",

"config": {

"cookie": {

"name": "MY_SESSIONID"

}

}

}

42 / 77

file:///home/pptruser/Downloads/build/site/ig/about/about-sessions.html
file:///home/pptruser/Downloads/build/site/ig/reference/JwtSession.html

Mode To change the session properties

Stateful sessions Change the session property in admin.json , and

restart PingGateway.

For example, add the following lines to admin.json to

configure the PingGateway session name:

Log messages in PingGateway and third-party dependencies are recorded using the

Logback implementation of the Simple Logging Facade for Java (SLF4J) API. The following

log levels are supported: TRACE , DEBUG , INFO , WARN , ERROR , ALL , and OFF . For a

full description of the options for logging, refer to the Logback website .

By default, log messages are recorded with the following configuration:

When PingGateway starts, log messages for PingGateway and third-party

dependencies, such as the ForgeRock Common Audit framework, are displayed on

the console and written to $HOME/.openig/logs/route-system.log , where

$HOME/.openig is the instance directory.

When a capture point for the default CaptureDecorator is defined in a route, for

example, when "capture: "all" is set as a top-level attribute of the JSON, log

messages for requests and responses passing through the route are written to a log

file in $HOME/.openig/logs .

When no capture point is defined in a route, only exceptions thrown during request

or response processing are logged.

For more information, refer to Capturing log messages for routes and

CaptureDecorator.

By default, log messages with the level INFO or higher are recorded, with the titles

and the top line of the stack trace. Messages on the console are highlighted with a

color related to their log level.

"session": {

"cookie": {

"name": "MY_SESSIONID"

}

}

Manage logs



Default logging behavior

43 / 77

https://logback.qos.ch/
https://logback.qos.ch/
https://logback.qos.ch/
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html#logging-capture
file:///home/pptruser/Downloads/build/site/ig/reference/CaptureDecorator.html

The content and format of logs in PingGateway is defined by the reference

logback.xml delivered with PingGateway. This file defines the following configuration

items for logs:

A root logger to set the overall log level, and to write all log messages to the SIFT

and STDOUT appenders.

A STDOUT appender to define the format of log messages on the console.

A SIFT appender to separate log messages according to the key routeId , to

define when log files are rolled, and to define the format of log messages in the file.

An exception logger, called LogAttachedExceptionFilter , to write log messages

for exceptions attached to responses.

<?xml version="1.0" encoding="UTF-8"?>

<configuration>

<!--

Prevent log flow attacks, by limiting repeated log messages.

Configuration properties:

* AllowedRepetitions (int): Threshold above which repeated

messages are no longer logged.

* CacheSize (int): When CacheSize is reached, remove the

oldest entry.

-->

<!--<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter" />-->

<!-- Allow configuration of JUL loggers within this file,

without performance impact -->

<contextListener

class="ch.qos.logback.classic.jul.LevelChangePropagator" />

<appender name="STDOUT"

class="ch.qos.logback.core.ConsoleAppender">

<withJansi>true</withJansi>

<encoder>

<pattern>%nopex[%thread] %highlight(%-5level)

%boldWhite(%logger{35}) @%mdc{routeId:-system} -

%replace(%message){'([\r\n])(.)',

'$1[CONTINUED]$2'}%n%highlight(%replace(%rootException{short})

{'(^|[\r\n])(.)', '$1[CONTINUED]$2'})</pattern>

</encoder>

</appender>

44 / 77

<appender name="SIFT"

class="ch.qos.logback.classic.sift.SiftingAppender">

<discriminator>

<key>routeId</key>

<defaultValue>system</defaultValue>

</discriminator>

<sift>

<!-- Create a separate log file for each <key> -->

<appender name="FILE-${routeId}"

class="ch.qos.logback.core.rolling.RollingFileAppender">

<file>${instance.dir}/logs/route-${routeId}.log</file>

<rollingPolicy

class="ch.qos.logback.core.rolling.SizeAndTimeBasedRollingPolicy">

<!-- Rotate files daily -->

<fileNamePattern>${instance.dir}/logs/route-${routeId}-

%d{yyyy-MM-dd}.%i.log</fileNamePattern>

<!-- each file should be at most 100MB, keep 30 days

worth of history, but at most 3GB -->

<maxFileSize>100MB</maxFileSize>

<maxHistory>30</maxHistory>

<totalSizeCap>3GB</totalSizeCap>

</rollingPolicy>

<encoder>

<pattern>%nopex%date{"yyyy-MM-dd'T'HH:mm:ss,SSSXXX",

UTC} | %-5level | %thread | %logger{20} | @%mdc{routeId:-system} |

%replace(%message%n%xException){'([\r\n])(.)', '$1[CONTINUED]$2'}

</pattern>

</encoder>

</appender>

</sift>

</appender>

<!-- Disable logs of exceptions attached to responses by

defining 'level' to OFF -->

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="INHERITED" />

<root level="${ROOT_LOG_LEVEL:-INFO}">

<appender-ref ref="SIFT" />

<appender-ref ref="STDOUT" />

45 / 77

To change the logging behavior, create a new logback file at

$HOME/.openig/config/logback.xml , and restart PingGateway. The custom Logback

file overrides the default configuration.

To take into account edits to logback.xml , stop and restart PingGateway, or edit the

configuration parameter to add a scan and an interval:

The logback.xml file is scanned after both of the following criteria are met:

The specified number of logging operations have occurred, where the default is 16.

The scanPeriod has elapsed.

If the custom logback.xml contains errors, messages like these are displayed on the

console but log messages are not recorded:

The global log level is set by default to INFO by the following line of the default

logback.xml :

The log level set in logback.xml supercedes the log level set by environment variables.

When the global log level is not set in logback.xml , set the global log level.

To persist the log level for all future PingGateway instances:

Add an environment variable in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory:

</root>

</configuration>

Using a custom Logback file

<configuration scan="true" scanPeriod="5 seconds">

14:38:59,667 |-ERROR in

ch.qos.logback.core.joran.spi.Interpreter@20:72 …​

14:38:59,690 |-ERROR in

ch.qos.logback.core.joran.action.AppenderRefAction …​

Change the global log level

<root level="${ROOT_LOG_LEVEL:-INFO}">

export ROOT_LOG_LEVEL=DEBUG

46 / 77

Alternatively, add a system property in $HOME/.openig/bin/env.sh , where

$HOME/.openig is the instance directory:

If both an environment variable and system property is set, the system

property takes precedence.

To persist the log level for PingGateway instances launched from the same shell,

add an environment variable in the shell before you start PingGateway:

To persist the log level for a single PingGateway instance:

To change the log level for a single object type without changing it for the rest of the

configuration, edit logback.xml to add a logger defined by the fully qualified class

name or package name of the object, and set its log level.

The following line in logback.xml sets the ClientHandler log level to ERROR , but does

not change the log level of other classes or packages:

To facilitate debugging, in logback.xml add loggers defined by the fully qualified

package name or class name of the object. For example, add loggers for the following

feature:

export JAVA_OPTS="-DROOT_LOG_LEVEL=DEBUG"

Linux Windows

$ export ROOT_LOG_LEVEL=DEBUG

$ /path/to/PingGateway-2024.9.0/bin/start.sh $HOME/.openig

Linux Windows

$ export ROOT_LOG_LEVEL=DEBUG /path/to/PingGateway-

2024.9.0/bin/start.sh $HOME/.openig

Change the log level for different object types

<logger name="org.forgerock.openig.handler.ClientHandler"

level="ERROR" />

47 / 77

Feature Logger

OAuth 2.0 client authentication:

AuthorizationCodeOAuth2ClientFilter

ClientCredentialsOAuth2ClientFilter

ResourceOwnerOAuth2ClientFilter

org.forgerock.secrets.oauth2

Expression resolution org.forgerock.openig.el

org.forgerock.openig.resolver

WebSocket notifications org.forgerock.openig.tools.notifi

cations.ws

Session management with JwtSession org.forgerock.openig.jwt

OAuth 2.0 and OpenID Connect and

token resolution and validation

org.forgerock.openig.filter.oauth

2

AM policies, SSO, CDSSO, and user

profiles

org.forgerock.openig.openam

org.forgerock.openig.tools

SAML org.forgerock.openig.handler.saml

UMA org.forgerock.openig.uma

WebSocket tunnelling org.forgerock.openig.websocket

Secret resolution org.forgerock.secrets.propertyres

olver

org.forgerock.secrets.jwkset

org.forgerock.secrets.keystore

org.forgerock.secrets.oauth2

org.forgerock.openig.secrets.Base

64EncodedSecretStore

AllowOnlyFilter org.forgerock.openig.filter.allow

.AllowOnlyFilter.<filter_name>

Condition of a route org.forgerock.openig.handler.rout

er.RouterHandler

Header field size io.vertx.core.http.impl.HttpServe

rImpl

Change the character set and format of log messages

48 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/AuthorizationCodeOAuth2ClientFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ClientCredentialsOAuth2ClientFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/ResourceOwnerOAuth2ClientFilter.html

By default, logs use the system default character set where PingGateway is running.

The following lines add the date to log messages, and change the character set:

For more information about what information you can include in the logs, and its

format, refer to PatternLayoutEncoder and Layouts in the Logback documentation.

The logger object provides access to a unique SLF4J logger instance for scripts. Events

are logged as defined in by a dedicated logger in logback.xml , and are included in the

logs with the name of with the scriptable object.

To log events for scripts:

Add logger objects to the script to enable logging at different levels. For example,

add some of the following logger objects:

Add a logger to logback.xml to reference the scriptable object and set the log

level. The logger is defined by the type and name of the scriptable object that

references the script, as follows:

ScriptableFilter:

org.forgerock.openig.filter.ScriptableFilter.filter_name

ScriptableHandler:

org.forgerock.openig.handler.ScriptableHandler.handler_name

ScriptableThrottlingPolicy:

org.forgerock.openig.filter.throttling.ScriptableThrottlingPolic

y.throttling_policy_name

If your logs might contain characters that are not in your system character set, edit

logback.xml to change the encoder part of the SIFT appender.

TIP

<encoder>

<pattern>%d{yyyyMMdd-HH:mm:ss} | %-5level | %thread |

%logger{20} | %message%n%xException</pattern>

<charset>UTF-8</charset>

</encoder>

 

Log in scripts



logger.error("ERROR")

logger.warn("WARN")

logger.info("INFO")

logger.debug("DEBUG")

logger.trace("TRACE")

49 / 77

https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/encoders.html#PatternLayoutEncoder
https://logback.qos.ch/manual/layouts.html
https://logback.qos.ch/manual/layouts.html
https://logback.qos.ch/manual/layouts.html
https://www.slf4j.org/api/org/slf4j/Logger.html
https://www.slf4j.org/api/org/slf4j/Logger.html
https://www.slf4j.org/api/org/slf4j/Logger.html

ScriptableAccessTokenResolver:

org.forgerock.openig.filter.oauth2.ScriptableAccessTokenResolver

.access_token_resolver_name

For example, the following logger logs trace-level messages for a ScriptableFilter named

cors_filter :

The resulting messages in the logs contain the name of the scriptable object:

During setup and configuration, it can be helpful to display log messages from the

BaseUriDecorator. To record a log message each time a request URI is rebased , edit

logback.xml to add a logger defined by the fully qualified class name of the

BaseUriDecorator appended by the name of the baseURI decorator:

Each time a request URI is rebased, a log message similar to this is created:

To stop recording log messages for exceptions, edit logback.xml to set the level to

OFF :

<logger

name="org.forgerock.openig.filter.ScriptableFilter.cors_filter"

level="TRACE" />

14:54:38:307 | TRACE | http-nio-8080-exec-6 |

o.f.o.f.S.cors_filter | TRACE

Log the BaseUriDecorator

<logger

name="org.forgerock.openig.decoration.baseuri.BaseUriDecorator.bas

eURI" level="TRACE" />

12:27:40| TRACE | http-nio-8080-exec-3 | o.f.o.d.b.B.b.

{Router}/handler| Rebasing request to http://app.example.com:8081

Stop exception logging

<logger

name="org.forgerock.openig.filter.LogAttachedExceptionFilter"

level="OFF" />

50 / 77

To capture the context or entity of inbound and outbound messages for a route, or for

an individual handler or filter in the route, configure a CaptureDecorator. Captured

information is written to SLF4J logs.

For more information about the decorator configuration, refer to CaptureDecorator.

Studio provides an easy way to capture messages while developing your configuration.

The following image illustrates the capture points where you can log messages on a

route:

Inbound requests

Ping Identity Platform

User agent
Protected

application
PingGateway

Inbound responses

Outbound requests

Outbound responses

Ping Identity Platform requests Ping Identity Platform responses

Figure 1. Capturing log messages for routes

Capture messages on a route in Studio

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. On the left side of the screen, select  Capture, and then select capture options.

You can capture the body and context of messages passing to and from the user

agent, the protected application, and the Ping Identity Platform.

3. Select  Deploy to push the route to the PingGateway configuration.

You can check the $HOME/.openig/config/routes folder to see that the route is

there.

4. Access the route, and then check $HOME/.openig/logs for a log file named by the

route, where $HOME/.openig is the instance directory. The log file should contain

the messages defined by your capture configuration.

Capture the context or entity of messages for routes

During debugging, consider using a CaptureDecorator to capture the entity and

context of requests and responses. However, increased logging consumes

resources, such as disk space, and can cause performance issues. In production,

reduce logging by disabling the CaptureDecorator properties captureEntity and

captureContext , or setting maxEntityLength .

IMPORTANT

51 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/CaptureDecorator.html

To keep log files clean and readable, and to prevent log flow attacks, limit the number of

repeat log messages. Add a custom logback.xml with a DuplicateMessageFilter .

This filter detects duplicate messages, and after the specified number of repetitions,

drops repeated messages.

The following example allows 5 repetitions of a log message, and holds the last 10

repeated messages in the cache:

The DuplicateMessageFilter has the following limitations:

Filters out all duplicate messages. It does not filter per logger, or logger instance, or

logger name.

Detects repetition of raw messages, meaning that the following example messages

are considered as repetition:

Doesn’t limit the lifespan of the cache. After the specified number of repetitions is

reached, the repeated log messages never appear again, even if they’re frequently

hit.

Tune deployments in the following steps:

1. Consider the issues that impact the performance of a deployment. See Define

requirements and constraints.

2. Tune and test the downstream servers and applications:

a. Tune the downstream web container and JVM to achieve performance targets.

b. Test downstream servers and applications in a pre-production environment,

under the expected load, and with common use cases.

3. Increase hardware resources as required, and then re-tune the deployment.

Limit repetitive log messages

<turboFilter

class="ch.qos.logback.classic.turbo.DuplicateMessageFilter"

allowedRepetitions="5" CacheSize="10" />

logger.debug("Hello {}.", name0);

logger.debug("Hello {}.", name1);

Tune performance

Define requirements and constraints

52 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-req
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/tuning.html#tuning-req

When you consider performance requirements, bear in mind the following points:

The capabilities and limitations of downstream services or applications on your

performance goals.

The increase in response time due to the extra network hop and processing, when

PingGateway is inserted as a proxy in front of a service or application.

The constraint that downstream limitations and response times place on

PingGateway.

A service level objective (SLO) is a target that you can measure quantitatively. Where

possible, define SLOs to set out what performance your users expect. Even if your first

version of an SLO consists of guesses, it is a first step towards creating a clear set of

measurable goals for your performance tuning.

When you define SLOs, bear in mind that PingGateway can depend on external

resources that can impact performance, such as AM’s response time for token

validation, policy evaluation, and so on. Consider measuring remote interactions to take

dependencies into account.

Consider defining SLOs for the following metrics of a route:

Average response time for a route.

The response time is the time to process and forward a request, and then receive,

process, and forward the response from the protected application.

The average response time can range from less than a millisecond, for a low latency

connection on the same network, to however long it takes your network to deliver

the response.

Distribution of response times for a route.

Because applications set timeouts based on worst case scenarios, the distribution

of response times can be more important than the average response time.

Peak throughput.

The maximum rate at which requests can be processed at peak times. Because

applications are limited by their peak throughput, this SLO is arguably more

important than an SLO for average throughput.

Average throughput.

The average rate at which requests are processed.

Metrics are returned at the monitoring endpoints. For information about monitoring

endpoints, refer to Monitoring. For examples of how to set up monitoring in

Service level objectives

53 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/Monitoring.html

PingGateway, refer to Monitor services.

With your defined SLOs, inventory the server, networks, storage, people, and other

resources. Estimate whether it is possible to meet the requirements, with the resources

at hand.

Before you can improve the performance of your deployment, establish an accurate

benchmark of its current performance. Consider creating a deployment scenario that

you can control, measure, and reproduce.

For information about running Ping Identity Platform benchmark tests, refer to the

ForgeOps documentation on benchmarks. Adapt the scenarios as necessary for your

PingGateway deployment.

Consider the following recommendations for improving performance, throughput, and

response times. Adjust the tuning to your system workload and available resources, and

then test suggestions before rolling them out into production.

Log messages in PingGateway and third-party dependencies are recorded using the

Logback implementation of the Simple Logging Facade for Java (SLF4J) API. By default,

logging level is INFO.

To reduce the number of log messages, consider setting the logging level to error . For

information, refer to Manage logs.

PingGateway creates a TemporaryStorage object to buffer content during processing.

For information about this object and its default values, refer to TemporaryStorage.

Messages bigger than the buffer size are written to disk, consuming I/O resources and

reducing throughput.

The default size of the buffer is 64 KB. If the number of concurrent messages in your

application is generally bigger than the default, consider allocating more heap memory

or changing the initial or maximum size of the buffer.

Available resources

Benchmarks

Tune PingGateway

Logs

Buffering message content

54 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/monitoring.html
https://backstage.forgerock.com/docs/forgeops/7.5/how-to/benchmark/overview.html
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html
file:///home/pptruser/Downloads/build/site/ig/reference/TemporaryStorage.html

To change the values, add a TemporaryStorage object named TemporaryStorage , and

use non-default values.

When caches are enabled, PingGateway can reuse cached information without making

additional or repeated queries for the information. This gives the advantage of higher

system performance, but the disadvantage of lower trust in results.

When caches are disabled, PingGateway must query a data store each time it needs

data. This gives the disadvantage of lower system performance, and the advantage of

higher trust in results.

All caches provide similar configuration properties for timeout, defining the duration to

cache entries. When the timeout is lower, the cache is evicted more frequently, and

consequently, the performance is lower but the trust in results is higher.

When you configure caches in PingGateway, make choices to balance your required

performance with your security needs.

Learn more about PingGateway caches in Caches.

By default, PingGateway receives WebSocket notifications from AM for the following

events:

When a user logs out of AM, or when the AM session is modified, closed, or times

out. PingGateway can use WebSocket notifications to evict entries from the session

cache. For an example of setting up session cache eviction, refer to Session cache

eviction.

When AM creates, deletes, or changes a policy decision. PingGateway can use

WebSocket notifications to evict entries from the policy cache. For an example of

setting up policy cache eviction, refer to Notifications and the policy cache.

When PingGateway automatically renews a WebSocket connection to AM. To

configure WebSocket renewal, refer to the notifications.renewalDelay

property of AmService.

If the WebSocket connection is lost, during that time the WebSocket is not connected,

PingGateway behaves as follows:

Responds to session service calls with an empty SessionInfo result.

When the SingleSignOn filter recieves an empty SessionInfo call, it concludes that

the user is not logged in, and triggers a login redirect.

Responds to policy evaluations with a deny policy result.

Caches

WebSocket notifications

55 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/Caches.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/session-eviction.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/session-eviction.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep-evict-cache.html
file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html#amservice.notifications.renewalDelay

By default, PingGateway waits for five seconds before trying to re-establish the

WebSocket connection. If it can’t re-establish the connection, it keeps trying every five

seconds.

To disable WebSocket notifications, or change any of the parameters, configure the

notifications property in AmService. For information, refer to AmService.

The ClientHandler/ReverseProxyHandler communicates as a client to a downstream

third-party service or protected application. The performance of the communication is

determined by the following parameters:

The number of available connections to the downstream service or application.

The connection timeout, which is the maximum time to connect to a server-side

socket before timing out and abandoning the connection attempt.

The socket timeout, which is the maximum time a request can take before a

response is received after which the request is deemed to have failed.

Configure PingGateway in conjunction with PingGateway’s first-class Vert.x

configuration, and the vertx property of admin.json . For more information, refer to

AdminHttpApplication (admin.json).

Vert.x options for tuning

Object Vert.x Option Description

PingGatewa

y (first-

class)

gatewayUnits The number of deployed Vert.x Verticles.

This setting is effectively the number of

cores that PingGateway operates across,

or in other words, the number of

available threads.

Each instance operates on the same port

on its own event-loop thread.

Default: Number of available cores. (This

is the optimal value.)

Tune the ClientHandler/ReverseProxyHandler

56 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/AmService.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

Object Vert.x Option Description

root.vertx eventLoopPoolSize The size of the pool available to service

Verticles for event-loop threads.

To guarantee that a single thread handles

all I/O events for a single request or

response, PingGateway deploys a Verticle

onto each event loop.

Configure eventLoopPoolSize to be

greater than or equal to gatewayUnits .

Default: 2 * number of available cores.

For more information, refer to Reactor

and Multi-Reactor .

root.connec

tors.

<connector

>.vertx

acceptBacklog The maximum number of connections to

queue before refusing requests.

Default: 1024

sendBufferSize The TCP connection send buffer size.

Set this property according to the

available RAM and required number of

concurrent connections.

Default: Use the Java TCP send buffer size

default settings that Java inherits from

the operating system.

receiveBufferSize The TCP receive buffer size.

Set this property according to the

available RAM and required number of

concurrent connections.

Default: Use the Java TCP receive buffer

size default settings that Java inherits

from the operating system.

maxHeaderSize Set this property when HTTP headers

manage large values (such as JWT).

Default: 8 KB (8,192 bytes)

Vert.x options for troubleshooting performance



57 / 77

https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor
https://vertx.io/docs/vertx-core/java/#_reactor_and_multi_reactor

Object Vert.x Option Description

root.vertx blockedThreadCheckInt

erval and

blockedThreadCheckInt

ervalUnit

The interval at which Vert.x checks for

blocked threads and logs a warning.

Default: 1 second

maxEventLoopExecuteTi

me and

maxEventLoopExecuteTi

meUnit

The maximum execution time before

Vert.x logs a warning.

Default: 2 seconds

warningExceptionTime

and

warningExceptionTimeU

nit

The threshold at which warning logs are

accompanied by a stack trace to identify

cause.

Default: 5 seconds

logActivity Whether to log network activity.

Default: false

Each PingGateway instance in your environment should have access to at least 65,536

file descriptors to handle multiple client connections.

Ensure that every PingGateway instance is allocated enough file descriptors. For

example, use the ulimit -n command to check the limits for a particular user:

It may also be necessary to increase the number of processes available to the user

running the PingGateway processes.

For example, use the ulimit -u command to check the process limits for a user:

Set the maximum number of file descriptors and processes per user

$ su - iguser

$ ulimit -n

$ su - iguser

$ ulimit -u

IMPORTANT

58 / 77

Refer to your operating system’s documentation for instructions on how to display and

increase the file descriptors or process limits for the operating system and for a given

user.

Start tuning the JVM with default values, and monitor the execution, paying particular

attention to memory consumption, and GC collection time and frequency. Incrementally

adjust the configuration, and retest to find the best settings for memory and garbage

collection.

Make sure there is enough memory to accommodate the peak number of required

connections, and make sure timeouts in PingGateway and its container support latency

in downstream servers and applications.

PingGateway makes low memory demands, and consumes mostly YoungGen memory.

However, using caches, or proxying large resources, increases the consumption of

OldGen memory. For information about how to optimize JVM memory, refer to the

Oracle documentation.

Consider these points when choosing a JVM:

Find out which version of the JVM is available. More recent JVMs usually contain

performance improvements, especially for garbage collection.

Choose a 64-bit JVM if you need to maximize available memory.

Consider these points when choosing a GC:

Test GCs in realistic scenarios, and load them into a pre-production environment.

Choose a GC that is adapted to your requirements and limitations. Consider

comparing the Garbage-First Collector (G1) and Parallel GC in typical business use

cases.

The G1 is targeted for multi-processor environments with large memories. It

provides good overall performance without the need for additional options. The G1

is designed to reduce garbage collection, through low-GC latency. It is largely self-

tuning, with an adaptive optimization algorithm.

Before increasing the file descriptors for the PingGateway instance, ensure that the

total amount of file descriptors configured for the operating system is higher than

65,536.

If the PingGateway instance uses all of the file descriptors, the operating system will

run out of file descriptors. This may prevent other services from working, including

those required for logging in the system.

IMPORTANT

Tune PingGateway’s JVM

59 / 77

The Parallel GC aims to improve garbage collection by following a high-throughput

strategy, but it requires more full garbage collections.

Learn more in Best practice for JVM Tuning with G1 GC .

The following sections give an overview of how to manage rotation of encryption keys

and signing keys, and include examples for key rotation based on use cases from the

Gateway guide.

Key rotation is the process of generating a new version of a key, assigning that version

as the active key to encrypt or sign new messages, or as a valid key to decrypt or validate

messages, and then deprovisioning the old key.

Regular key rotation is a security consideration that is sometimes required for internal

business compliance. Regularly rotate keys to:

Limit the amount of data protected by a single key.

Reduce dependence on specific keys, making it easier to migrate to stronger

algorithms.

Prepare for when a key is compromised. The first time you try key rotation shouldn’t

be during a real-time recovery.

Key revocation is a type of key rotation, done exceptionally if you suspect that a key has

been compromised. To decide when to revoke a key, consider the following points:

If limited use of the old keys can be tolerated, provision the new keys and then

deprovision the old keys. Messages produced before the new keys are provisioned

are impacted.

If use of the old keys cannot be tolerated, deprovision the old keys before you

provision the new keys. The system is unusable until new keys are provisioned.

The following steps outline key rotation and revocation for symmetric keys managed by

a KeyStoreSecretStore. For an example, refer to Rotate keys in a shared JWT session.



Rotate keys

About key rotation

Why and when to rotate keys

Steps for rotating symmetric keys

60 / 77

https://support.pingidentity.com/s/article/best-practice-for-jvm-tuning-with-g1-gc
https://support.pingidentity.com/s/article/best-practice-for-jvm-tuning-with-g1-gc
https://support.pingidentity.com/s/article/best-practice-for-jvm-tuning-with-g1-gc
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface

1. Using OpenSSL, Keytool, or another key creation mechanism, create the new

symmetric key. The keystore should contain the old key and the new key.

2. Provision the new key.

a. In the mappings property of KeyStoreSecretStore, add the alias for the new

key after the alias for the old key. The new key is now valid. Because the old key

is the first key in the list, it is the active key.

b. Move the new key to be the first key in the list. The new key is now the active

key.

3. Deprovision the old key.

To ensure that no messages or users are impacted, wait until messages encrypted

or signed with the old key are out of the system before you deprovision the old key.

a. In the mappings property of KeyStoreSecretStore, delete the alias for the old

key. The old key can no longer be used.

b. Using OpenSSL, Keytool, or another key creation mechanism, delete the old

symmetric key.

The following steps outline the process for key rotation and revocation for asymmetric

keys managed by a KeyStoreSecretStore or HsmSecretStore. For an example, refer to

Rotate keys for stateless access tokens signed with a KeyStoreSecretStore.

1. Create new asymmetric keys for signing and encryption, using OpenSSL, Keytool, or

another key creation mechanism.

2. Provision the message consumer with the private portion of the new encryption

key, and the public portion of the new signing key.

The message consumer can now decrypt and verify messages with the old key and

the new key.

3. Provision the message producer, with the public portion of the new encryption key,

and the private portion of the signing key. The message producer starts encrypting

and signing messages with the new key, and stops using the old key.

4. Deprovision the message consumer with the private portion of the old encryption

key, and the public portion of the old signing key. The message consumer can no

longer decrypt and verify messages with the old key.

To ensure that no messages or users are impacted, wait until messages encrypted

or signed with the corresponding old key are out of the system before you

deprovision the old key.

5. Deprovision the message producer, with the public portion of the old encryption

key, and the private portion of old signing key.

Steps for rotating asymmetric keys

61 / 77

When keys are provided by a JWK Set from AM, the key rotation is transparent to

PingGateway. AM generates a key ID (kid) for each key it exposes at the jwk_uri . For

more information, refer to Mapping and rotating secrets in AM’s Security guide.

When PingGateway processes a request with a JWT containing a kid , PingGateway uses

the kid to identify the key in the JWK Set. If the kid is available at the jwk_uri on AM,

PingGateway processes the request. Otherwise, PingGateway tries all compatible secrets

from the JWK Set. If none of the secrets work, the JWT is rejected.

This example extends the example in Signed tokens with KeyStoreSecretStore to rotate

the keys that sign an access token and verify the signature.

Rotate Keys For Stateless Access Tokens Signed With a KeyStoreSecretStore

Before you start, set up and test the example in Signed tokens with KeyStoreSecretStore.

1. Set up the new keys:

a. Generate a new private key called signature-key-new , and a corresponding

public certificate called x509certificate-new.pem :

b. Convert the private key and certificate files into a new PKCS#12 keystore file:

Key rotation for keys in a JWK set

Rotate keys for stateless access tokens signed with a

KeyStoreSecretStore

$ openssl req -x509 \

-newkey rsa:2048 \

-nodes \

-subj

"/CN=ig.example.com/OU=example/O=com/L=fr/ST=fr/C=fr" \

-keyout keystore_directory/signature-key-new.key \

-out keystore_directory/x509certificate-new.pem \

-days 365

... writing new private key to

'keystore_directory/signature-key-new.key'

$ openssl pkcs12 \

-export \

-in keystore_directory/x509certificate-new.pem \

-inkey keystore_directory/signature-key-new.key \

-out keystore_directory/keystore-new.p12 \

62 / 77

https://backstage.forgerock.com/docs/am/7.5/security-guide/secret-mapping.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-stateless-signed-ksss.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs-stateless-signed-ksss.html

c. List the keys in the new keystore:

d. Import the new keystore into keystore.p12 , so that keystore.p12 contains

both keys:

e. List the keys in keystore.p12 , to make sure it contains the new and old keys:

2. Set up AM:

a. Copy the updated keystore to AM:

i. Copy keystore.p12 to AM:

-passout pass:password \

-name signature-key-new

$ keytool -list \

-keystore "keystore_directory/keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 1 entry

Alias name: signature-key-new

$ keytool -importkeystore

-srckeystore keystore_directory/keystore-new.p12

-srcstoretype pkcs12

-srcstorepass password

-destkeystore keystore_directory/keystore.p12

-deststoretype pkcs12

-deststorepass password

Entry for alias signature-key-new successfully imported

...

$ keytool -list \

-keystore "keystore_directory/keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: signature-key

Alias name: signature-key-new

63 / 77

ii. List the keys in the updated AM keystore:

iii. Restart AM to update the keystore cache.

b. Update the KeyStoreSecretStore on AM:

i. In AM, select  Secret Stores > keystoresecretstore.

ii. Select the Mappings tab, and in am.services.oauth2.stateless

.signing.RSA add the alias signature-key-new .

The mapping now contains two aliases, but the alias signature-key is

still the active alias. AM still uses signature-key to sign tokens.

iii. Drag signature-key-new above signature-key .

AM now uses signature-key-new to sign tokens.

3. Set up PingGateway:

a. Set up PingGateway for HTTPS, as described in Configure PingGateway for TLS

(server-side).

b. Import the public certificate to the PingGateway keystore, with the alias

verification-key-new :

$ cp keystore_directory/keystore.p12

am_keystore_directory/AM_keystore.p12

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: signature-key

Alias name: signature-key-new

$ keytool -import \

-trustcacerts \

-rfc \

-alias verification-key-new \

-file "keystore_directory/x509certificate-new.pem" \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storetype PKCS12 \

-storepass "password"

...

64 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls
file:///home/pptruser/Downloads/build/site/ig/installation-guide/securing-connections.html#server-side-tls

c. List the keys in the PingGateway keystore:

d. In rs-stateless-signed-ksss.json , edit the KeyStoreSecretStore mapping

with the new verification key:

If the Router scanInterval is disabled, restart PingGateway to reload the

route.

PingGateway can now check the authenticity of access tokens signed with

verification-key , the old key, and verification-key-new , the new key.

However, AM signs with the old key.

4. Test the setup:

a. Get an access token for the demo user, using the scope myscope :

b. Display the token:

Trust this certificate? [no]: yes

Certificate was added to keystore

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

...

Your keystore contains 2 entries

Alias name: verification-key

Alias name: verification-key-new

"mappings": [

{

"secretId": "stateless.access.token.verification.key",

"aliases": ["verification-key", "verification-key-

new"]

}

]

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&scope

=myscope" \

http://am.example.com:8088/openam/oauth2/access_token | jq

-r ".access_token")

65 / 77

c. Access the route by providing the token returned in the previous step:

Deprovision Old Keys

1. Remove signature-key from the AM keystore:

a. Delete the key from the keystore:

b. List the keys in the AM keystore to make sure signature-key is removed:

c. Restart AM.

2. Remove verification-key from the PingGateway keystore:

a. Delete the key from the keystore:

b. List the keys in the PingGateway keystore to make sure that verification-

key is removed:

$ echo ${mytoken}

$ curl -v \

--cacert /path/to/secrets/ig.example.com-certificate.pem \

--header "Authorization: Bearer ${mytoken}" \

https://ig.example.com:8443/rs-stateless-signed-ksss

...

Decoded access_token: {

sub=demo,

cts=OAUTH2_STATELESS_GRANT,

...

$ keytool -delete \

-keystore "am_keystore_directory/AM_keystore.p12" \

-storepass "password" \

-alias signature-key

$ keytool -list \

-keystore "am_keystore_directory/AM_keystore-new.p12" \

-storepass "password" \

-storetype PKCS12

$ keytool -delete \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-alias verification-key

66 / 77

3. In AM, delete the mapping for signature-key from keystoresecretstore .

4. In PingGateway, delete the mapping for verification-key from the route rs-

stateless-signed-ksss.json . If the Router scanInterval is disabled, restart

PingGateway to reload the route.

This section builds on the example in Share JWT session between multiple instances of

PingGateway to rotate a key used in a shared JWT session.

When a JWT session is shared between multiple instances of PingGateway, the instances

are able to share the session information for load balancing and failover.

Before you start, set up the example in Set up shared secrets for multiple instances of

PingGateway, where three instances of PingGateway share a JwtSession and use the

same authenticated encryption key. Instance 1 acts as a load balancer, and generates a

session. Instances 2 and 3 access the session information.

1. Test the setup with the existing key, symmetric-key :

a. Access instance 1 to generate a session:

b. Using the JWT cookie returned in the previous step, access instance 2:

$ keytool -list \

-keystore "ig_keystore_directory/IG_keystore.p12" \

-storepass "password" \

-storetype PKCS12

Rotate keys in a shared JWT session

$ curl -v http://ig.example.com:8001/log-in-and-generate-

session

GET /log-in-and-generate-session HTTP/1.1

...

HTTP/1.1 200 OK

Content-Length: 84

Set-Cookie: IG=eyJ...HyI; Path=/; Domain=.example.com;

HttpOnly

...

Sam Carter logged IN. (JWT session generated)

$ curl -v http://ig.example.com:8001/webapp/browsing?one -

-header "cookie:IG=<JWT cookie>"

67 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#proc-jwtsession-sharesecrets
file:///home/pptruser/Downloads/build/site/ig/installation-guide/jwtsession-using.html#proc-jwtsession-sharesecrets

Note that instance 2 can access the session info.

c. Using the JWT cookie again, access instance 3:

Note that instance 3 can access the session info.

2. Commission a new key:

a. Generate a new encryption key, called symmetric-key-new , in the existing

keystore:

b. Make sure the keystore contains the old key and the new key:

GET /webapp/browsing?one HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance2)

$ curl -v http://ig.example.com:8001/webapp/browsing?two -

-header "Cookie:IG=<JWT cookie>"

GET /webapp/browsing?two HTTP/1.1

...

cookie: IG=eyJ...QHyI

...

HTTP/1.1 200 OK

...

Hello, Sam Carter !! (instance3)

$ keytool \

-genseckey \

-alias symmetric-key-new

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \

-keyalg HmacSHA512 \

-keysize 512

$ keytool \

-list \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12

68 / 77

c. Add the key alias to instance1-loadbalancer.json , instance2-retrieve-

session-username.json , and instance3-retrieve-session-

username.json , for each PingGateway instance, as follows:

If the Router scanInterval is disabled, restart PingGateway to reload the

route.

The active key is symmetric-key , and the valid key is symmetric-key-new .

d. Test the setup again, as described in step 1, and make sure instances 2 and 3

can still access the session information.

3. Make the new key the active key for generating sessions:

a. In instance1-loadbalancer.json , change the order of the keys to make

symmetric-key-new the active key, and symmetric-key the valid key:

Don’t change instance2-retrieve-session-username.json or

instance3-retrieve-session-username.json .

b. Test the setup again, as described in step 1, and make sure instances 2 and 3

can still access the session information.

Instance 1 creates the session using the new active key, symmetric-key-new .

Because symmetric-key-new is declared as a valid key in instances 2 and 3,

the instances can still access the session. It isn’t necessary to make

symmetric-key-new the active key.

4. Decommission the old key:

a. Remove the old key from all of the routes, as follows:

...

Your keystore contains 2 entries

symmetric-key, ...

symmetric-key-new ...

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key", "symmetric-key-new"]

}]

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new", "symmetric-key"]

}]

69 / 77

Key symmetric-key-new is the only key in the routes.

b. Remove the old key, symmetric-key , from the keystore:

i. Delete symmetric-key :

ii. Make sure the keystore contains only symmetric-key-new :

c. Test the setup again, as described in step 1, and make sure instances 2 and 3

can still access the session information.

ForgeRock provides support services, professional services, training through ForgeRock

University, and partner services to help you set up and maintain your deployments.

Ping Identity provides support services, professional services, training, and partner

services to assist you in setting up and maintaining your deployments. For a general

overview of these services, see https://www.pingidentity.com .

"mappings": [{

"secretId": "jwtsession.encryption.secret.id",

"aliases": ["symmetric-key-new"]

}]

$ keytool \

-delete \

-alias symmetric-key \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12 \

-keypass password

$ keytool \

-list \

-keystore /path/to/secrets/jwtsessionkeystore.pkcs12 \

-storepass password \

-storetype PKCS12

...

Your keystore contains 1 entry

symmetric-key-new ...

Troubleshoot

Getting support



70 / 77

https://www.pingidentity.com/
https://www.pingidentity.com/
https://www.pingidentity.com/

Ping Identity has staff members around the globe who support our international

customers and partners. For details on Ping Identity’s support offering, visit

https://www.pingidentity.com/support .

Ping Identity publishes comprehensive documentation online:

The Ping Identity Knowledge Base offers a large and increasing number of up-to-

date, practical articles that help you deploy and manage Ping Identity Platform

software.

While many articles are visible to everyone, Ping Identity customers have access to

much more, including advanced information for customers using Ping Identity

Platform software in a mission-critical capacity.

Ping Identity product documentation, such as this document, aims to be technically

accurate and complete with respect to the software documented. It is visible to

everyone and covers all product features and examples of how to use them.

When trying to solve a problem, save time by asking the following questions:

How do you reproduce the problem?

What behavior do you expect, and what behavior do you have?

When did the problem start occurring?

Are their circumstances in which the problem does not occur?

Is the problem permanent, intermittent, getting better, getting worse, or staying the

same?

If you contact ForgeRock for help, include the following information with your request:

The product version and build information. This information is included in the logs

when PingGateway starts up. If PingGateway is running in development mode, and

set up as described in the Quick install, access the information at

http://ig.example.com:8080/openig/api/info or

https://ig.example.com:8443/openig/api/info .

Description of the problem, including when the problem occurs and its impact on

your operation.

Steps you took to reproduce the problem.

Relevant access and error logs, stack traces, and core dumps.

Description of the environment, including the following information:

Machine type

Operating system and version





Getting info about the problem



71 / 77

https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://www.pingidentity.com/support
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base
https://support.pingidentity.com/s/knowledge-base
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
https://ig.example.com:8443/openig/api/info
https://ig.example.com:8443/openig/api/info
https://ig.example.com:8443/openig/api/info

Web server or container and version

Java version

Patches or other software that might affect the problem

If PingGateway doesn’t restart or load routes after a first startup, search route-

system.log for lines containing Error while starting…​or Unable to start …​

and use the error message to debug the issue.

If PingGateway shuts down without using the stop.sh or stop.bat script, the PID

file isn’t removed and PingGateway can’t restart. This can happen when you use the

PingGateway service to stop or restart PingGateway, or when PingGateway is

deployed in Docker.

Remove the PID file or change the configuration as described in Allow startup when

there is an existing PID file.

By default, AM 5 and later writes cookies to the fully qualified domain name of the

server; for example, am.example.com . Therefore, a host-based cookie, rather than a

domain-based cookie, is set.

Consequently, after authentication through PingAM, requests can be redirected to

PingAM instead of to the resource.

To resolve this issue, add a cookie domain to the PingAM configuration. For example,

in the AM admin UI, go to Configure > Global Services > Platform, and add the

domain example.com .

When the sample application is used with PingGateway in the documentation

examples, the sample application must serve static resources, such as the .css. Add

the following route to the PingGateway configuration:

Start up

After a first startup, PingGateway doesn’t restart or load routes.

PID file already exists

Resources

Requests redirected to AM instead of to the resource

Sample application not displayed correctly

{

"name" : "00-static-resources",

"baseURI" : "http://app.example.com:8081",

"condition": "${find(request.uri.path,'^/css') or

matchesWithRegex(request.uri.path, '^/.*\\\\.ico$') or

72 / 77

file:///home/pptruser/Downloads/build/site/ig/installation-guide/start-stop.html#pidFileMode
file:///home/pptruser/Downloads/build/site/ig/installation-guide/start-stop.html#pidFileMode

Define an entity for the response, as in the following example:

Symptom

The following errors are in route-system.log :

Cause

PingGateway is not configured to handle the incoming request or the request to

the specified URI:

"no handler to dispatch to": the router cannot find a route that accepts the

incoming request. This error happens when none of the route conditions

match the incoming request and there is no default route.

"no handler to dispatch to for URI": the router cannot find a route that can

handle the request to the specified URI because none of the route conditions

matchesWithRegex(request.uri.path, '^/.*\\\\.gif$')}",

"handler": "ReverseProxyHandler"

}

StaticResponseHandler results in a blank page

{

"name": "AccessDeniedHandler",

"type": "StaticResponseHandler",

"config": {

"status": 403,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><p>User does not have permission</p>

</body></html>"

}

}

Routes

No handler to dispatch to

... | ERROR | main | o.f.o.h.r.RouterHandler | no handler to

dispatch to

08:22:54:974 | ERROR | http-... | o.f.o.h.DispatchHandler |

no handler to dispatch to for URI

'http://ig.example.com/demo'

73 / 77

match the request path (URI).

Solution

If the errors occur during the startup, they are safe to ignore. If the errors occur

after the startup, do the following:

Identify why the request matched none of the Route conditions, and adapt

the conditions. For examples, refer to Example conditions and requests.

Add a default handler to the Router.

Add a default route for when no condition is met.

If you have the following error, you have specified "handler": "Router2" in

config.json or in the route, but no handler configuration object named Router2

exists:

Make sure you have added an entry for the handler, and that you have correctly

spelled its name.

When the JSON for a route is not valid, PingGateway does not load the route. Instead,

a description of the error appears in the log.

Use a JSON editor or JSON validation tool such as JSONLint to make sure your JSON

is valid.

PingGateway loads all configurations at startup, and, by default, periodically reloads

changed route configurations.

If you make changes to a route that result in an invalid configuration, PingGateway

logs errors, but it keeps the previous, correct configuration, and continues to use the

old route.

PingGateway only uses the new configuration after you save a valid version or when

you restart PingGateway.

Object not found in heap

org.forgerock.json.fluent.JsonValueException: /handler:

object Router2 not found in heap

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:351)

at

org.forgerock.openig.heap.HeapImpl.resolve(HeapImpl.java:334)

at

org.forgerock.openig.heap.HeapImpl.getHandler(HeapImpl.java:538)

Extra or missing character / invalid JSON



Route not used

74 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/Route.html
file:///home/pptruser/Downloads/build/site/ig/reference/Route.html#route-conditions
file:///home/pptruser/Downloads/build/site/ig/reference/Router.html
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#add-default-route
http://jsonlint.com/
http://jsonlint.com/
http://jsonlint.com/

Of course, if you restart PingGateway with an invalid route configuration, then

PingGateway tries to load the invalid route at startup and logs an error. In that case, if

there is no default handler to accept any incoming request for the invalid route, then

you have an error, No handler to dispatch to .

PingGateway returns an exception if it loads a route for which it can’t resolve a

requirement. For example, when you load a route that uses an AmService object, the

object must be available in the AM configuration.

If you add routes to a configuration when the environment is not ready, rename the

route to prevent PingGateway from loading it. For example, rename a route as follows:

If necessary, restart PingGateway to reload the configuration. When you have

configured the environment, change the file extension back to .json .

Studio deploys and undeploys routes through a main router named _router , which

is the name of the main router in the default configuration. If you use a custom

config.json , make sure it contains a main router named _router .

For information about creating routes in Studio, refer to the Studio guide.

Problem: After a request is sent to PingGateway, PingGateway seems to hang. An

HTTP 502 Bad Gateway error is produced, and the PingGateway log is flushed with

SocketTimeoutException warnings.

Possible cause: The baseURI configuration is missing or causes the request to return

to PingGateway, so PingGateway can’t produce a response to the request.

Possible solution: Configure the baseURI to use a different host and port to

PingGateway.

Skipped routes

$ mv $HOME/.openig/config/routes/03-sql.json

$HOME/.openig/config/routes/03-sql.inactive

Studio

Can’t deploy routes in Studio

Timeout errors

Log is flushed with timeout exception warnings on sending a request

Other problems

Incorrect values in the flat files

75 / 77

file:///home/pptruser/Downloads/build/site/ig/studio-guide/preface.html#preface

Make sure the user running PingGateway can read the flat file. Remember that values

include spaces and tabs between the separator, so make sure the values are not

padded with spaces.

The following error can be encountered when using an AssignmentFilter as

described in AssignmentFilter and setting a string value for one of the headers.

All headers are stored in lists so the header must be addressed with a subscript. For

example, rather than trying to set request.headers['Location'] for a redirect in

the response object, you should instead set request.headers['Location'][0] . A

header without a subscript leads to the error above.

When a request is longer than 4096 bytes, it can cause an HTTP 414 URI Too Long

response.

The default limit for request length is set by the Vert.x configuration

DEFAULT_MAX_INITIAL_LINE_LENGTH . This default acts on the connectors

property of admin.json.

When working with requests constructed with parameters and query strings, such as

for SAML or token transformation, where the request can become long consider

setting the Vert.x property getMaxInitialLineLength to increase the limit.

The following example configuration in admin.json increases the request length

limit to 9999 bytes:

Problem accessing URLs

HTTP ERROR 500

Problem accessing /myURL . Reason:

java.lang.String cannot be cast to java.util.List

Caused by:

java.lang.ClassCastException: java.lang.String cannot be

cast to java.util.List

URI Too Long error

"connectors": [

{

"vertx": {

"maxInitialLineLength": 9999,

...

}

}

]

"Ignored" message logged

76 / 77

file:///home/pptruser/Downloads/build/site/ig/reference/AssignmentFilter.html
file:///home/pptruser/Downloads/build/site/ig/reference/AdminHttpApplication.html

The following log message indicates that the client or server side has disconnected

and PingGateway has ignored the event.

This type of error occurs when a network component closes the connection. This can

occur when:

A load balancer or firewall terminates or times out connections

Third-party network changes prevent successful connections

Increase logging to provide more information, as described in Manage logs.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

[vert.x-eventloop-thread-2] DEBUG ... @system - Connection

error. Ignored.

[CONTINUED]java.nio.channels.ClosedChannelException: null

77 / 77

file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html

