
ForgeRock® Identity Platform serves as the basis for our simple and comprehensive
Identity and Access Management solution. We help our customers deepen their

relationships with their customers, and improve the productivity and connectivity of
their employees and partners. For more information about ForgeRock and about the

platform, see https://www.forgerock.com .

This guide gives an overview of how to use IG Studio to design and develop routes to

protect applications.

IG Studio is a user interface to help you build and deploy your IG configuration. There
are two ways to create routes in Studio:

With the structured editor to build simple routes by using predefined menus and
templates. The structured editor presents valid options and default values as you

add filters, decorators, and other objects to your configuration.

With the freeform designer to design complex, multi-branched routes. Drag handlers

and filters from a side bar onto the canvas to begin designing the route. The
freeform designer helps you to visualize the chain, and track the path of requests,

responses, and contexts.

After installation, IG is by default in production mode. The /routes endpoint is not

exposed or accessible, and Studio is effectively disabled. To access Studio, switch to
development mode as described in Switching from production mode to development

mode.

If you provide a custom config.json , include a main router named _router . If a

custom config.json is not provided, IG includes this router by default.

When IG is installed and running in development mode, as described in Getting started,

access Studio on http://ig.example.com:8080/openig/studio . The Routes screen is
displayed:

Studio guide



Getting started with Studio



1 / 58

https://www.forgerock.com/
https://www.forgerock.com/
https://www.forgerock.com/
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch
file:///home/pptruser/Downloads/build/site/ig/getting-started/next-steps.html#dev-mode-switch
file:///home/pptruser/Downloads/build/site/ig/getting-started/preface.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

During IG upgrade, routes that were previously created in Studio are automatically
transferred to the new version of IG. Where possible, IG replaces deprecated settings

with the newer evolved setting. If IG needs additional information to upgrade the route,
the route status becomes  Compatibility update required. Select the route, and

provide the requested information.

In this release, routes generated in Studio do not use the Commons Secrets Service.

Documentation examples generated with Studio use deprecated properties.

The following sections describe basic tasks for creating and deploying routes in the
structured editor of Studio:

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Enter the URL of the application you want to protect, followed by a path
condition to access the route. For example, enter

http://app.example.com:8081/my-basic-route .

The route is created, and menus to add configuration objects to the route are

displayed.

3. On the top-right of the screen, select  and  Display to review the route.

A route similar to this is displayed, where the path condition is used for the
route name:

Creating and editing routes in Structured Editor

Creating simple routes



2 / 58

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. On the top-right of the screen select  Route settings.

3. Using the on-screen hints for guidance, change the name, condition, or other
features of the route, and save the changes.

4. On the top-right of the screen, select  and  Display to review the route.

After creating a route in the structured editor, you can add filters, decorators, scripts,
and other configuration to the route.

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. Select one of the configuration options, and follow the on-screen hints to select
configuration settings.

For routes to test with the examples in the Gateway guide, see Example routes
created with Structured Editor.

Use this procedure to add any filter type to the configuration.

1. In Studio, select  ROUTES, and then select a route with the  icon.

2. Select  Other filters > + New filter > Other filter.

{

"name": "my-basic-route",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/my-basic-

route')}",

"handler": "ReverseProxyHandler"

}

Changing the basic settings of a route

Adding configuration to a route

Add other configuration to a route

Add other filters to a route

3 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html
file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-se.html

3. In Create filter, select a filter type from the list, enter a name, and optionally

enter a configuration for the filter.

When you save, the filter is added to the list of other filters but is not added to
the configuration.

4. Enable the filter to add it to the configuration.

If you disable the filter again, it is removed from the route’s chain but the

configuration is saved. Simply enable the filter again to add it back in the chain.

The  Chain view lists the filters in the order that they appear in the configuration.

Some filters have a natural position in the chain. For example, so that an authenticated

user is given the correct permissions, an authentication filter must come before an
authorization filter. Similarly, so that an authorization token is transformed, an

authorization filter always comes before a token transformation filter.

Other filters have a flexible position in the chain. For example, an AssignmentFilter can

be used before a request is handled or after a response is handled.

When the position of a filter is fixed, it is automatically placed in the correct position in

the chain; you cannot change the position. When the position of a filter is flexible, the 
icon is displayed, and you can drag the filter into a different position in the chain.

Select  Chain to view and manage the filters in the chain as follows:

When the  icon is displayed, drag a filter up or down the chain.

select  to edit a filter.

Select  Realm Settings to disable and remove a filter from the chain.

For information about chains, see Chain.

Deploy a Route

1. In Studio, select  ROUTES, and then select a route created with the
structured editor (with the  icon).

Studio checks that the JSON is valid, but doesn’t check that the

configuration of the filter is valid. If the filter configuration isn’t valid, when
you deploy the route it fails to load.

NOTE

Managing the route chain

Deploying and undeploying routes

4 / 58

file:///home/pptruser/Downloads/build/site/ig/reference/Handlers.html#Chain

2. On the top-right of the screen, select  and  Display to review the route.

3. If the route is okay, select  Deploy to push the route to the IG configuration.

If the route deploys successfully,  Deployed is displayed, and the  Deploy

button is greyed out.

4. Check the $HOME/.openig/config/routes folder in your IG configuration to

see that the route is there.

By default, routes are loaded automatically into the IG configuration. You don’t

need to stop and restart IG. For more information, see Prevent the reload of
routes.

5. Check the system log to confirm that the route was loaded successfully into the
configuration. For information about logs, see Managing logs.

Undeploy a Route

1. In Studio, select  ROUTES and then select a route with the status 

Deployed.

2. On the top-right of the screen, select  and  Undeploy, and then confirm your

request.

The route is removed from the IG configuration. On the Studio screen, the

route status  Deployed is no longer displayed, and the  Deploy option is
active again.

The following sections describe how to create a simple route in the freeform designer of

Studio, and then add configuration to the route. For examples of routes created with the
freeform designer that can be tested with the examples in the Gateway guide, see

Example routes created with Freeform Designer.

1. In IG Studio, create a route:

If the route configuration is not valid, or if a service that the route relies

on, such as an AM service, is not available, the route fails to deploy.

IMPORTANT

Creating and editing routes in Freeform Designer

Creating simple routes

5 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/routing.html#routing-lockdown
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/routing.html#routing-lockdown
file:///home/pptruser/Downloads/build/site/ig/maintenance-guide/logging.html
file:///home/pptruser/Downloads/build/site/ig/studio-guide/examples-ff.html

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select Freeform to use the freeform designer.

2. Select  Basic to create a route from a blank template.

3. Enter a URL for the application you want to protect, followed by a path

condition to access the route. For example, enter
http://app.example.com:8081/my-basic-route .

The route is displayed on the Flow tab of the canvas.

4. On the top-right of the screen, select  and  Display to review the route.



{

"name": "my-basic-route",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/my-basic-

route')}",

"handler": "ReverseProxyHandler",

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler"

},

{

"type": "BaseUriDecorator",

"name": "baseUri"

},

{

"type": "TimerDecorator",

"name": "timer",

"config": {

"timeUnit": "ms"

}

},

{

"type": "CaptureDecorator",

"name": "capture",

"config": {

"captureEntity": false,

"captureContext": false,

"maxEntityLength": 524288

}

}

6 / 58

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

1. Using the route created in freeform.adoc#studio-create-route-ff, on the top-

right of the screen select  Route settings.

2. Using the on-screen hints for guidance, change the name, condition, or other

features of the route, and save the changes.

3. On the top-right of the screen, select  and  Display to review the route.

1. Using the route created in freeform.adoc#studio-create-route-ff, select  All

Objects > Create Object.

2. In Node Type, select an object type from the drop down list. For example,

create an AmService object, using the following values:

Name: AmService-1

URI: http://am.example.com:8088/openam/

Agent:

Agent: ig-agent

Password: password

When you save, the object is added to route heap but is not used in the
route.

3. On the top-right of the screen, select  and  Display to review the route.

1. Using the route created in freeform.adoc#studio-create-route-ff, select the
Flow tab, and delete the connector between Start and ReverseProxyHandler.

]

}

Changing the basic settings of a route

Adding objects to a route heap

Adding configuration to a route

See how to delete a connector.

7 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/freeform.html#studio-create-route-ff
file:///home/pptruser/Downloads/build/site/ig/studio-guide/freeform.html#studio-create-route-ff
file:///home/pptruser/Downloads/build/site/ig/studio-guide/freeform.html#studio-create-route-ff

2. Drag a  Chain from the side bar onto the canvas, and then drag a

SingleSignOnFilter into the chain.

3. In the menu for the SingleSignOnFilter, enter the name of the AmService object

you created in freeform.adoc#studio-add-objects-ff, AmService-1 . The filter
uses the object previously defined in the heap.

4. Connect Start to Chain-1, and Chain-1 to ReverseProxyHandler.

See how to add objects to the canvas.

See how to connect components.

8 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/freeform.html#studio-add-objects-ff

5. On the top-right of the screen, select  and  Display to review the route.

1. Using the route created in freeform.adoc#studio-create-route-ff, select the 
All Objects tab.

A list of objects in the route is displayed. By default, all available decorators are
included in the route heap, but they do not decorate any objects.

2. For the ReverseProxyHandler or filter, select , select the Decorations tab,
and then enable one or more of the decorators.

3. On the top-right of the screen, select  and  Display to review the route.

The following sections describe basic tasks for editing and importing routes in Studio:

After creating a route in Studio, you can edit it by using the options offered in Studio, or
by switching to editor mode and using the JSON editor.

Routes created only in the menus of structured editor have the icon . Routes created
only in the menus of freeform designer have the icon . Imported routes and routes

edited in editor mode have the icon { }.

Decorating objects in the route

Editing and importing routes

Editing routes in editor mode

IMPORTANT

9 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/freeform.html#studio-create-route-ff

1. In Studio, select  ROUTES, and then select a route created with the
structured editor (with the  icon).

2. Edit the route in Studio or manually:

To edit in Studio, select options offered in Studio.

To edit manually, select  and  Editor mode, and use the JSON editor to
edit the route.

If the route status is  Deployed, it changes to  Changes pending.

3. Deploy the route as described in Deploying and undeploying routes.

When you import a route into Studio, it is imported in editor mode. You can use the
JSON editor to manually edit the route, but can’t use the full Studio interface to add or

edit filters.

Routes created only in the menus of structured editor have the icon . Routes created

only in the menus of freeform designer have the icon . Imported routes and routes
edited in editor mode have the icon { }.

1. In Studio, select  ROUTES and then  Import a route.

2. Click in the window to import a route, or drag a route from your filesystem.

If the route has a name property, the name is automatically used for the Name

and ID fields in Studio.

3. If necessary, make the following changes, and then select Import:

If the Name and ID fields are empty, enter a unique name and ID for the

route.

If the Name and ID fields are outlined in red, the route name or ID already

exists in Studio. Change the name and ID to be unique.

If an error message is displayed, the route is not valid JSON. Fix the route

and then try again to import it.

The route is added to the list of routes on the  ROUTES page.

When you go into editor mode, you can use the JSON editor to manually edit the

route, but can no longer use the full Studio interface to add to or edit the
configuration.

IMPORTANT

Importing routes into Studio

10 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/structured.html#deploy

4. Deploy the route as described in Deploying and undeploying routes.

All of the routes that exist in your backend configuration are displayed on the 
ROUTES page, including imported routes and routes created outside of Studio.

To search for a route, select  ROUTES, and type part of the route name in the search
box. Matching routes are displayed as you enter the search criteria.

When IG is running in development mode, by default the Studio endpoint is open and

accessible. To allow only specific users to access Studio, configure a
StudioProtectionFilter with a SingleSignOnFilter or CrossDomainSingleSignOnFilter.

The following example uses a SingleSignOnFilter to require users to authenticate with
AM before they can access Studio, and protects the request from Cross Site Request

Forgery (CSRF) attacks.

1. Set up AM:

a. (From AM 6.5.3) Select Services > Add a Service, and add a Validation

Service with the following Valid goto URL Resources:

http://ig.example.com:8080/*

http://ig.example.com:8080/*?*

b. Select Applications > Agents > Identity Gateway, and add an agent with
the following values:

Agent ID: ig_agent

Password: password

For AM 6.5.x and earlier versions, set up an agent as described in Set
up an IG agent in AM 6.5 and earlier.

2. Set up IG:

a. Set an environment variable for the IG agent password, and then restart

IG:

The password is retrieved by a SystemAndEnvSecretStore, and must be
base64-encoded.

Viewing and searching for routes in your configuration

Restricting access to Studio

$ export AGENT_SECRET_ID='cGFzc3dvcmQ='

11 / 58

file:///home/pptruser/Downloads/build/site/ig/studio-guide/structured.html#deploy
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#setup-agent-65

b. Add the following route to IG:

Linux Windows

$HOME/.openig/config/admin.json

Standalone mode Web container mode

{

"prefix": "openig",

"mode": "DEVELOPMENT",

"properties": {

"SsoTokenCookieOrHeader": "iPlanetDirectoryPro"

},

"connectors": [

{

"port": 8080

},

{

"port": 8443

}

],

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent" : {

"username" : "ig_agent",

"passwordSecretId" : "agent.secret.id"

},

"secretsProvider":

"SystemAndEnvSecretStore-1",

"url":

"http://am.example.com:8088/openam/",

"ssoTokenHeader": "&

{SsoTokenCookieOrHeader}",

"version": "7.2"

}

12 / 58

Notice the following features of the file:

The prefix sets the base of the administrative route to the default

value /openig . The Studio endpoint is therefore /openig/studio .

The mode is development , so by default the Studio endpoint is open

and unfiltered.

},

{

"name": "StudioProtectionFilter",

"type": "ChainOfFilters",

"config": {

"filters": [

{

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"type": "CsrfFilter",

"config": {

"cookieName": "&

{SsoTokenCookieOrHeader}",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 403,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Request forbidden"

}

}

}

}

]

}

}

]

}

13 / 58

The properties object sets a configuration parameter for the value

of the SSO token cookie or header, which is used in AmService and
CorsFilter.

The AmService uses the IG agent in AM for authentication.

The agent password for AmService is provided by a

SystemAndEnvSecretStore in the heap.

The StudioProtectionFilter calls the SingleSignOnFilter to redirect

unauthenticated requests to AM, and uses the CsrfFilter to protect
requests from CSRF attacks. For more information, see

SingleSignOnFilter and CsrfFilter.

c. Restart IG to take into account the changes to admin.json .

3. Test the setup:

a. If you are logged in to AM, log out and clear any cookies.

b. Go to http://ig.example.com:8080/openig/studio . The SingleSignOnFilter
redirects the request to AM for authentication.

c. Log in to AM with user demo , password Ch4ng31t . The Studio Routes

screen is displayed.

The following sections give examples of how to set up some of the routes used in the

Gateway guide by using the structured editor of Studio:

In this release, routes generated in Studio do not use the Commons Secrets Service.

Documentation examples generated with Studio use deprecated properties.

This section describes how to set up SSO in the structured editor of Studio. For more

information about setting up SSO, see Single sign-on and cross-domain single sign-on.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following

options:

Base URI: http://app.example.com:8081



Example routes created with Structured Editor

Single sign-on in Structured Editor



14 / 58

file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#SingleSignOnFilter
file:///home/pptruser/Downloads/build/site/ig/reference/Filters.html#CsrfFilter
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/preface.html#preface
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Condition: Path: /home/sso-studio

Name : sso-studio

3. Configure authentication:

a. Select  Authentication.

b. Select Single Sign-On, and enter the following information:

AM service : Configure an AM service to use for authentication:

URI: http://am.example.com:8088/openam

Agent :

Username : ig_agent

Password : password

Leave all other values as default.

4. On the top-right of the screen, select  and  Display to review the route.

{

"name": "sso-studio",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/sso-

studio')}",

"heap": [

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"password": "password"

},

"sessionCache": {

"enabled": false

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

15 / 58

5. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

This section describes how to set up IG as a policy enforcement point in the structured
editor of Studio. For more information about setting up policy enforcement, see Enforce

policy decisions from AM.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following

options:

Base URI: http://app.example.com:8081

Condition: Path: /home/pep-sso

Name : pep-sso

The structured editor is displayed.

3. Configure authentication:

a. Select  Authentication.

b. Select Single Sign-On, and enter the following information:

AM service : Configure an AM service to use for authentication:

URI: http://am.example.com:8088/openam

Agent : The credentials of the agent you created in AM.

Username : ig_agent

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Policy enforcement in Structured Editor



16 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Password : password

Leave all other values as default.

4. Configure a PolicyEnforcementFilter:

a. Select  Authorization.

b. Select AM Policy Enforcement, and then select the following options:

Access Management configuration:

AM service : http://am.example.com:8088/openam (/) .

Access Management policies:

Policy set : PEP-SSO

AM SSO token : ${contexts.ssoToken.value}

Leave all other values as default.

5. On the top-right of the screen, select  and  Display to review the route.

{

"name": "pep-sso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/pep-

sso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/",

"version": "7.2"

}

}

],

"handler": {

"type": "Chain",

"config": {

17 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the

route is there.

This section describes how to set up IG as a policy enforcement point for CDSSO in the

structured editor of Studio. For more information about how to set up SSO, see Enforce
AM Policy Decisions In Different Domains.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following
options:

Base URI: http://app.example.com:8081

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

"application": "PEP-SSO",

"ssoTokenSubject":

"${contexts.ssoToken.value}",

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Policy enforcement for CDSSO in Structured Editor



18 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html#pep-cdsso
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html#pep-cdsso
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Condition: Path: /home/pep-cdsso

Name : pep-cdsso

3. Configure authentication:

a. Select  Authentication.

b. Select Cross-Domain Single Sign-On, and enter the following information:

AM service :

URI: http://am.example.com:8088/openam

Version: The version of the AM instance, for example, 7.2 .

Agent : The credentials of the agent you created in AM.

Username : ig_agent_cdsso

Password : password

Redirect endpoint : /home/pep-cdsso/redirect

Authentication cookie :

Path : /home

Leave all other values as default.

4. Configure a PolicyEnforcementFilter:

a. Select  Authorization.

b. Select AM Policy Enforcement, and select the following options to reflect
the configuration of the IG agent in AM:

Access Management configuration:

AM service : http://am.example.com:8088/openam (/) .

Access Management policies:

Policy set : PEP-CDSSO

AM SSO token ID : ${contexts.cdsso.token}

Leave all other values as default.

5. On the top-right of the screen, select  and  Display to review the route.

{

"name": "pep-cdsso",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/pep-

cdsso')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

19 / 58

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent_cdsso",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/",

"version": "7.2"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "CrossDomainSingleSignOnFilter-1",

"type": "CrossDomainSingleSignOnFilter",

"config": {

"redirectEndpoint": "/home/pep-

cdsso/redirect",

"authCookie": {

"path": "/home",

"name": "ig-token-cookie"

},

"amService": "AmService-1"

}

},

{

"name": "PolicyEnforcementFilter-1",

"type": "PolicyEnforcementFilter",

"config": {

"application": "PEP-CDSSO",

"ssoTokenSubject": "${contexts.cdsso.token}",

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

}

20 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

This section sets up IG as an OAuth 2.0 resource server, using the introspection

endpoint, in the structured editor of Studio.

1. Set up AM as described in Validate access tokens through the introspection

endpoint. In addition, create an OAuth 2.0 Client authorized to introspect
tokens, with the following values:

Client ID : resource-server

Client secret password

Scope(s) : am-introspect-all-tokens

2. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

c. Create a route with the following option:

Application URL: http://app.example.com:8081/rs-introspect-
se

3. Configure authorization:

a. Select  Authorization > OAuth 2.0 Resource Server, and then select

the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI:

http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and

password

This is the name and password of the OAuth 2.0 client with the

scope to examine (introspect) tokens, configured in AM.

}

}

Token validation using the introspection endpoint in Structured
Editor



21 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

Leave all other values as default.

4. Add a StaticResponseHandler:

a. On the top-right of the screen, select  and  Editor mode to switch into

editor mode.

b. Replace the last ReverseProxyHandler in the route with the following
StaticResponseHandler, and then save the route:

5. On the top-right of the screen, select  and  Display to review the route.

After switching to Editor mode, you cannot go back. You will be able

to use the JSON file editor to manually edit the route, but will no
longer be able use the full Studio interface to add or edit filters.

WARNING

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><h2>Decoded access_token:

${contexts.oauth2.accessToken.info}</h2></body></html>"

}

}

{

"name": "rs-introspect-se",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/rs-introspect-

se')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

22 / 58

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"endpoint":

"http://am.example.com:8088/openam/oauth2/introspect",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "request",

"add": {

"Authorization": [

"Basic

${encodeBase64('resource-server:password')}"

]

}

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

23 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the

route is there.

This section describes how to set up IG as an OpenID Connect relying party in the

structured editor of Studio. For more information, see Use AM as a single OpenID
Connect provider.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following
options:

Base URI: http://app.example.com:8081

Condition: Path: /home/id_token

Name: 07-openid

3. Configure authentication:

a. Select  Authentication.

b. Select OpenID Connect, and then select the following options:

Client Filter:

Client Endpoint: /home/id_token

Require HTTPS: Deselect this option

Client Registration:

"status": 200,

"headers": {

"Content-Type": ["text/html; charset=UTF-8"]

},

"entity": "<html><body><h2>Decoded access_token:

${contexts.oauth2.accessToken.info}</h2></body></html>"

}

}

}

}

}

OpenID Connect in Structured Editor



24 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oidc.html#oidc-am
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Client ID: oidc_client

Client secret: password

Scopes: openid , profile , and email

Basic authentication: Select this option

Issuer:

Well-known Endpoint:
http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration

Leave all other values as default.

4. On the top-right of the screen, select  and  Display to review the route:

{

"name": "07-openid",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AuthenticatedRegistrationHandler-1",

"type": "Chain",

"config": {

"filters": [

{

"name":

"ClientSecretBasicAuthenticationFilter-1",

"type":

"ClientSecretBasicAuthenticationFilter",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"secretsProvider": "SystemAndEnvSecretStore-

1"

}

}

],

"handler": "ForgeRockClientHandler"

}

}

25 / 58

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-1",

"type": "AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "Error in OAuth 2.0 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"authenticatedRegistrationHandler":

"AuthenticatedRegistrationHandler-1"

}

26 / 58

5. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the

route is there.

This section describes how to set up token transformation in the structured editor of

Studio. For more information about setting up token transformation, see Transform
OpenID Connect ID tokens into SAML assertions.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following
options:

Base URI: http://app.example.com:8081

Condition: Path: /home/id_token

Name : 50-idtoken

3. Configure authentication:

a. Select  Authentication.

b. Select OpenID Connect, and enter the following information:

Client Filter :

Client Endpoint: /home/id_token

Require HTTPS: Deselect this option

Client Registration :

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Token transformation in Structured Editor



27 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/ttf.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/ttf.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Client ID : oidc_client

Client secret : password

Scopes: openid , profile , and email

Basic authentication: Select this option

Issuer :

Well-known endpoint:
http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration

Leave all other values as default, and save your settings.

4. Set up token transformation:

a. Select and enable Token transformation.

b. Enter the following information:

AM service : Configure an AM service to use for authentication and

REST STS requests.

URI: http://am.example.com:8088/openam

Agent : The credentials of the agent you created in AM.

Username : ig_agent

Password : password

Username : oidc_client

Password : password

id_token : ${attributes.openid.id_token}

Instance : openig

5. Add a StaticResponseHandler:

a. On the top-right of the screen, select  and  Editor mode to switch into
editor mode.

b. Replace the last ReverseProxyHandler in the route with the following

StaticResponseHandler, and then save the route:

After switching to Editor mode, you cannot go back. You will be able
to use the JSON file editor to manually edit the route, but will no

longer be able use the full Studio interface to add or edit filters.

WARNING

"handler": {

"type": "StaticResponseHandler",

"config": {

28 / 58

6. On the top-right of the screen, select  and  Display to review the route.

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"]

},

"entity": "

{\"id_token\":\n\"${attributes.openid.id_token}\"}

\n\n\n{\"saml_assertions\":\n\"${contexts.sts.issuedTok

en}\"}"

}

}

{

"name": "50-idtoken",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path,

'^/home/id_token')}",

"heap": [

{

"name": "SystemAndEnvSecretStore-1",

"type": "SystemAndEnvSecretStore"

},

{

"name": "AuthenticatedRegistrationHandler-1",

"type": "Chain",

"config": {

"filters": [

{

"name":

"ClientSecretBasicAuthenticationFilter-1",

"type":

"ClientSecretBasicAuthenticationFilter",

"config": {

"clientId": "oidc_client",

"clientSecretId": "oidc.secret.id",

"secretsProvider": "SystemAndEnvSecretStore-

1"

}

}

],

"handler": "ForgeRockClientHandler"

}

},

{

29 / 58

"name": "AmService-1",

"type": "AmService",

"config": {

"agent": {

"username": "ig_agent",

"passwordSecretId": "agent.secret.id"

},

"secretsProvider": "SystemAndEnvSecretStore-1",

"url": "http://am.example.com:8088/openam/",

"version": "7.2"

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "AuthorizationCodeOAuth2ClientFilter-1",

"type": "AuthorizationCodeOAuth2ClientFilter",

"config": {

"clientEndpoint": "/home/id_token",

"failureHandler": {

"type": "StaticResponseHandler",

"config": {

"status": 500,

"headers": {

"Content-Type": [

"text/plain"

]

},

"entity": "An error occurred during the

OAuth2 setup."

}

},

"registrations": [

{

"name": "oidc-user-info-client",

"type": "ClientRegistration",

"config": {

"clientId": "oidc_client",

"issuer": {

"name": "Issuer",

"type": "Issuer",

"config": {

30 / 58

"wellKnownEndpoint":

"http://am.example.com:8088/openam/oauth2/.well-

known/openid-configuration"

}

},

"scopes": [

"openid",

"profile",

"email"

],

"authenticatedRegistrationHandler":

"AuthenticatedRegistrationHandler-1"

}

}

],

"requireHttps": false,

"cacheExpiration": "disabled"

}

},

{

"name": "TokenTransformationFilter-1",

"type": "TokenTransformationFilter",

"config": {

"idToken": "${attributes.openid.id_token}",

"instance": "openig",

"amService": "AmService-1"

}

}

],

"handler": {

"type": "StaticResponseHandler",

"config": {

"status": 200,

"headers": {

"Content-Type": ["text/plain; charset=UTF-8"

]

},

"entity": "

{\"id_token\":\n\"${attributes.openid.id_token}\"}

\n\n\n{\"saml_assertions\":\n\"${contexts.sts.issuedToken}

\"}"

}

}

}

31 / 58

7. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

This section describes how to set up a simple throttling filter in the structured editor of
Studio. For more information about how to set up throttling, see Configure Simple

Throttling.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following

options:

Base URI: http://app.example.com:8081

Condition: Path: /home/throttle-simple

Name : 00-throttle-simple

3. Select and enable  Throttling.

4. In GROUPING POLICY, apply the rate to a single group.

All requests are grouped together, and the default throttling rate is applied to
the group. By default, no more than 100 requests can access the sample

application each second.

5. In RATE POLICY, select Fixed, and allow 6 requests each 10 seconds.

6. On the top-right of the screen, select  and  Display to review the route.

}

}

Simple throttling filter in Structured Editor



{

"name": "00-throttle-simple",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/throttle-

simple')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

32 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-simple
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-simple
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

7. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

This section describes how to set up a mapped throttling filter in the structured editor of
Studio. For more information about how to set up throttling, see Configure Mapped

Throttling.

1. Set up AM as described in Validate access tokens through the introspection

endpoint. In addition, create an OAuth 2.0 Client authorized to introspect
tokens, with the following values:

Client ID : resource-server

Client secret password

Scope(s) : am-introspect-all-tokens

2. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

3. Select Advanced options on the right, and create a route with the following

options:

Base URI: http://app.example.com:8081

{

"type": "ThrottlingFilter",

"name": "ThrottlingFilter-1",

"config": {

"requestGroupingPolicy": "",

"rate": {

"numberOfRequests": 6,

"duration": "10 s"

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Mapped throttling filter in Structured Editor



33 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-mapped
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-mapped
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

Condition: Path: /home/throttle-mapped-se

Name : 00-throttle-mapped-se

4. Configure authorization:

a. Select  Authorization > OAuth 2.0 Resource Server, and then select
the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI:
http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and
password

This is the name and password of the OAuth 2.0 client with the
scope to examine (introspect) tokens, configured in AM.

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

Leave all other values as default.

5. Configure throttling:

a. Select and enable  Throttling.

b. Set up the grouping policy:

i. In GROUPING POLICY, apply the rate to independent groups of
requests.

Requests are split into different groups according to criteria, and the
throttling rate is applied to each group.

ii. Select to group requests by custom criteria.

Enter ${contexts.oauth2.accessToken.info.mail} as the

custom expression. This expression defines the subject in the
OAuth2Context.

c. Set up the rate policy:

i. In RATE POLICY, select Mapped.

ii. Select to map requests by custom criteria.

34 / 58

iii. Enter the custom expression

${contexts.oauth2.accessToken.info.status} .

iv. In Default Rate, select Edit and change default rate to 1 request each

10 seconds.

v. In Mapped Rates, add the following rate for gold status:

Match Value : gold

Number of requests : 6

Period : 10 seconds

vi. Add a different rate for silver status:

Match Value : silver

Number of requests : 3

Period : 10 seconds

vii. Add a different rate for bronze status:

Match Value : bronze

Number of requests : 1

Period : 10 seconds

viii. Save the rate policy.

6. Select  Chain, and change the order of the filters so that  Throttling

comes after  Authorization.

7. On the top-right of the screen, select  and  Display to review the route.

{

"name": "00-throttle-mapped-se",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/throttle-

mapped-se')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

35 / 58

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"endpoint":

"http://am.example.com:8088/openam/oauth2/introspect",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "request",

"add": {

"Authorization": [

"Basic

${encodeBase64('resource-server:password')}"

]

}

}

}

],

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"name": "ThrottlingFilter-1",

"type": "ThrottlingFilter",

"config": {

"requestGroupingPolicy":

"${contexts.oauth2.accessToken.info.mail}",

"throttlingRatePolicy": {

"name": "MappedPolicy",

"type": "MappedThrottlingPolicy",

"config": {

"throttlingRateMapper":

"${contexts.oauth2.accessToken.info.status}",

"throttlingRatesMapping": {

36 / 58

8. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

This section describes how to set up a scriptable throttling filter in the structured editor
of Studio. For more information about how to set up throttling, see Configure scriptable

throttling.

1. Set up AM as described in Validate access tokens through the introspection

endpoint. In addition, create an OAuth 2.0 Client authorized to introspect
tokens, with the following values:

Client ID: resource-server

Client secret: password

"gold": {

"numberOfRequests": 6,

"duration": "10 s"

},

"silver": {

"numberOfRequests": 3,

"duration": "10 s"

},

"bronze": {

"numberOfRequests": 1,

"duration": "10 s"

}

},

"defaultRate": {

"numberOfRequests": 1,

"duration": "10 s"

}

}

}

}

}

],

"handler": "ReverseProxyHandler"

}

}

}

Scriptable throttling filter in Structured Editor

37 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-scriptable
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/throttling.html#throttling-scriptable
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect

Scope(s): am-introspect-all-tokens

2. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

3. Select Advanced options on the right, and create a route with the following
options:

Base URI: http://app.example.com:8081

Condition: Path: /home/throttle-scriptable-se

Name: 00-throttle-scriptable-se

4. Configure authorization:

a. Select  Authorization > OAuth 2.0 Resource Server, and then select
the following options:

Token resolver configuration:

Access token resolver: OAuth 2.0 introspection endpoint

Introspection endpoint URI:
http://am.example.com:8088/openam/oauth2/introspect

Client name and Client secret : resource-server and
password

This is the name and password of the OAuth 2.0 client with the
scope to examine (introspect) tokens, configured in AM.

Scope configuration:

Evaluate scopes: Statically

Scopes: mail , employeenumber

OAuth 2.0 Authorization settings:

Require HTTPS: Deselect this option

Enable cache: Deselect this option

Leave all other values as default.

5. Configure throttling:

a. Select and enable  Throttling.

b. Set up the grouping policy:

i. In GROUPING POLICY, apply the rate to independent groups of
requests.

Requests are split into different groups according to criteria, and the
throttling rate is applied to each group.



38 / 58

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

ii. Select to group requests by custom criteria.

iii. Enter ${contexts.oauth2.accessToken.info.mail} as the
custom expression.

c. Set up the rate policy:

i. In RATE POLICY, select Scripted.

ii. Select to create a new script, and name it X-User-Status . So that
you can easily identify the script, use a name that describes the

content of the script.

iii. Add the following argument/value pairs:

argument: status , value: gold

argument: rate , value: 6

argument: duration , value: 10 seconds

Replace the default script with the content of a valid Groovy

script. For example, enter the following script:

Alternatively, skip the step to define arguments, and add the

following script instead:

iv. Enable the default rate, and set it to 1 request each 10 seconds.

v. Save the rate policy. The script is added to the list of reference scripts

available to use in scriptable throttling filters.

6. Select  Chain, and change the order of the filters so that  Throttling

comes after  Authorization.

if (contexts.oauth2.accessToken.info.status

== status) {

return new ThrottlingRate(rate, duration)

} else {

return null

}

if (contexts.oauth2.accessToken.info.status

== 'gold') {

return new ThrottlingRate(6, '10 seconds')

} else {

return null

}

Studio does not check the validity of the Groovy script.

NOTE

39 / 58

7. On the top-right of the screen, select  and  Display to review the route.

{

"name": "00-throttle-scriptable-se",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/throttle-

scriptable-se')}",

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "OAuth2ResourceServerFilter-1",

"type": "OAuth2ResourceServerFilter",

"config": {

"scopes": [

"mail",

"employeenumber"

],

"requireHttps": false,

"realm": "OpenIG",

"accessTokenResolver": {

"name": "token-resolver-1",

"type":

"TokenIntrospectionAccessTokenResolver",

"config": {

"endpoint":

"http://am.example.com:8088/openam/oauth2/introspect",

"providerHandler": {

"type": "Chain",

"config": {

"filters": [

{

"type": "HeaderFilter",

"config": {

"messageType": "request",

"add": {

"Authorization": [

"Basic

${encodeBase64('resource-server:password')}"

]

}

}

}

],

40 / 58

"handler": "ForgeRockClientHandler"

}

}

}

}

}

},

{

"name": "ThrottlingFilter-1",

"type": "ThrottlingFilter",

"config": {

"requestGroupingPolicy":

"${contexts.oauth2.accessToken.info.mail}",

"throttlingRatePolicy": {

"type": "DefaultRateThrottlingPolicy",

"config": {

"delegateThrottlingRatePolicy": {

"name": "ScriptedPolicy",

"type": "ScriptableThrottlingPolicy",

"config": {

"type": "application/x-groovy",

"source": [

"if

(contexts.oauth2.accessToken.info.status == status) {",

" return new ThrottlingRate(rate,

duration)",

"} else {",

" return null",

"}"

],

"args": {

"status": "gold",

"rate": 6,

"duration": "10 seconds"

}

}

},

"defaultRate": {

"numberOfRequests": 1,

"duration": "10 s"

}

}

}

}

}

41 / 58

8. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the

route is there.

This section describes how to set up IG to proxy WebSocket traffic, in the structured

editor of Studio. For more information about how to set up proxying for WebSocket
traffic, see Proxy WebSocket traffic.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select  Structured to use the structured editor.

2. Select Advanced options on the right, and create a route with the following
options:

Base URI: http://app.example.com:8081

Condition: Path: /websocket-se

Name : websocket-se

Enable WebSocket: Select this option

3. Configure authentication:

a. Select  Authentication.

b. Select Single Sign-On, and enter the following information:

URI: http://am.example.com:8088/openam

Version: The version of the AM instance, for example, 7.2 .

Agent : The credentials of the Java agent you created in AM.

Username : ig_agent

Password : password

Leave all other values as default.

4. On the top-right of the screen, select  and  Display to review the route.

],

"handler": "ReverseProxyHandler"

}

}

}

Proxy for websocket traffic in Structured Editor



42 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/websocket.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

{

"name": "websocket-se",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/websocket-

se')}",

"heap": [

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"version": "7.2",

"agent": {

"username": "ig_agent",

"password": "password"

},

"sessionCache": {

"enabled": false

}

}

},

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler",

"config": {

"websocket": {

"enabled": true

}

}

}

],

"handler": {

"type": "Chain",

"config": {

"filters": [

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

],

"handler": "ReverseProxyHandler"

43 / 58

5. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the

route is there.

The following sections give examples of how to use the templates provided by the
freeform designer:

In this release, routes generated in Studio do not use the Commons Secrets Service.
Documentation examples generated with Studio use deprecated properties.

This section describes how to use a basic template in freeform designer to set up SSO.
For more information about setting up and testing SSO, see Single sign-on and cross-

domain single sign-on.

Use a Basic Template in FreeForm Designer

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select Freeform to use the freeform designer.

2. Select  Basic to create a route from a blank template.

3. Select Advanced options on the right, and create a route with the following

options:

Base URI: http://app.example.com:8081

Condition: Path: /home/sso-ff

Name: sso-ff

The route is displayed on the Flow tab of the canvas. Select the  All

Objects tab to view a list of objects in the route.

Double-click on any object to review or edit it. After double-clicking on an
object, select the Decorations tab to decorate it.

}

}

}

Example routes created with Freeform Designer

Using a basic template in FreeForm Designer



44 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/sso.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

4. Configure authentication with a SingleSignOnFilter:

a. Select the Flow tab, and delete the connector between Start and
ReverseProxyHandler.

b. From the side bar, drag a  Chain onto the canvas, and then drag a 
SingleSignOnFilter into the chain.

c. In the Edit SingleSignOnFilter page, click +, and create an AM service,
with the following values:

URI: http://am.example.com:8088/openam

Agent:

Username: ig_agent

Password: password

d. Connect Start to Chain-1, and Chain-1 to ReverseProxyHandler.

See how to add objects to the canvas.

See how to connect components.

45 / 58

5. On the top-right of the screen, select  and  Display to review the route.

{

"name": "sso-ff",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/sso-

ff')}",

"handler": "Chain-1",

"heap": [

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler"

},

{

"type": "BaseUriDecorator",

"name": "baseUri"

},

{

"type": "TimerDecorator",

"name": "timer",

"config": {

"timeUnit": "ms"

}

},

{

"type": "CaptureDecorator",

"name": "capture",

"config": {

"captureEntity": false,

"captureContext": false,

"maxEntityLength": 524288

46 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

}

},

{

"name": "Chain-1",

"type": "Chain",

"config": {

"handler": "ReverseProxyHandler",

"filters": [

"SingleSignOnFilter-1"

]

}

},

{

"name": "AmService-1",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"password": "password"

},

"sessionCache": {

"enabled": false

}

}

},

{

"name": "SingleSignOnFilter-1",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService-1"

}

}

]

}

Protecting a web app with Freeform Designer

47 / 58

This section describes how to use freeform designer to protect a web app, using AM for

single sign-on and policy enforcement.

The generated route contains a chain of objects to authenticate the user, enforce an AM

authorization policy, retrieve the user’s profile, insert it into the request, and, finally,
forward the request to the web app.

Before you start, set up AM as described in Enforce policy decisions from AM.

1. In IG Studio, create a route:

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select Freeform to use the freeform designer.

2. Select  Web SSO to use the template for protecting web apps.

3. Select Advanced options on the right, and create a route with the following
options:

Base URI : http://app.example.com:8081

Condition: Path : /home/pep-sso-ff

Name : pep-sso-ff

AM Configuration :

URI : http://am.example.com:8088/openam

Username : ig_agent

Password : password

The route is displayed on the Flow tab of the canvas. Select the 

All Objects tab to view a list of objects in the route.

Double-click on any object to review or edit it. After double-clicking on

an object, select the Decorations tab to decorate it.

4. On the Flow tab, double-click the Policy Enforcement object, and add a

policy set with the following values:

Policy set : PEP-SSO

AM SSO token : ${contexts.ssoToken.value}

Leave all other values as default.

5. On the top-right of the screen, select  and  Display to review the route.



{

"name": "pep-sso-ff",

"baseURI": "http://app.example.com:8081",

48 / 58

file:///home/pptruser/Downloads/build/site/ig/gateway-guide/pep.html
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

"condition": "${find(request.uri.path, '^/home/pep-sso-

ff')}",

"handler": "Chain",

"heap": [

{

"name": "Chain",

"type": "Chain",

"config": {

"handler": "ReverseProxyHandler",

"filters": [

"SSO",

"PolicyEnforcement",

"GetEmail",

"InjectEmail"

]

}

},

{

"name": "SSO",

"type": "SingleSignOnFilter",

"config": {

"amService": "AmService"

}

},

{

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler"

},

{

"name": "AmService",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "ig_agent",

"password": "password"

},

"sessionCache": {

"enabled": false

}

}

},

{

"name": "PolicyEnforcement",

49 / 58

"type": "PolicyEnforcementFilter",

"config": {

"amService": "AmService",

"ssoTokenSubject": "${contexts.ssoToken.value}",

"cache": {

"enabled": false

},

"application": "PEP-SSO"

}

},

{

"name": "GetEmail",

"type": "UserProfileFilter",

"config": {

"username": "${contexts.ssoToken.info.uid}",

"userProfileService": {

"type": "UserProfileService",

"config": {

"amService": "AmService"

}

}

}

},

{

"name": "InjectEmail",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"Email": [

"${contexts.userProfile.username}"

]

}

}

},

{

"type": "BaseUriDecorator",

"name": "baseUri"

},

{

"type": "TimerDecorator",

"name": "timer",

"config": {

"timeUnit": "ms"

}

50 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

Test the Setup

1. If you are logged in to AM, log out and clear any cookies.

2. Go to http://ig.example.com:8080/home/pep-sso-ff .

3. Log in to AM as user demo , password Ch4ng31t .

AM returns a policy decision that grants access to the sample application.

This section describes how to use freeform designer to protect APIs, using AM as an

OAuth 2.0 authorization server.

The generated route contains a chain of objects to authenticate the user, throttle the

rate of requests to the API, and, finally, forward the request to the sample app.

Before you start, set up AM as described in Validate access tokens through the

introspection endpoint. In addition, create an OAuth 2.0 Client authorized to introspect
tokens, with the following values:

Client ID : resource-server

Client secret : password

Scope(s) : am-introspect-all-tokens

1. In IG Studio, create a route:

},

{

"type": "CaptureDecorator",

"name": "capture",

"config": {

"captureEntity": false,

"captureContext": false,

"maxEntityLength": 524288

}

}

]

}



Protect an API with Freeform Designer

51 / 58

http://ig.example.com:8080/home/pep-sso-ff
http://ig.example.com:8080/home/pep-sso-ff
http://ig.example.com:8080/home/pep-sso-ff
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect
file:///home/pptruser/Downloads/build/site/ig/gateway-guide/oauth2-rs.html#oauth2-rs-introspect

a. Go to http://ig.example.com:8080/openig/studio , and select + Create a

route.

b. Select Freeform to use the freeform designer.

2. Select Applications > Agents > Identity Gateway, add an agent with the
following values:

Agent ID : ig_agent

Password : password

Token Introspection : Realm Only

3. Select Advanced options on the right, and create a route with the following

options:

Base URI : http://app.example.com:8081

Condition: Path : /home/rs-introspect-ff

Name : rs-introspect-ff

AM Configuration :

URI : http://am.example.com:8088/openam

Username : ig_agent

Password : password

Scopes : mail , employeenumber

The route is displayed on the Flow tab of the canvas.

Notice that the Start, Chain, and ReverseProxyHandler objects are
connected by solid lines, but other objects, such as Authenticate to

Am Chain, are connected by a fading line. Objects connected by a
fading line are used by other objects in the route.

Select the  All Objects tab to view a list of objects in the route.
Double-click on any object to review or edit it. After double-clicking on

an object, select the Decorations tab to decorate it.

4. On the Flow tab, double-click the OAuth2RS object, and edit it as follows:

Require HTTPS : Deselect this option

Realm : OpenIG

Leave the other values as they are.

5. On the top-right of the screen, select  and  Display to review the route.



{

"name": "rs-introspect-ff",

"baseURI": "http://app.example.com:8081",

"condition": "${find(request.uri.path, '^/home/rs-

52 / 58

http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio
http://ig.example.com:8080/openig/studio

introspect-ff')}",

"handler": "Chain",

"properties": {

"amUsername": "ig_agent",

"amPassword": "password"

},

"heap": [

{

"name": "ClientHandler",

"type": "ClientHandler"

},

{

"name": "Chain",

"type": "Chain",

"config": {

"handler": "ReverseProxyHandler",

"filters": [

"OAuth2RS",

"Throttling"

]

}

},

{

"type": "OAuth2ResourceServerFilter",

"name": "OAuth2RS",

"config": {

"requireHttps": false,

"realm": "OpenIG",

"scopes": [

"mail",

"employeenumber"

],

"accessTokenResolver":

"TokenIntrospectionAccessTokenResolver"

}

},

{

"type": "TokenIntrospectionAccessTokenResolver",

"name": "TokenIntrospectionAccessTokenResolver",

"config": {

"amService": "AmService",

"providerHandler": "Authenticate to AM Chain"

}

},

{

53 / 58

"name": "ReverseProxyHandler",

"type": "ReverseProxyHandler"

},

{

"name": "AmService",

"type": "AmService",

"config": {

"url": "http://am.example.com:8088/openam",

"realm": "/",

"agent": {

"username": "${amUsername}",

"password": "${amPassword}"

},

"sessionCache": {

"enabled": false

}

}

},

{

"name": "Authenticate to AM Chain",

"type": "Chain",

"config": {

"handler": "ClientHandler",

"filters": [

"Authenticate to AM Filter"

]

}

},

{

"name": "Authenticate to AM Filter",

"type": "HeaderFilter",

"config": {

"messageType": "REQUEST",

"add": {

"Authorization": [

"Basic ${encodeBase64(join(array(amUsername,

amPassword), ':'))}"

]

}

}

},

{

"name": "Throttling",

"type": "ThrottlingFilter",

"config": {

54 / 58

6. Select  Deploy to push the route to the IG configuration.

You can check the $HOME/.openig/config/routes folder to see that the
route is there.

7. Test the setup:

a. In a terminal window, use a curl command similar to the following to

retrieve an access token:

"requestGroupPolicy":

"${contexts.oauth2.info.sub}",

"rate": {

"numberOfRequests": 60,

"duration": "60 s"

}

}

},

{

"type": "BaseUriDecorator",

"name": "baseUri"

},

{

"type": "TimerDecorator",

"name": "timer",

"config": {

"timeUnit": "ms"

}

},

{

"type": "CaptureDecorator",

"name": "capture",

"config": {

"captureEntity": false,

"captureContext": false,

"maxEntityLength": 524288

}

}

]

}

$ mytoken=$(curl -s \

--user "client-application:password" \

--data

"grant_type=password&username=demo&password=Ch4ng31t&sc

ope=mail%20employeenumber" \

55 / 58

b. Validate the access token returned in the previous step:

The HTML of the sample application is returned.

The following tables summarize the basic tasks that you can do in Studio, and

summarizes the icons and status displayed in Studio:

Task reference

To do this Do this

Create a new route Select  ROUTES, + Create a route.

Select a route Select  ROUTES, and then select a
route to view.

Display the config of a selected route Select a route, and then select  and 
Display.

Deploy a selected route Select a route, and then select 
Deploy.

Undeploy a selected route Select a deployed route, and then select 
and  Undeploy.

Change the basic config of a route Select a route, and then select  Route

settings. Edit the route and save the

changes.

Route status

Status Description Action

 Undeployed The route is saved in
Studio but is not deployed

to the backend.

Deploy the route. The
status changes to 

Deployed.

http://am.example.com:8088/openam/oauth2/access_token |

jq -r ".access_token")

$ curl -v http://ig.example.com:8080/home/rs-

introspect-ff --header "Authorization: Bearer

${mytoken}"

Appendix A: Summary of tasks, route status, and icons

56 / 58

Status Description Action

 Deployed The route is saved in

Studio and deployed to
the backend.

None. The route has the

same configuration in
Studio and the backend.

 Changes pending The route has been
deployed and then

subsequently changed in
Studio.

Deploy the route. The
status changes to 

Deployed.

 Out of sync The route has been
deployed and then

subsequently changed in
the backend, or in both

Studio and the backend.

Select  Deploy. A
message informs you that

a different version of the
route is deployed in the

backend. Select an option:

 Deploy: The

version in Studio
overwrites the

backend.

 Import a route:

The version in the
backend overwrites

Studio.

When you import a route

into Studio you go into
editor mode. You can use

the JSON editor to
manually edit the route,

but can no longer use the
full Studio interface to add

or edit filters.

 Compatibility update

required

The route was created in

Studio in an earlier version
of IG. Some information is

needed to complete the
upgrade.

Enter the information as

prompted, and then select
 Deploy to deploy the

route.

Icons

Icon Mode Description

57 / 58

Icon Mode Description

 Structured editor The route was created and
edited using the menus

and options of structured
editor.

{ } Editor mode The route was imported
into Studio, or was created

in Studio and then edited
in editor mode.

Freeform designer The route was created on
the canvas of freeform

designer.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

58 / 58

