
This guide describes how to use Java Agent.

Java Agent is an PingAM add-on component that operates as a Policy Enforcement Point

(PEP) or policy agent for web applications deployed on a Java container.

Java Agents intercept inbound requests to web applications. Depending on the filter

mode configuration, Java Agents interact with AM to:

Ensure that clients provide appropriate authentication.

Enforce AM resource-based policies.

This chapter covers how Java Agents work and how their features can protect web

applications.

Java Agent includes the following main components:

Agent Filter

Intercepts inbound client requests to a resource and processes them based on the

filter mode of operation.

Agent Application

Deployed as agentapp.war , it is required for authentication and the cross-domain

single sign-on (CDSSO) flow.

The following components are not part of Java Agent, but they play an important part in

the agent operation:

AM SDKs

A set of APIs required to interact with AM.

Agent Profile

A set of configuration properties that define the agent behavior. The agent profile

can be stored in AM’s configuration store or as a text file local to the agent

User guide

About Java Agent

Agent components

1 / 79

installation.

The following image shows the Java Agent components when the agent profile is stored

in the AM configuration store:

Java
Container

PingAM

Request to
protected application

Services

Authentication

Authorization

…

Java
Application

Clients

Agent profile
PingAM

SDK

Agent filter
and

application

1

2

3

4

7

8

5

6

Java Agent uses the configuration files described in this section.

The files must be in a location defined by a property added to JAVA_OPTS . For example,

in Tomcat, the agent can take the file location from bin/setenv.sh , as follows:

This file defines bootstrap parameters. The following information is required in the file:

Private AM URL:

Used for communication with AM, for example, to retrieve policy information or

user information. The URL is assembled from the following properties, and is

required, even if the agent never contacts AM:

AM Authentication Service Protocol

AM Authentication Service Host Name

AM Authentication Service Port

AM Authentication Service Path

Agent configuration

JAVA_OPTS="$JAVA_OPTS -

Dopenam.agents.bootstrap.dir=/path/to/agents/agent/agent_instance/

config"

AgentBootstrap.properties

2 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.protocol.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.port.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.am.path.html

Public AM URL:

This URL must be provided by the user if the AM firewall rules distinguish between a

public and a private URL. The agent uses this property to redirect the user’s browser

to public-facing URLs for login. If it is not provided, the AM private URL is used.

Agent Profile:

Agent Profile Name

Agent Profile Realm

Location of Agent Configuration Repository:

Defines the agent configuration mode:

Local configuration mode

The agent reads its configuration from AgentConfiguration.properties .

When the agent is in this mode, it ignores changes made to the agent profile in

AM.

Depending on the configuration in the AgentConfiguration.properties file,

the agent might never need to contact AM. For example, if Autonomous mode

is true , the agent runs independently of an AM instance.

Remote configuration mode (default)

The agent ignores the configuration in AgentConfiguration.properties ,

retains the retrieved bootstrap properties, and downloads the configuration

from AM.

When the first user request is made, the agent contacts AM to retrieve the

agent configuration. If AM is unavailable, the request returns an HTTP 503

Service Unavailable .

This file defines agent configuration settings, and overrides any properties set in the

bootstrap file.

If the value of Location of Agent Configuration Repository is LOCAL , the agent reads the

AgentConfiguration.properties file after AgentBootstrap.properties . If the

value of Location of Agent Configuration Repository is REMOTE , the agent ignores this

file.

In Java Agent 5.7 and earlier versions, this file was named

OpenSSOAgentConfiguration.properties .

AgentConfiguration.properties

AgentPassword.properties

3 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.public.am.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.profile.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.profile.realm.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fallback.mode.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

This file defines an encrypted password for the agent profile. For more information,

refer to Encrypted Agent Password.

This file defines the following keys:

The encryption key for the agent profile password. For more information, refer to

Encryption Key/Salt.

The signing key for pre-authentication cookies and POST data preservation cookies.

For more information, refer to Pre-Authn and Post Data Preservation Cookie Signing

Value.

This file configures logging of Java Agent and third-party dependencies, using the

Logback implementation of the Simple Logging Facade for Java (SLF4J) API. For more

information, refer to Manage logs.

Change the agent configuration in the following ways:

Change the agent bootstrap configuration

Manually edit AgentBootstrap.properties , and then restart the container

running the agent.

Change the agent configuration in LOCAL mode

Manually edit the AgentConfiguration.properties file, and set a value for

Configuration Reload Interval.

The interval defines the number of seconds after which the agent reads the local

property file, and reloads it if has changed since it was last read.

The value of Location of Agent Configuration Repository must be LOCAL .

Change the agent configuration in REMOTE mode

The agent is notified by the WebSocket mechanism when its configuration is changed

in AM. The agent then re-reads its configuration from AM within a few seconds.

The value of Location of Agent Configuration Repository must be REMOTE .

Change the agent configuration on the AM admin UI

Go to Realms > Realm Name > Applications > Agents > Java > Agent Name.

The value of Location of Agent Configuration Repository must be REMOTE .

AgentKey.properties

agent-logback.xml

Change the agent configuration

4 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.encrypted.password.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.encryption.key.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.signing.value.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.signing.value.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/maintenance-guide/logging.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.reload.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

The agent profile stores a set of configuration properties that define the behavior of the

agent.

During agent installation, the installer prompts for the profile realm, and populates the

property Agent Profile Realm in the bootstrap properties file. By default, the profile

realm is set to the top-level realm.

The agent profile realm can be different to the user and policy evaluation realms.

Groups of agents can use the same agent profile realm, which can be separate from the

user and policy evaluation realms.

For information about creating agent profiles in the top-level realm or other realms,

refer to Create agent profiles.

The policy evaluation realm is the realm the agent uses to request policy decisions from

AM. In most circumstances, the policy evaluation realm is the same as the user realm.

The policy evaluation realm is configured by Policy Evaluation Realm Map, and defaults

to the top-level realm. The policy set to use is configured by Policy Set Map To ensure

that policies are always evaluated in the user realm, set Enable Policy Evaluation in User

Authentication Realm to true .

In AM, only the top-level realm has a default policy set, called

iPlanetAMWebAgentService. If you use a policy evaluation realm that is in a subrealm of

the top-level realm, you must also define a policy set and policies in the equivalent realm

in AM.

The user realm is the realm in which a user is authenticated. In most circumstances, the

user evaluation realm is the same as the policy realm.

By default, users authenticate to AM in the top-level realm, however, the agent can

authenticate users in different realms depending on the request domain, path, or

resource.

When a user logs out, the agent maintains the user realm. The agent obtains the realm

info from the JWT, if one is available, or by calling sessioninfo . When the user logs

out, the stored realm is passed to the logout endpoint automatically.

Realms

Agent profile realm

Policy evaluation realm

User realm

5 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.profile.realm.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/pre-installation.html#create-agent-profiles
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.policy.evaluation.realm.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.policy.set.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.user.realm.overrides.policy.evaluation.realm.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.user.realm.overrides.policy.evaluation.realm.enabled.html

The first time an authenticated user requests a resource from the agent, the agent

establishes the user realm from the session. It permanently associates the realm with

the session in the session cache. When the session ends, the agent automatically passes

the realm to the logout endpoint.

For more information about changing the user realm, refer to Login redirect.

On startup, Java Agent uses the following properties to obtain a session from AM:

Agent Profile Name

Encrypted Agent Password

Agent Profile Realm

The agent session lifetime is defined by the AM version and configuration, and is

essentially indefinite.

For the security of your deployment, set the agent session lifetime as described in

Manage Java Agent sessions.

If you clear agent sessions in the AM admin UI, you can accidentally kill an active agent

session. If this happens, the agent detects that its session has expired and automatically

obtains a new one.

The following simplified data flow occurs when an unauthenticated client requests a

resource protected by a Java Agent and AM. The flow assumes that requests must meet

the requirements of an AM policy. For more information, see Single sign-on in AM’s

Authentication and SSO guide.

Sessions

Request flow

6 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.profile.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.encrypted.password.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.agent.profile.realm.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/access.html#agent_sessions
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/about-sso.html

Java Container

Client

Client

Agent Filter/
Agent Application

Agent Filter/
Agent Application

Web Resource
http://www.example.com

Web Resource
http://www.example.com

PingAM

PingAM

Request to http://www.example.com
intercepted by agent fi lter

FQDN check

Check FQDN

Not-enforced rules check

Check lists of not-enforced rules

a l t [Resource or cl ient IP matches not-enforced rules]

Pass through

Response

Authentication

1 Create pre-authentication cookie

2
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

3 Redirect for authentication

4 Authenticate

5 Verify credentials

6
OAuth 2.0 flow to
create OIDC JWT

7 Send self-submitting form with OIDC JWT, and SSO token

8
Post form to the agent's endpoint,
which consumes the response

9
Set cookie domain to
FQDN of resource

1 0
Redirect to http://www.example.com
intercepted by agent fi lter

1 1 Request OIDC JWT validation

1 2 OIDC JWT is OK

Authorization

1 Authorization request for policy decision

2 Policy decision is "ALLOW"

3 Log policy decision

4 Pass through

5 Response

FQDN check

When FQDN checking is enabled, the agent can redirect requests to different

domains, depending on the hostname of the request. For more information, refer to

FQDN checks.

Not-enforced rules check

The agent evaluates whether the requested resource or the client IP address

matches a not-enforced rule.

If the requested resource or the client IP address matches a not-enforced rule. The

agent allows access to the resource, and the client receives a response from

www.example.com . The flow ends.

7 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/fqdn-checking.html

For more information, refer to Not-enforced rules.

Authentication

1: The agent creates a pre-authentication cookie to protect against reply attacks. The

agent uses this cookie to track the authentication request to AM. Depending on the

configuration, the agent may either issue a cookie to track all concurrent

authentication requests, or may issue one cookie for each request. For added

security, the pre-authentication cookie can be optionally be signed.

2: The agent sets the AM login URL, which includes the goto parameter for the

OAuth 2.0 authorize endpoint, and

3: The agent redirects the client to log in to AM.

4-7: The client authenticates to AM:

AM’s Authentication Service verifies the client credentials. AM creates an SSO

token, and OIDC JWT with session information.

AM sends the client a self-submitting form with the OIDC JWT.

8: The client posts the self-submitting form to the agent endpoint, and the Java Agent

consumes it.

9: The agent sets the cookie domain to the FQDN of the resource.

10: The client attempts to access the protected resource again, and the agent

intercepts the request.

11: The agent contacts AM to validate the session contained in the OIDC JWT.

12: AM validates the session.

Authorization

1: The agent contacts AM’s Policy Service, requesting a decision about whether the

client is authorized to access the resource.

2: AM’s Policy Service returns ALLOW .

3: The agent writes the policy decision to the audit log.

4: The agent enforces the policy decision. Because the Policy Service returned

ALLOW , the agent performs a pass-through operation to return the resource to the

client.

5: The client accesses the resource.

8 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html

In Cross-Domain Single Sign-On (CDSSO), Java Agent processes requests using

authentication provided by AM. Users can access multiple independent services from a

single login session, using the agent to transfer the session ID. The agent and AM can be

in the same domain or in different domains.

The following diagram illustrates the CDSSO flow:

PingAM

Client

Client

Java Agent

Java Agent

OAuth 2.0 endpoint

OAuth 2.0 endpoint

Authentication service

Authentication service

JSON/Sessions endpoint

JSON/Sessions endpoint

Policy endpoint

Policy endpoint

1 Unauthenticated request for protected resource

2
Set pre-authentication cookie
(org.forgerock.agents.authn.cookie.name)
and redirect ...

3 . . . to oauth2/authorize endpoint.

4 Redirect...

5 ...to AM for authentication

6 Authentication page

7 Submit credentials

8 Authentication success

9 OIDC JWT embedded into self-submitting form

1 0 POST self-submitting form to internal endpoint

1 1
Validate token against pre-authentication cookie
Validate OIDC JWT with AM
Gather available user profile data and session info

1 2 Cache JWT/user profile data/session info

1 3

Delete pre-authentication cookie
Create am-auth-jwt cookie
(org.forgerock.agents.jwt.cookie.name)
and redirect to ...

1 4 Protected resource

1 5 Retrieve JWT from am-auth-jwt cookie and locate in cache

1 6 Request policy decision

1 7 Decision

1 8
Allow access and return resource,
or deny access and return HTTP 403

When the agent is in local configuration mode, configure the Authentication Redirect

URI. When the agent is in remote configuration mode, the value is set by the agent

configuration in AM.

For more information, refer to Single sign-on and Implement CDSSO in AM’s

Authentication and SSO guide.

This example sets up AM as a policy decision point for requests processed by Java Agent.

Before you start, install a Java Agent as described in the Installation, with the following

values:

AM server URL: https://am.example.com:8443/am

Agent URL: https://agent.example.com:443/app

Agent profile name: java-agent

Agent profile realm: /

Cross-domain single sign-on

Policy enforcement

9 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.redirect.uri.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.redirect.uri.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/about-sso.html
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/about-sso.html#implementing-cdsso
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/preface.html

Agent profile password: /secure-directory/pwd.txt

1. Using the AM documentation for information, log in to AM as an administrator, and

make sure that you are managing the / realm.

2. Add a Java Agent profile:

a. In the AM admin UI, select Applications > Agents > Java.

b. Add an agent with the following values:

Agent ID: java-agent

Agent URL: https://agent.example.com:443/app

Server URL: https://am.example.com:8443/am

Password: password

3. Add a policy set and policy:

a. In the AM admin UI, select Authorization > Policy Sets, and add a policy set

with the following values:

Id : PEP

Resource Types : URL

b. In the policy set, add a policy with the following values:

Name : PEP-policy

Resource Type : URL

Resources : *://*:*/*

c. On the Actions tab, add actions to allow HTTP GET and POST .

d. On the Subjects tab, remove any default subject conditions, add a subject

condition for all Authenticated Users .

4. Assign the new policy set to the agent profile:

a. In the AM admin UI, Select Applications > Agents > Java, and select your

agent.

b. On the agent page, select the AM Services tab.

c. Set Policy Set to PEP , and then click Save.

5. Test the setup:

a. In the AM admin UI, select Identities > Add Identity, and add a user with the

following values:

Username : demo

First name : demo

Last name : user

Enforce a policy decision from AM

10 / 79

https://backstage.forgerock.com/docs/am/7.5/index.html

Email Address : demo@example.com

Password : Ch4ng31t

b. Log out of AM, and clear any cookies.

c. Go to https://agent.example.com:443/app . The AM login page is

displayed.

d. Log in to AM as user demo , password Ch4ng31t , to access the web page

protected by the Java Agent.

When AM makes a policy decision, it communicates an entitlement to the agent, which

can optionally include advice and response attributes.

When AM denies a request with advice, the agent uses the advice to take remedial

action. For example, when AM denies a request because the authentication level is too

low, it can send advice to increase the authentication level. The agent then prompts the

user to reauthenticate at a higher level, for example, by using a one-time password.

When AM allows a request, it can include the following types of response attribute in the

entitlement:

Subject response attributes: Any LDAP user attribute configured for the identity

store where AM looks up the user’s profile. For more information, refer to Identity

stores in AM’s Setup guide.

Static response attributes: Any key:value pair, for example, FrequentFlyerStatus :

gold .

Depending on the value of Response Attribute Map, and Response Attribute Fetch

Mode, the agent adds the listed attributes to HTTP headers, HTTP cookies, or request

attributes in the response.

This example builds on the example in Enforce a policy decision from AM. Set up and

test that example first.

1. Configure subject response attributes and static response attributes in the AM

policy you created earlier:

a. In the AM admin UI, select the PEP-policy , and go to the Response

Attributes tab.

b. In the SUBJECT ATTRIBUTES frame, select one or more of the available

attributes. For example, select cn .

c. In the STATIC ATTRIBUTES frame, add a response attribute pair. For example,

add the following pair:

PROPERTY NAME: FrequentFlyerStatus



Retrieve advice or response attributes from policy decisions

11 / 79

https://agent.example.com/app
https://agent.example.com/app
https://agent.example.com/app
https://backstage.forgerock.com/docs/am/7.5/setup-guide/setting-up-identity-stores.html
https://backstage.forgerock.com/docs/am/7.5/setup-guide/setting-up-identity-stores.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.fetch.mode.html

PROPERTY VALUE: gold

d. Click Save Changes.

2. In the AM admin UI, select the java-agent you created earlier.

The agent must use the AM policy set and realm where the response attributes are

configured.

If the response attributes are not present in the policy decision from AM, the agent

does not create the corresponding HTTP header or cookie.

3. In the Application tab, set Response Attribute Fetch Mode to select whether to

map response attribute names to HTTP headers, HTTP cookies, or request

attributes. For more information, refer to Response Attribute Fetch Mode.

4. In the Response Attribute Map field, map the subject response attributes you

selected in AM:

Key: cn

Value: CUSTOM-name

The name of the AM response attribute cn is mapped to an HTTP header,

HTTP cookie, or request attribute called CUSTOM-name . The value is taken from

the user profile.

For more information, refer to Response Attribute Map.

5. In the Response Attribute Map field, map the static response attributes you added

in AM:

Key: FrequentFlyerStatus

Value: CUSTOM-flyer-status

The name of the AM response attribute Frequent flyer status is mapped

to an HTTP header, HTTP cookie, or request attribute called CUSTOM-flyer-

status . The value is gold .

For more information, refer to Response Attribute Map.

When POST data preservation is enabled and an unauthenticated client POSTs data to a

protected resource, the agent stores the data in the POST data preservation cache and

redirects the client for login. After successful authentication, the agent recovers the

cached data and automatically submits it to the protected resource.

The POST data can be any POST content, such as HTML form data or a file upload.

POST data preservation

12 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.map.html

Use POST data preservation in environments where clients submit form data and have

short-lived sessions.

The following image shows a simplified data flow, where an unauthenticated client

POSTs data to a protected web application:

Java Container

Client

Client

Agent Filter/
Agent Application

Agent Filter/
Agent Application

Web Resource
http://www.example.com

Web Resource
http://www.example.com

PingAM

PingAM

1 POST data to http://www.example.com

2
Store POST data temporarily, and create identifiers:
-First unique identifier for goto URL in auth response
-Second unique identifier in cookie

3
Redirect for authentication
Provide first unique identifier and cookie

4 Authentication request with first unique identifier and cookie

5 Authentication response with first unique identifier in goto URL, and cookie

6
Validate both identifiers
Recover POST data from endpoint in goto URL

7 Self submitting form, including POST data, which . . .

. . . POSTs to http://www.example.com

Java Agent guarantees the integrity of the data, and the authenticity of the client as

follows:

1. An unauthenticated client requests a POST to a protected resource.

2. The agent stores the POST data temporarily, and then generates the following

unique identifiers:

An identifier in the goto URL for the authentication response

An identifier in a cookie

The use of two unique identifiers provides robust security, because a hacker must

steal the goto URL and the cookie.

3. The agent redirects the client to AM for authentication, and includes the cookie in

the redirect.

4. The client authenticates with AM.

5. AM provides an authentication response to the goto URL with the unique identifier,

and includes the cookie.

6. The agent validates both identifiers, and recovers the POST data from the dummy

internal endpoint given in the goto URL.

If the goto URL contains the incorrect identifier, or cannot provide a cookie

containing the correct second identifier (for example, because it has expired), the

agent denies the request.

13 / 79

The presence of the unique identifier in the goto URL ensures that requests at the

URL can be individually identified. Additionally, the code makes it more difficult to

hijack user data, because there is little chance of guessing the code within the login

window.

7. The agent sends a self-submitting form to the client browser, that includes the form

data the user attempted to post in step 1. The self-submitting form POSTs to the

protected resource.

Configure POST data preservation by using the agent properties listed in POST Data

Preservation in the Properties reference, or on the Advanced tab of the AM admin UI.

By default, POST data is stored in the in-memory cache. Consider the following points if

you configure POST Data Preservation in Files or Cache to store POST data in the file

system:

Payloads from unauthenticated users are stored in the agent file system. If your

threat evaluation does not accept this risk, store the data in the cache, or set POST

Data Preservation in Files or Cache to false .

Restrict access to the POST Data Preservation File Directory, to mitigate the risk of

permissive access or leakage of personally identifiable information (PII).

Limit the amount of stored POST data to mitigate the risk of DoS attacks, by

configuring POST Data Preservation Storage Size or Max Entries in POST Data

Preservation Storage.

Remove expired POST data as soon as possible by configuring the POST Data

Preservation Directory Sweep Interval.

Identify threats in POST data before it is deleted, by making sure that Intrusion

Detection Systems inspect the data within the time specified by POST Data

Preservation Directory Sweep Interval.

Configure POST data preservation

Security considerations for storing POST data in files

Defend against CSRF attacks when using POST data preservation

WARNING

14 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#post_data_preservation
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#post_data_preservation
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.total.size.mb.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html

The following image shows a simplified data flow during a CSRF attack on an

authenticated client when POST data preservation is disabled. In this limited scenario,

the agent SameSite setting is enough to defend the web application:

Java Container

Client
client.example.com

Client
client.example.com

Java Agent
agent.example.com

Java Agent
agent.example.com

Web Application
webapp.example.com

Web Application
webapp.example.com

rogue.example.com

rogue.example.com

Client authenticated with AM - cookie domain=client.example.com, SameSite=strict

1 GET rogue.example.com

2 POST data to webapp.example.com

3
POST data to webapp.example.com

Originating from rogue.example.com

4 Redirect for authentication

5
Already authenticated with
Cookie domain=client.example.com
SameSite=strict

6 Get webapp.example.com

7 SameSite rules not sat isfied

8 HTTP 403/Forbidden

The following image shows a simplified data flow during a CSRF attack on an

authenticated client when POST data preservation is enabled. In this scenario, the

SameSite setting is not enough to defend the web application:

Cross-site request forgery attacks (CSRF or XSRF) can be a cause of serious

vulnerabilities in web applications. It is the responsibility of the protected

application to implement countermeasures against such attacks, because Java

Agent cannot provide generic protection against CSRF. Follow the latest guidance

from the OWASP CSRF Prevention Cheat Sheet .

When POST data preservation is enabled, captured POST data that is replayed

appears to come from the same origin as the protected application, not from the

site that originated the request. Therefore, CSRF defenses that rely solely on

checking the origin of requests, such as SameSite cookies or Origin headers, are not

reliable. Ping Identity strongly recommends using token-based mitigations against

CSRF, and relying on other measures only as a defense in depth, in accordance with

OWASP guidance.

WARNING



CSRF attack when POST data preservation is disabled

CSRF attack when POST data preservation is enabled

15 / 79

https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

Java Container

Client
client.example.com

Client
client.example.com

Java Agent
agent.example.com

Java Agent
agent.example.com

Web Application
webapp.example.com

Web Application
webapp.example.com

rogue.example.com

rogue.example.com

Client authenticated with AM - cookie domain=client.example.com, SameSi te=strict

1 GET rogue.example.com

2 POST data to webapp.example.com

3
POST data to webapp.example.com

Originating from rogue.example.com

4
Cache malicious POST data and create identifiers:
-First unique identifier for goto URL in auth response
-Second unique identifier in cookie

5
Redirect for authentication
Provide PDP identifier and cookie

6
Already authenticated with
Cookie domain=client.example.com
SameSite=strict

7
Immediately rePOST data to webapp.example.com

Originating from rogue.example.com

8
Validate PDP identifier and cookie
Recover malicious POST data from PDP cache

9
Self submitting form including
malicious POST data from PDP cache

1 0
SameSite rules are sat isfied because
data originates from PDP cache

1 1 ... POSTs malicious data to webapp.example.com

When an unauthenticated user requests access to a protected resource, Java Agent

redirects the user’s browser to a login endpoint. The choice of endpoint and the

parameters it receives is defined by the login redirect mode, default or custom.

In default login redirect mode, the property Enable Custom Login Mode is always

false . Depending on the configuration of login redirect properties, some endpoint

parameters can be changed. For example, the agent can conditionally redirect a request

to a specific realm or a different AM instance.

The /oauth2/authorize endpoint returns an OIDC ID token, and this is the only

response the agent accepts.

Do not use default login redirect mode if session tokens for authentication and

authorization are SSO tokens, even if you intend that the agent converts the SSO tokens

into JWTs. Instead, use custom login redirect mode.

The following image shows the flow of data during a default login redirect:

Login redirect

Default login redirect

16 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#default_login_redirect
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html#login-redirect-custom

PingAM

Client

Client

Java Agent

Java Agent

/oauth2/authorize

/oauth2/authorize

1 Request protected resource

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = false

3
Create pre-authentication cookie
and redirect . . .

4 to .../oauth2/authorize endpoint

Figure 1. Data flow for default login redirect mode

Set the following properties to redirect login to a different realm based on the domain of

the request:

Enable Custom Login Mode: Leave with the default value of false .

AM Login URL List: Set to the URL of the login page, and specify the login realm as a

parameter: https://am.example.com:8443/am?realm=/myrealm

The following image builds on figure 1, to configure AM Login URL List so that the agent

redirects the user to log in to myrealm instead of the top-level realm.

PingAM

Client

Client

Java Agent

Java Agent

/oauth2/authorize?realm=myrealm

/oauth2/authorize?realm=myrealm

1 Request protected resource

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = false

3 AM Login URL List=https://am.example.com:8443/am?realm=/myrealm

4
Create pre-authentication cookie
and redirect . . .

5 t o https://am.example.com:8443/am/oauth2/authorize?realm=myrealm

Figure 2. Data flow for default login redirect mode, where the user authenticates to a

subrealm

Use the request domain to redirect login to a different realm

Use the request domain to redirect login to a subrealm

17 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html

Set the following properties to redirect a request to a login realm, based on the request

domain:

Enable Custom Login Mode: Leave with the default value of false .

OAuth Login URL List: Map the request domain to the required login realm. When

this property is set, the agent tries to match the request domain to the list of

domains in this property. If there is a match, the agent redirects the user to log in at

the matched URI.

The following image builds on figure 1, to configure OAuth Login URL List

(org.forgerock.agents.oauth.login.url.list). Because the request is for a

resource in blue.example.com , it is directed for authentication to the blue realm.

PingAM

Client

Client

Java Agent

Java Agent

/oauth2/authorize?realm=blue

/oauth2/authorize?realm=blue

1
Request protected resource
http://blue.example.com/index.html

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = false

3

org.forgerock.agents.oauth.login.url.list[0]=blue.example.com|?realm=blue

org.forgerock.agents.oauth.login.url.list[1]=red.example.com|?realm=red

org.forgerock.agents.oauth.login.url.list[2]=red.example.com/yellow|?realm=yellow

org.forgerock.agents.oauth.login.url.list[3]=|?realm=default

4
Create pre-authentication cookie
and redirect . . .

5 t o https://am.example.com:8443/am/oauth2/authorize?realm=blue

Figure 3. Data flow for default login redirect mode, where the user authenticates to a

subrealm based on the request domain

Other requests are directed as follows:

Requests for a resource in red.example.com/ruby are passed to the

oauth2/authorize endpoint to log the user into the red realm.

Requests for a resource in red.example.com/yellow/ are passed to the

oauth2/authorize endpoint to log the user into the yellow realm.

Requests for a resource in an unmapped domain are passed to the

oauth2/authorize endpoint to log the user in to the specified default realm.

In default login redirect mode, the agent can redirect requests to any AM instance

supporting the /oauth2/authorize endpoint.

Set the following properties to redirect a request to a different OIDC endpoint, based on

the request domain:

Enable Custom Login Mode: Leave with the default value of false .

Use the request domain to redirect login to different endpoints

18 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html

OAuth Login URL List: Map the request domain to the required OIDC endpoint.

When this property is set, the agent tries to match the request domain to the list of

domains in this property. If there is a match, the agent redirects the user to log in at

the matched OIDC endpoint.

The following image builds on figure 1, to configure OAuth Login URL List. Because the

request is for a resource in red.example.com/yellow , it is directed for authentication

to a different IDP.

Other IDP

Client

Client

Java Agent

Java Agent

/oauth2/other-authorize?realm=default

/oauth2/other-authorize?realm=default

1 Request resource in red.example.com

2
Not-enforced lists = no match
User authenticated = no
Enable Custom Login Mode = false

org.forgerock.agents.oauth.login.url.list[0] = red.example.com|http://other.example.com:8081/other-idp/oauth2/other-authorize
org.forgerock.agents.oauth.login.url.l ist[1] = |?realm=default

Create pre-authentication cookie
and redirect . . .

Figure 4. Data flow for default login redirect mode, where the user authenticates to an

identity provider based on the request domain

Requests for a resource in an unmapped domain are passed to the AM

oauth2/authorize endpoint, to log the user in to the specified default realm.

In custom login redirect mode, the agent is not confined to invoking a fixed endpoint in

AM, but can redirect login anywhere. The agent handles JWTs or SSO tokens as session

tokens for authentication and authorization.

Use custom login redirect mode for legacy deployments, where SSO tokens, instead of

JWTs, are used for authentication and authorization. Otherwise, use default login

redirect instead.

The property Enable Custom Login Mode is always true . Depending on the

configuration of login redirect properties, the agent can:

Convert SSO tokens into JWTs, through a direct "backdoor" call to AM

Use caches to stop the SSO to JWT conversion from occurring more than once

Leave SSO tokens unconverted

The following image shows the possible data flows for custom login redirect mode:

Custom login redirect

19 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.oauth.login.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html#login-redirect-default
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html#login-redirect-default
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#custom_login_redirect

Java Container PingAM

Client

Client

Java Agent

Java Agent

custom-login.example.com

custom-login.example.com

/json/sessions endpoint

/json/sessions endpoint

/json/policy endpoint

/json/policy endpoint

1 Request protected resource

2
Not-enforced l ists = no match
User authenticated = no
Enable Custom Login Mode = t r u e

a l t [AM Login URL List configured]

3 Use as URL of a custom login page

[AM Login URL List not configured]

a l t [Legacy Login URL List configured]

4 Use as URL of a custom login page

[Legacy Login URL List not configured]

5 Stop custom login and resort to default login mode

6 Append goto parameter and nonce

7 Create pre-authentication cookie and redirect...

8 . . . to http://custom-login.example.com

9 Redirect to agent, using goto parameter

1 0 Search for id_token parameter

a l t [id_token parameter present]

1 1 Use value as JWT, and continue

[id_token parameter absent]

1 2 Look for iPDP cookie

a l t [iPDP cookie present]

1 3 Find value of Enable SSO Token Acceptance

a l t [Va lue t rue]

1 4 Accept SSO token, and continue

[Va lue fa lse]

1 5 Exchange SSO token for JWT, and continue

[iPDP cookie absent]

1 6 Authentication fails

1 7 Retrieve session info, using SSO token or JWT

1 8 Session info

a l t [Session val id]

1 9 Request policy decision

[Session inval id]

2 0 Authentication fails

2 1 Policy decision

a l t [Access a l lowed]

2 2 Redirect browser to resource

[Access denied]

2 3 HTTP status code 403

Figure 5. Data flow for customized login redirect

AM’s OAuth2 Provider service can be configured to use a custom URL to handle login,

to override the default AM login page. When a custom login page is configured in AM,

configure the agent to ensure that it redirects the login to that page.

1. In the AM admin UI, go to Services > OAuth2 Provider > Advanced > Custom

Login URL Template, and note the custom URL.

2. Go to Applications > Agents > Java, and select your Java Agent.

3. On the AM Services tab set the following properties:

Enable Custom Login Mode: Set to on

AM Login URL List: Set to the custom URL in step 1.

Redirect login to a custom URL configured in AM

20 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.legacy.login.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.agents.config.login.url.html

When login must be completed in a network where AM is behind a firewall, set Public

AM URL to a proxy which can access AM.

To mitigate the risk of infinite redirection loops, limit the number of redirects allowed for

a browser session. After this number, the agent blocks the request.

Configure Redirect Attempt Limit, to specify a non-zero value. For example, if the limit is

set to three, then the agent blocks the request on the fourth redirect.

This section describes how to trigger a logout based on the properties of a request, and

how to redirect users after logout to a specified redirection resource.

The resource to trigger logout can be the agent URL or a URL overridden by the

configuration. The agent expects the logout to register session destruction with AM.

The agent maintains the user realm for each session, either by obtaining the realm info

from the JWT, or by calling the sessioninfo endpoint (when SSO tokens are used).

When the user logs out, the stored realm is passed to the logout endpoint automatically.

AM manages session cookies as follows, and the agent is responsible for destroying the

cookies:

From AM 7, AM places the session cookie in the Authorization header, prefixed

with X-Requester-Token .

Before AM 7, AM places the session cookie in the HTTP parameter requester .

If Convert SSO Tokens Into OIDC JWTs is true , the logout URL is invoked twice—once

with the JWT, and again with the SSO token. If Enable SSO Token Acceptance is true ,

the logout URL can be invoked only by an SSO token.

Configure logout with the properties described in logout.

Set the property Logout URI Map to specify a URL to trigger logout. When the URL is

invoked, the agent kills the current session by invoking the AM REST logout endpoint or

the endpoint configured by Conditional Logout URL List.

The URL is a dummy URL. Even if a resource exists at the URL, it is never accessed.

Redirect login to AM behind a firewall

Limit the number of allowed redirect attempts

Logout

Trigger logout with a URL

21 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.public.am.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.public.am.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.redirect.attempt.limit.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-user-realm
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.accept.ipdp.cookie.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.accept.sso.tokens.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#Logout
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.endpoint.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.conditional.logout.url.list.html

The following example triggers a logout from an application called bank , when the URL

http://app.example.com:80/mywebapp/bank/log-me-out is invoked:

When a web application is specified, it must exist and the agent must have access to it. If

the bank application in the above example doesn’t exist, the web container throws an

error.

If a web application is not specified, the current sessions are killed for all web

applications. The following examples trigger a logout from any application when the

specified URL is invoked:

The agent must be able to access the context for the URL. For example, unless the agent

is deployed in the root context, the following configuration fails:

Set the property Logout Request Parameter Map to specify a URL parameter to trigger

logout. The agent searches every incoming request for the parameter. When the agent

detects the parameter, it invokes AM to kill the current session for the specified web

application.

To speed up the search for a logout parameter, set the property Enable Logout

Introspection to true .

The following example triggers a logout from an application called bank when the

request URL contains the parameter log-out :

The request URL must contain the log-out parameter, but does not need to assign a

value to the parameter. The following request URLs would trigger a logout for the

previous configuration:

Log out of a specific web application

org.forgerock.agents.logout.endpoint.map[bank]=/bank/log-me-out

Log out of all web applications

org.forgerock.agents.logout.endpoint.map=/agentapp/log-me-out

org.forgerock.agents.logout.endpoint.map=/dummy-logout

Trigger logout with a parameter

Log out of a specific web application

org.forgerock.agents.logout.request.param.map[bank]=log-out

22 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.request.param.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.introspection.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.introspection.enabled.html

https://am.example.com:8443/protectedapp/index.html?log-out

https://am.example.com:8443/examples/index.html?examplelog-out=

If a web application is not specified, the current sessions are killed for all web

applications. The following example triggers a logout from any application when the

request URL contains the parameter logout :

Set Conditional Logout URL List to define URLs to which the agent can conditionally

direct the user on logout.

Configure one or more conditions. The agent compares the request URL to each

condition in the list to find the closest match. It evaluates conditions in order of length,

starting with the longest, irrespective of their position in the list.

Depending on the value of the redirection URL, perform this additional configuration:

If the URL doesn’t perform a REST logout to AM, set Always invalidate sessions to

true .

The agent additionally invokes the AM REST logout endpoint to invalidate the

session.

If the URL isn’t relative to AM or in the same scheme, FQDN, and port, add it to the

AM validation service.

For more information, refer to Advanced Identity Cloud’s Configure trusted URLs or

AM’s Configure trusted URLs.

In the following example, example.com/path is evaluated before example.com ; the

default condition is the shortest, and is evaluated last:

Using the above configuration, consider the following evaluations:

Log out of all web applications

org.forgerock.agents.logout.request.param.map=logout

Conditionally log out to different URLs

org.forgerock.agents.conditional.logout.url.list[0]=example.com|?

additional=value

org.forgerock.agents.conditional.logout.url.list[1]=example.com/pa

th|?one=red&two=green&three=blue

org.forgerock.agents.conditional.logout.url.list[2]=mybank.com|htt

p://mybank.com/myapp/logout?param=override

org.forgerock.agents.conditional.logout.url.list[3]=|?alpha=beta

23 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.conditional.logout.url.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.logout.session.invalidate.enabled.html
https://backstage.forgerock.com/docs/idcloud/latest/am-authentication/redirection-url-precedence.html#configure_trusted_urls
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/redirection-url-precedence.html#configure_trusted_urls

Request URL Action

http://example.com:9010/path/inde

x.html

The following parameter name:value

pairs are added to the logout URL:

one:red , two:green , and three=blue
http://example.com:9010:/path/pub

lic/index.html

http://example.com:9010:/index.ht

ml

The following parameter name:value pair

is added to the logout URL:

additional:value

https://mybank.com:443/path/index

.html

http://mybank.com/myapp/logout is

used for logout, overriding the AM logout

REST endpoint that the agent would use

by default.

The administrator is responsible for

making sure that the overriding URL kills

all tokens associated with login, but is not

responsible for removing cookies

containing either JWTs or SSO tokens.

Any URL that does not match on of the

other conditions

Parameter alpha:beta added to logout

URL

Set Logout Entry URI Map to redirect users to a specified resource after logout. Use this

property for logout triggered by Logout URI Map or Logout Request Parameter Map.

The redirection resources can be HTML pages or JSP files. They are automatically added

to the not-enforced list so that they can be accessed without authentication.

Depending on the type and value of a redirection resource, perform this additional

configuration:

If it is a URL that doesn’t perform a REST logout to AM, set Always invalidate

sessions to true .

The agent additionally invokes the AM REST logout endpoint to invalidate the

session.

If it is a URL that isn’t relative to AM or in the same scheme, FQDN, and port, add it

to the AM validation service.

For more information, refer to Advanced Identity Cloud’s Configure trusted URLs or

AM’s Configure trusted URLs.

Redirect logout to a landing page

24 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.goto.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.endpoint.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.logout.request.param.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.logout.session.invalidate.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.logout.session.invalidate.enabled.html
https://backstage.forgerock.com/docs/idcloud/latest/am-authentication/redirection-url-precedence.html#configure_trusted_urls
https://backstage.forgerock.com/docs/am/7.5/authentication-guide/redirection-url-precedence.html#configure_trusted_urls

The following example directs requests to the bank application to logout-page.html ,

after logout:

To redirect requests for any web application, leave the web application name field

empty, and set the logout URI as a specific URL. The following example directs all

requests to goodbye.html after logout:

When an agent is configured to protect a web application, it protects every resource in

that application. Each access to any resource incurs the overhead of a policy evaluation

request to AM; access 100 resources, and you incur 100 requests to AM, with all of their

associated network overhead.

Some resources, such as the "public" directory of a web application, contain data that is

not sensitive. It can be accessed by any, authenticated or unauthenticated, clients. The

agent uses lists of not-enforced rules to identify these resources in the web application.

The agent matches incoming requests to the lists of not-enforced rules. When a request

matches a not-enforced rule, the agent bypasses the call to AM:

If an unauthenticated user sent the request, the agent does not redirect the user to

log in.

If an authenticated user sent the request, the agent does not request a policy

evaluation from AM.

Use not-enforced rules to reduce the number of unnecessary calls to AM, and therefore

improve the performance and speed of your application.

The following image shows the data flow when Java Agent evaluates not-enforced rules

for a request, first searching for a match in the cache, then in the not-enforced lists:

Configure a logout landing page for a specific web application

org.forgerock.agents.logout.goto.map[bank]=/banking-app/logout-

page.html

Configure a logout landing page for all web applications

org.forgerock.agents.logout.goto.map=/agentapp/goodbye.html

Not-enforced rules

25 / 79

Java Container

Client

Client

Java Agent

Java Agent

www.example.com

www.example.com

PingAM

PingAM

1 Request to http://www.example.com

2 Request matches cache for not-enforced rules?

a l t [Request matches cache for not-enforced rules]

3 Pass through

4 Response

[Request does not match cache for not-enforced rules]

5 Request matches pattern in not-enforced lists?

a l t [Request matches pattern in not-enforced l ists]

6 Cache request match

7 Pass through

8 Response

[Request does not match pattern in not-enforced l ists]

9 Not-enforced lists inverted?

a l t [IP l ist and/or URI l ist are inverted]

1 0 Cache request match

1 1 Pass through

1 2 Response

[IP l ist and/or URI l ist are not inverted - the request does not match a not-enforced rule]

a l t [C l ient authent icated]

1 3 Request policy decision

[Cl ient not authent icated]

1 4 Redirect to ...

1 5 ... AM for authentication

1. A client requests a resource.

2-4. If the not-enforced URI or IP cache is enabled, the Java Agent checks whether the

request matches any cached results. If the same request from the client previously

matched a not-enforced rule, the Java Agent passes the request without requiring the

client to authenticate.

5. If the caches are not enabled, or the request doesn’t match a cached result, the Java

Agent checks whether the request matches a rule in a not-enforced list.

The Java Agent evaluates every rule in the lists in order, until it finds the first match.

When it finds a match, it stops evaluating, and does not consider other rules further

down the list even if they provide a better match. Take care to place your most specific

rules at or near the beginning of the list.

6-8. The Java Agent caches the result and passes the request without requiring the client

to authenticate.

26 / 79

9-14. If the request doesn’t match a rule in a not-enforced list, the Java Agent checks

whether rules are inverted, and responds as follows:

Not-enforced URI rules Not-enforced IP rules Pass request without

requiring authentication?

Inverted Inverted Yes

Not inverted Not inverted No

Inverted Not inverted No

Not inverted Inverted No

Configure not-enforced rules by using the properties listed in Not-enforced rules in the

Properties reference, or on the Application tab of the AM admin UI. Configure the

following lists of not-enforced rules:

Not-enforced URI rules

Rules in Not-Enforced URIs allow access to resources, such as images, stylesheets, or

the HTML pages that provide the public front end of your site.

Not-enforced IP rules

Rules in Not-Enforced Client IP List allow access to your site from an administrative IP

address, an internal network range, or a search engine.

Compound not-enforced URI and IP rules

Allow access based on a combination of resources and IPs.

When there are multiple lists of rules, the agent evaluates them in the following order:

Order Rule

type

Rule includes requirements

for Cookie values or Header

values

Rule uses the DENY keyword

to Deny access

1 Compou

nd

Yes Yes

2 Compou

nd

Yes No

3 Compou

nd

No Yes

Configure not-enforced rules

27 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#properties_by_function
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-cookie
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-cookie
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access

Order Rule

type

Rule includes requirements

for Cookie values or Header

values

Rule uses the DENY keyword

to Deny access

4 Compou

nd

No No

5 IP Yes Yes

6 IP Yes No

7 IP No Yes

8 IP No No

9 URL Yes Yes

10 URL Yes No

11 URL No Yes

12 URL No No

Use the following conventions to define not-enforced URI rules and not-enforced IP

rules.

Java Agent normalizes resource paths before applying not-enforced rules.

Resource paths are normalized according to the rules defined by the properties

described in URL handling.

Invert any rule in a not-enforced list by preceding it with the keyword NOT , separated by

a space (blank) character.

Conventions for not-enforced rules

Path normalization

Invert rules

Invert specific rules

The NOT keyword is overridden by the DENY keyword. Learn more in Deny access.

IMPORTANT

28 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-cookie
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-cookie
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#NER-header
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/url-handling.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access

In the following example, requests for a .jpg file in the /private URI require

authentication:

In the following example, the agent enforces authentication and requests policy

evaluations for any request from the network specified by the 192.168.1.0/24 CIDR

notation:

Invert all rules by setting Invert Not-Enforced IPs or Invert Not-Enforced URIs to true .

You can find more information about using wildcards in Wildcards.

Note that trailing forward slashes aren’t recognized as part of a resource name.

Therefore, /images// , /images/ , and /images are equivalent.

The following list summarizes the behavior of the multi-level wildcard (*):

Matches zero or more occurrences of any character except for the question mark

(?).

Spans multiple levels in a URL.

Cannot be escaped. Therefore, the backslash character (\) or other characters

cannot be used to escape the asterisk, as such * .

* Cannot be used in the same rule as the one-level wildcard (-*-) or a regular

expression.

NOT /private/*.jpg

NOT 192.168.1.0/24

Invert all rules

For security considerations, don’t invert all rules. Instead, use the NOT keyword to

invert specific rules.

IMPORTANT

The NOT keyword and the properties in this section are overridden by the DENY

keyword. Learn more in Deny access.

IMPORTANT

Wildcards

Multi-level wildcard (*)

29 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.invert.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.invert.enabled.html
https://backstage.forgerock.com/docs/am/7.5/authorization-guide/resource-types-ui.html#wildcards
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html#deny-access

The following table gives examples of the multi-level wildcard * in rules defined in Not-

Enforced Client IP List:

Multi-level wildcard for not-enforced IP rules

Rule Matches request IP Doesn’t match request IP

192.168.1.* 192.168.1.0

192.168.1.0/24

192.168.0.1

The following table gives examples of the multi-level wildcard * in rules defined in Not-

Enforced URIs:

Multi-level wildcard for not-enforced URI rules

Rule Matches request URL Doesn’t match request

URL

http://A-

examp.com:8080/*

http://A-

examp.com:8080/

http://A-

examp.com:8080/index.h

tml

http://A-

examp.com:8080/x.gif

http://B-

examp.com:8080/

http://A-

examp.com:8090/index.h

tml

http://A-

examp.com:8080/a?b=1

http://A-

examp.com:8080/*.html

http://A-

examp.com:8080/index.h

tml

http://A-

examp.com:8080/pub/ab.

html

http://A-

examp.com:8080/pri/xy.

html

http://A-

examp.com/index.html

http://A-

examp.com:8080/x.gif

http://B-

examp.com/index.html

http://A-

examp.com:8080/*/ab

http://A-

examp.com:8080/pri/xy/

ab/xy/ab

http://A-

examp.com:8080/xy/ab

http://A-examp.com/ab

http://A-

examp.com/ab.html

http://B-

examp.com:8080/ab

30 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

Rule Matches request URL Doesn’t match request

URL

http://A-

examp.com:8080/ab/*/d

e

http://A-

examp.com:8080/ab/123/

de

http://A-

examp.com:8080/ab/ab/d

e

http://A-

examp.com:8080/ab/de/a

b/de

http://A-

examp.com:8080/ab/de

http://A-

examp.com:8090/ab/de

http://B-

examp.com:8080/ab/de/a

b/de

The following list summarizes the behavior of the one-level wildcard (-*-):

Matches zero or more occurrences of any character except for the forward slash (/)

and the question mark (?).

Doesn’t span multiple levels in a URL.

Cannot be escaped. Therefore, the backslash character (\) or other characters

cannot be used to escape the hyphen-asterisk-hyphen, like this \-*- .

Cannot be used in the same rule as the multi-level wildcard (*) or a regular

expression.

The following table gives examples of the one-level wildcard -*- in rules defined in Not-

Enforced URIs:

One-level wildcard for not-enforced URI rules

Rule Matches request URL Doesn’t match request

URL

One-level wildcard (-*-)

31 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

Rule Matches request URL Doesn’t match request

URL

http://A-

examp.com:8080/b/-*-

http://A-

examp.com:8080/b/

http://A-

examp.com:8080/b/cd

http://A-

examp.com:8080/b/cd/

http://A-

examp.com:8080/b

http://A-

examp.com:8080/b/c?

d=e

http://A-

examp.com:8080/b/cd/e

http://A-

examp.com:8090/b/

http://A-

examp.com:8080/b/-

*-/f

http://A-

examp.com:8080/b/c/f

http://A-

examp.com:8080/b/cde/

f

http://A-

examp.com:8080/b/c/e/

f

http://A-

examp.com:8080/f/

http://A-

examp.com:8080/b/c-

*-/f

http://A-

examp.com:8080/b/cde/

f

http://A-

examp.com:8080/b/cd/f

http://A-

examp.com:8080/b/c/f

http://A-

examp.com:8080/b/c/e/

f

http://A-

examp.com:8080/b/c/

http://A-

examp.com:8080/b/c/fg

When multiple wildcards are included in the same rule of a Not-Enforced URIs, the agent

matches the parameters in any order that they appear in a resource URI.

For example, the following rule applies to any resource URI that contains a

member_level and location query parameter, in any order:

The following requests would be not-enforced:

Multiple wildcards

/customers/*?*member_level=*&location=*

32 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

Use the DENY keyword with a regular expression or classic pattern to prevent access

either to a resource or from an IP address. If the request matches the resource path or

IP address, Java Agent denies access with an HTTP 403 Forbidden status.

When the DENY keyword is used, access to a resource and/or access from an IP address

is always denied. If the NOT keyword or the following properties are used with the DENY

keyword, they are ignored: Invert Not-Enforced IPs or Invert Not-Enforced URIs.

Consider the following examples:

Deny access to requests from the specified IP address:

Deny access to all .jpg files:

Note here that the use of DENY causes NOT to be ignored:

DENY access to incoming URLs containing dubious characters, such as percent

characters remaining in the normalized path. Java Agent converts %2F to / and

%5C to \ before applying not-enforced rules:

https://www.example.com/customers/default.jsp?

member_level=silver&location=fr

https://www.example.com/customers/default.jsp?

location=es&member_level=silver

https://www.example.com/customers/default.jsp?

location=uk&vip=true&member_level=gold

Deny access

DENY 155.251.79.32

DENY /*.jpg

NOT,DENY /*.jpg

DENY /*%*

Regular expressions

The Java Agent uses regular expression matching from the JDK. Make sure your

expressions are evaluated in a way that is consistent with this.

IMPORTANT

33 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.invert.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.invert.enabled.html

Add the keyword REGEX or REGEXP followed by a blank (space) character before the

URI or IP address. For example:

Consider the following points when using regular expressions:

Wildcards and regular expressions cannot be used in the same rule.

Using netmask CIDR notation or IP address ranges and regular expressions is not

supported. However, you can create a regular expression that matches a range of IP

addresses, such as:

If an invalid regular expression is specified in a rule, the rule is dropped and an

error message is logged.

Add one or more of the following keywords to the not-enforced rule to apply it when the

incoming request uses a specific HTTP method: GET , HEAD , POST , PUT , PATCH ,

DELETE , OPTIONS , TRACE .

By default, no HTTP method is specified for a rule, and all methods are not-enforced for

that rule. When one or more HTTP methods are specified, only those methods are not-

enforced. Methods that aren’t specified are enforced.

The following example doesn’t require authentication for any request method to

192.168.10.* :

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for GET requests to /public , but does for other HTTP methods:

To specify a list of methods, add a comma-delimited list of methods, followed by a blank

(space) character before the item to match.

REGEX https?://www\.example\.com/([^/])+/.*\.jpg

REGEX 192\.168\.10\.\d+

REGEX 192\.168\.10\.(10|\d)

HTTP Methods

192.168.10.*

GET /public/*

34 / 79

To invert a method, precede it with an exclamation point ! character. In the following

examples, the agent enforces authentication and requests policy evaluations for POST

requests, but not for other HTTPS methods:

Unrecognized keywords in a rule are ignored and don’t invalidate the rest of the rule.

Use the following syntax to require the incoming request to have a named cookie with a

specified value:

Name: Cookie name

Value: Cookie value

Modifiers: One or more modifiers to change the lookup method:

c : (For not-enforced URI rules only) Perform a case-insensitive search for the

cookie name. By default, the search is case-sensitive.

i : Perform a case-insensitive search for the cookie value. By default, the

search is case-sensitive.

r : Treat the string in Value as a regular expression.

The following example doesn’t require authentication for requests to

/private/admin/images/ , when the request contains a cookie with the case-

GET,POST /public/*

GET,POST,PUT /examples/notenforced/*.jpg

GET,REGEX https?://www\.example\.com/([^/])+/.*\.jpg

NOT,GET,REGEX 192\.168\.10\.\d+

POST 192.168.10.*

GET 192.168.10.1-192.168.10.254 192.168.0.1

POST,PUT 192.168.1.0/24

!POST /public/*

!POST 192.168.1.0/24

Cookie values

COOKIE(Name/Value/Modifiers) Not Enforced URIs

COOKIE(Name/Value/Modifiers) Not Enforced IPs

35 / 79

insensitive name login_result , and case-insensitive value valid :

Because the search is case-insensitive, the following example is equivalent:

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for requests to 192.168.* , when the request contains a cookie with the

case-sensitive name login_result and the case-insensitive value VALID :

Combine cookie filters with other filters, such as HTTP methods. Combining a HEADER

and COOKIE expression in the same rule implies a logical AND, where both expressions

must match in order to apply. To apply the rules as a logical OR, create two separate

rules.

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for GET, POST, and PUT requests to the /other/records/ folder, when the

request contains a cookie with the case-sensitive name internal , and a case-

insensitive value that ends with .*ID :

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for GET , POST , and PUT HTTP requests from the client IP range

192.168.* , when the request contains a cookie with the case-sensitive name

internal , and a case-sensitive value that ends with .*ID :

Use the following syntax to require the incoming request to have a named header with a

specified value:

COOKIE(login_result/valid/ci) /private/admin/images/*

COOKIE(Login_result/VALID/ci) /private/admin/images/*

COOKIE(login_result/VALID/i) 192.168.*

GET,POST,COOKIE(internal/.*ID/ri),PUT /other/records/*.html

GET,POST,COOKIE(internal/.*ID/r),PUT 192.168.*

Header values

HEADER(Name/Value/Modifiers) Not Enforced URIs

HEADER(Name/Value/Modifiers) Not Enforced IPs

36 / 79

Name: Header name.

Value: Header value to search for.

Modifiers

i : Perform a case-insensitive search for the header value. By default, the

search is case-sensitive.

r : Treat the string in Value as a regular expression.

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for access to .txt files in /yearly/2021/ when the request contains a

header with the case-sensitive name ID , and a case-insensitive value validated

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for access to the IP range 192.168.* when the request contains a header

with the case-sensitive name ID , and a case-insensitive value validated :

Combine cookie filters with other filters, such as HTTP methods. Combining a HEADER

and COOKIE expression in the same rule implies a logical AND, where both expressions

must match. To apply the rules as a logical OR, create two separate rules.

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for GET , POST , and PUT requests to HTML resources in the

/other/records/ folder when the request contains a header with the case-insensitive

name internal , and a case-insensitive value that ends with .*ID :

Configure compound not-enforced rules to combine not-enforced URI and IP rules in a

single rule.

Configure rules in either Not-Enforced Client IP List or Not-Enforced URIs, using an IP

rule or list of IP rules, a delimiter, and an URI rule or list of URI rules.

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for HTTP requests from the IP range 192.168.1.1-192.168.4.3 to any file

in the /images URI:

HEADER(ID/validated/i) /yearly/2021/*.txt

HEADER(ID/validated/i) 192.168.*

GET,POST,HEADER(internal/.*ID/ri),PUT /other/records/*.html

Compound rules

37 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

Consider the following points for compound rules:

Place keywords, such as HTTP methods, NOT , and REGEX , at the beginning of the

compound rule. Keywords affect both the IP and the URI rules.

In the following example, the agent doesn’t enforce authentication or request policy

evaluations for GET or POST HTTP requests from the IP range 192.168.1.1-

192.168.4.3 , to any file (*) in the /images URI.

In the following example, the agent enforces authentication and requests policy

evaluations for any request to a method except POST , from any IP address in the

192.168.1 subnet, to any file in the /private URI.

Check that both sides of a rule using the REGEX keyword can be parsed as a regular

expression.

In the following example, the delimiter is && , because the | character can lead to

invalid regular expressions:

You can find more information about configuring a different delimiter in Not-

Enforced Compound Rule Separator.

The agent caches hits and misses for each resource accessed.

Caching is enabled if either Enable Not-Enforced IP Cache or Enable Not-Enforced

URIs Cache is true .

The cache size takes the biggest value of Max Entries in Not-Enforced IP Cache or

Max Entries in Not-Enforced URI Cache.

URLs defined in Not-Enforced URIs can contain any number of extended ASCII

characters. The agent container automatically percent-encodes extended characters,

before the agent is called.

192.168.1.1-192.168.4.3 | /images/*

GET,POST 192.168.1.1-192.168.4.3 | /images/*

NOT,!POST 192.168.1.* | /private/*

POST,REGEX 192\.168\.10\.(10|\d) && \/images\/([^/])+\.*\.jpg

Extended characters

Extended characters in the resource path of a not-enforced rule

38 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.compound.separator.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.compound.separator.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.cache.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.cache.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.cache.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.ip.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.notenforced.uri.list.html

By default, Java Agent uses UTF-8 to percent-encode extended characters in the

resource paths of not-enforced rules. To change the character encoding, set Container

Character Encoding.

In the following example, the agent doesn’t enforce authentication or request policy

evaluation for HTTP requests to the URL http://www.example.com/forstå :

Note how the extended ASCII character å can be entered without encoding.

By default, Java Agent uses ISO-8859-1 to encode extended characters in HTTP query

parameters of not-enforced rules. To change the character encoding, set Container

Parameter Encoding.

Java Agent has a secure-by-default approach to handling incoming request URLs. Learn

more in Path traversal attempts.

Configure URL handling using the properties listed in Configure behaviour in the

Properties reference. Configure the following URL handling rules:

Character handling strategy properties

The following properties control how certain characters are handled in incoming URL

paths:

Control Handling of the URL Encoded Sequence %2e

Control Handling of the URL Encoded Sequence %2f

Control Handling of the URL Encoded Sequence %3b

Control Handling of the URL Encoded Sequence %5c

org.forgerock.agents.notenforced.uri.list=http://www.example.com/f

orstå/*

Extended characters in HTTP query parameters of a not-enforced rule

URL handling

Consider the following when configuring URL handling:

Not-enforced rules and AM policies are evaluated against normalized paths

with the path parameters removed.

Encoded characters are case-insensitive. For example, %2E and %2e are

handled in the same way.

NOTE

39 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.encoding.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.encoding.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.param.encoding.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.container.param.encoding.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/threats.html#path-traversal-attempts
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#properties_by_function
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.percent.2e.handling.strategy.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.percent.2f.handling.strategy.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.percent.3b.handling.strategy.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.percent.5c.handling.strategy.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/pep.html

Control Handling of the Backslash Character

These properties are set to REJECT_OUTRIGHT by default, meaning the agent rejects

any incoming URLs with an HTTP 400 response if they contain the specified

character in the URL path or path parameters.

Other available settings are:

ACCEPT_BUT_NOT_INTERPRET : The agent doesn’t change the character and

continues processing the request.

ACCEPT_AND_INTERPRET : The agent replaces the character with its equivalent

before processing.

For encoded characters, other than the encoded backslash, the replacement is

the equivalent unencoded character. For the encoded and unencoded

backslash, the replacement is a forward slash (/).

Control Handling of Path Traversal Attempts

The Control Handling of Path Traversal Attempts property controls how path

traversal attempts within the URL path are handled.

By default, this property is set to false .

Set this property to true to reject any embedded path traversal attempts with an

HTTP 400 response. This includes the use of .. or combinations of . and %2E

when they are used as a complete path segment.

Handle Invalid Escape Sequences

The Handle Invalid Escape Sequences property controls how encoded control

characters and invalid encodings are handled.

By default, the agent rejects any encoded control characters and invalid encodings

detected in the URL path with an HTTP 400 response. Encoded control characters

are characters in the range %00 to %1F inclusive, and %7F . Invalid encodings are

encodings such as %G1 .

Set this property to false to allow these characters.

Strictly enforce the Java Servlet Specification

When the Control Handling of the URL Encoded Sequence %2f property is set to

ACCEPT_AND_INTERPRET , the %2F character is not replaced within path

parameters because this isn’t considered a path traversal attempt.

For example, /path/ignored;%2F../path wouldn’t be changed in this

scenario.

NOTE

40 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.backslash.handling.strategy.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.reject.path.traversal.attempts.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.reject.invalid.escape.sequences.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.percent.2f.handling.strategy.html

The Strictly enforce the Java Servlet Specification property controls whether the rules

specified in the Jakarta Servlet Specification Request URI Path Processing section

are enforced.

By default, the agent rejects any incoming URLs that don’t conform to these rules

with an HTTP 400 response.

Set this property to false to ignore these rules.

Enable Ignore Path Info

The Enable Ignore Path Info property controls whether the path info and query are

removed from the URL before it is compared with the list of not-enforced URLs when

a wildcard character (*) is present.

By default, the agent doesn’t change the URL before comparing it with the list of not-

enforced URLs if * is detected in the URL path.

Set this property to true if you want the agent to remove the path info and query

first.

When a user requests a resource through AM, excluding proxies and load balancers, the

Java Agent is usually the first point of contact. Because Java Agent is closer to the user

than AM, and outside the firewalls that separate the user and AM, the Java Agent can

sometimes gather information about the request, which AM cannot access.

When the Java Agent requests a policy decision from AM, it can include this information

in an environment map, a set of name/value pairs that describe the request IP and DNS

name, along with other, optional, information.

In Java Agent, use continuous security to configure an environment map. In AM, use

server-side authorization scripts to access the environment map, and write scripted

conditions based on cookies and headers in the request.

For information about agent configuration properties, refer to Continuous security. For

information about server-side authorization scripts, refer to Scripting a policy condition

in AM’s Authorization guide.

In Java Agent, use the continuous security properties Client Hostname Header and Client

IP Address Header to configure an environment map with custom keys.

The environment map has the following parts:



Continuous security

Environment maps with customizable keys

41 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.rigourously.enforce.jakarta.servlet.specification.enabled.html
https://jakarta.ee/specifications/servlet/6.1/jakarta-servlet-spec-6.1#request-uri-path-processing
https://jakarta.ee/specifications/servlet/6.1/jakarta-servlet-spec-6.1#request-uri-path-processing
https://jakarta.ee/specifications/servlet/6.1/jakarta-servlet-spec-6.1#request-uri-path-processing
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.ignore.path.info.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#continuous_security
https://backstage.forgerock.com/docs/am/7.5/authorization-guide/scripted-policy-condition.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html

requestIp

The IP address of the inbound request, determined as follows:

If Client IP Address Header is configured, the Java Agent extracts the IP address

from the header.

Otherwise, it uses the Java function HttpServletRequest.getRemoteAddr to

determine the IP address.

This entry is always created in the map.

requestDNSName

The host name address of the inbound request, determined as follows:

If Client Hostname Header is configured, the Java Agent extracts the host name

from the header.

Otherwise, it uses the Java function HttpServletRequest.getRemoteHost to

determine the host name address.

This entry is always created in the map.

Other variable names

An array of cookie or header values, configured by the continuous security

properties Client Hostname Header and Client IP Address Header.

An entry is created for each value specified in the continuous security properties.

In the following example, the continuous security properties are configured to map

values for the ssid cookie and User-Agent header to fields in an environment map:

If the incoming request contains an ssid cookie and a User-Agent header, the

environment map takes the value of the cookie and header, as shown in this example:

In Java Agent, use the following properties to configure an environment map with fixed

keys:

org.forgerock.agents.continuous.security.cookies.map[ssid]=mySsid

org.forgerock.agents.continuous.security.headers.map[User-

Agent]=myUser-Agent

requestIp=192.16.8.0.1

requestDnsName=client.example.com

mySsid=77xe99f4zqi1l99z

myUser-Agent=Mozilla/5.0 (Windows NT 6.3; Trident/7.0; rv:11.0)

like Gecko

Environment maps with fixed keys

42 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html

GET Parameter List for URL Policy Env

POST Parameter List for URL Policy Env

JSession Parameter List for URL Policy Env

Java Agent allocates memory from the Java heap space in the web container to the

caches described in this section.

When the agent starts up in remote configuration mode, it retrieves a copy of the agent

profile from AM, and stores it in the cache. The cached information is valid until one of

the following events occurs:

AM notifies the agent of changes to hot-swappable agent configuration properties.

The agent flushes the configuration cache and rereads the agent profile from AM.

The agent restarts.

The agent rereads the configuration from AM or from local files at the frequency

specified by Configuration Reload Interval.

If the reload interval is disabled, and notifications are disabled, the cached configuration

remains valid until the agent restarts.

After authentication, AM presents the client with a JWT, containing session information.

The agent stores part of that session information in the cache.

A session stored in the session cache is valid until one of the following events occur:

The session contained in the JWT expires.

The client logs out from AM, and session notifications are enabled.

The session reaches the expiration time specified by Session Cache TTL.

When a client attempts to access a protected resource, the agent checks whether there

is a policy decision cached for the resource:

If the client session is valid, the agent requests a policy decision from AM and then

enforces it.

Caches

Configuration cache

Session cache

Policy decision cache

43 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.get.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.post.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.continuous.security.http.session.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.reload.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.session.cache.ttl.minutes.html

If the client session is not valid, the agent redirects the client to AM for

authentication, regardless of why the session is invalid. The agent does not specify

the reason why the client needs to authenticate.

After the client authenticates, the agent requests policy decision from AM and

enforces it.

Policy decisions are valid in the cache until one of the following events occur:

Session and policy validity in cache

Event What is invalidated?

Session contained in the JWT expires Session and policy decisions related to

the session

Client logs out from AM (and session

notifications are enabled)

Session and policy decisions related to

the session

Policy decision reaches the expiration

time specified by Policy Cache TTL

Policy decision

Administrator makes a change to policy

configuration (and policy notifications are

enabled)

All sessions and all policy decisions

The first time the agent receives a request for a resource, it matches the request and the

client’s IP address against the rules specified in the not-enforced lists.

Java Agent maintains a cache of hit-and-miss for each of the not-enforced lists specified

in Not-enforced rules.

To speed up future requests, the agent stores whether the resource hit or missed not-

enforced rules in the corresponding caches. Therefore, if a request for the same

resource reaches the agent again, the agent replays the result of the rule evaluations

stored in the caches, instead of re-evaluating the request.

Entries stored in the hit and miss caches do not expire unless AM notifies the agent

about configuration changes in the not-enforced lists.

A Java Agent that loses connectivity to AM cannot request policy decisions.

Therefore, the agent denies access to inbound requests that do not have a policy

decision cached until the connection is restored.

IMPORTANT

Not-enforced lists hit and miss caches

44 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.policy.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/not-enforced-rules.html

When POST data preservation is enabled, the agent caches HTML form data submitted

as an HTTP POST by unauthenticated clients.

The POST data expires either when the client recovers the information from the cache or

after the time interval specified in POST Data Preservation Cache TTL.

For more information, refer to POST data preservation.

Decoding JWTs into JSON objects is a CPU-intensive operation. To reduce the amount of

processing required on each request, agents cache decoded JWTs.

When an agent receives a request for a resource, it passes the JWT through a fast

hashing algorithm that creates a 128-bit hash unique for that JWT. Then the agent

determines if the hash is in the JWT cache. One of the following scenarios occur:

The hash is in the cache. The agent retrieves the decoded JWT from the cache and

continues processing the request.

The hash is not in the cache. The agent decodes the JWT and stores it and its hash in

the cache. Then it continues processing the request.

JWTs in the cache expire after the time interval specified by JWT Cache TTL.

For information about properties to configure attribute fetching, refer to Attributes.

Java Agent can fetch and inject user information into HTTP headers, request objects, and

cookies, and pass them on to client web applications. The client web applications can

personalize content using these attributes in their web pages or responses.

You can configure the type of attributes to fetch, and map the attribute names used on

AM to the values used in the containers. The agent securely fetches the user and session

data from the authenticated user, as well as policy response attributes.

In autonomous mode, the agent operates independently of AM, without needing to

contact an AM instance. Agents allow access to resources as defined in not-enforced

lists; otherwise, they deny access.

POST data preservation cache

OpenID Connect JWT cache

Attribute fetch modes

Autonomous mode

45 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/pdp.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.jwt.cache.ttl.minutes.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#attributes

Agents evaluate not-enforced rules using the following features:

URLs, IP addresses, IP address ranges, and compound rules.

Rules applied to specific HTTP methods.

Inverted not-enforced rules, by using properties.

Inverted not-enforced rules, by using inline logical operators.

Rules that use regular expressions.

Rules applied in the presence of named cookies with specified values.

Because the agent does not attempt to contact AM, the following functionality is not

available in autonomous mode:

Notifications

Remote auditing

Profile attributes

Session attributes

Response attributes

Continuous security

To enable autonomous mode, in the bootstrap properties file,

AgentBootstrap.properties , set Autonomous mode to true , and restart the Java

container where the agent is installed.

When FQDN checking is enabled, the agent can redirect requests to different domains,

depending on the hostname of the request. Use this feature in environments where the

request hostname can be virtual, invalid, or partial.

FQDN checking requires Enable FQDN Checking to be true , Default FQDN to be set to a

suitable value, and optionally, FQDN Map to be set to suitable default FQDN.

When FQDN Map is configured, the agent maintains the following maps:

Map 1:

Key: Incoming hostname without wildcards.

Value: Outgoing hostname.

Because the agent does not contact AM when it starts in autonomous mode, the

value of Location of Agent Configuration Repository must be LOCAL .

IMPORTANT

FQDN checks

46 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fallback.mode.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.check.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.default.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html

Map 2:

Key: Incoming hostname with wildcards * and ? .

Value: Outgoing hostname.

Map keys are case insensitive. Incoming hostnames are converted to lowercase before

the agent maps them, and the agent automatically converts uppercase keys and values

to lowercase before mapping.

The agent maps FQDNs as follows:

1. Searches map 1 for the incoming hostname. If there is a match, the agent redirects

the request to the mapped value.

2. Searches map 2 for a pattern that matches the incoming hostname, iterating

through the entries in random order. If there is a match, the agent redirects the

request to the mapped value.

3. Redirects the request to the value in Default FQDN.

The following example configuration and requests illustrate how the agent checks and

remaps FQDNs:

Configuration

Enable FQDN Checking: org.forgerock.agents.fqdn.check.enabled=true

Default FQDN:

org.forgerock.agents.fqdn.default=agent.defaulttest.me

FQDN Map:

Map 1

org.forgerock.agents.fqdn.map[agent]=agent.localtest.me

org.forgerock.agents.fqdn.map[agent.virtualtest.me]=virtual-

host.localtest.me

Map 2

org.forgerock.agents.fqdn.map[agent-

*.localtest.me]=agent.localtest.me

Example requests

https://agent.localtest.me/app : Does not match any mapping, so the

agent redirects it to the default FQDN https://agent.defaulttest.me/app .

https://agent/app : The request URL matches the first mapping in map 1, so

the agent redirects it to https://agent.localtest.me/app .

https://AGENT/app : The request URL matches the first mapping in map 1,

because incoming hostnames are converted to lower-case before the agent

Examples

47 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.default.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.check.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.default.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.fqdn.map.html

maps them. The agent redirects the request to

https://agent.localtest.me/app .

https://agent.virtualtest.me/app : The request URL matches the second

mapping in map 1, so the agent redirects it to the virtual host

https://virtual-host.localtest.me/app .

https://agent-123.localtest.me/app : The request URL matches the

mapping in map 2, so the agent redirects it to

https://agent.localtest.me/app .

Java Agent can reset cookies in its own domain before redirecting the client for login,

and when the client logs out.

Pre-authentication cookies are reset automatically after successful authentication.

Authentication cookies are reset automatically on logout. This section describes how to

manage reset of other cookies.

To enable cookie reset, set Cookie Reset to true . The agent resets the cookies in the

response before redirecting the client for login, and when the client logs out.

To reset specific cookies, add them to the list in Reset Cookie List. The agent searches for

the cookie name using a case-sensitive search. If it finds a match, the cookie is reset.

Otherwise, the agent searches again using a case-insensitive search. If it then finds a

match, the cookie is reset and a warning is issued to the logs.

When profile or session attributes are stored in cookies (either Profile Attribute Fetch

Mode or Session Attribute Fetch Mode has the value HTTP_COOKIE), cookie reset is

enabled automatically and cannot be disabled. The agent resets the profile and session

attributes cookies and the cookies in the Reset Cookie List.

When response attribute are stored in cookies (Response Attribute Fetch Mode has the

value HTTP_COOKIE), the agent does not reset them automatically. To prevent a build

up of response attribute cookies, consider adding them to the Reset Cookie List.

To specify the paths for which cookies named in Reset Cookie List are used after reset,

set the Reset Cookie Path Map.

Cookie reset

org.forgerock.agents.cookie.reset.name.list[0]=response-attribute-

cookie-name1

org.forgerock.agents.cookie.reset.name.list[1]=response-attribute-

cookie-name2

48 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.name.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.profile.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.profile.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.session.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.name.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.attribute.fetch.mode.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.name.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.name.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.reset.path.map.html

Consider enabling cookie reset when the agent is deployed with parallel authentication

mechanisms. Resetting cookies from one authentication mechanism before redirecting

clients to log in with another mechanism helps prevent issues on the new login site.

When a client does not present a valid SSO token with a request, Java Agent redirects the

client to login. If the client then fails to authenticate, by default, the agent takes the

following steps:

1. Redirects the request to the URL defined by Authentication Fail URL.

2. If that property is not set, redirects the request to the URL defined by Goto URL.

3. If neither property is set, returns an HTTP 400.

To limit the amount of information available to malicious users, by default, the agent

returns an HTTP 400 for all authentication failures, regardless of the reason.

If, for example the agent returns an "unknown user" message, malicious users can use

that information to try with different usernames until the error message changes to, for

example, "wrong password".

The following table summarizes possible reasons for the agent to return an HTTP 400:

Reason code Meaning

AUTHN_BOOKKEEPING_COO

KIE_MISSING

The agent cannot find the authentication tracking

cookie, defined in Pre-Authentication Cookie Name.

This error can happen if the user successfully

authenticates, but clicks the back button of the browser

to return to the previous page.

NONCE_MISSING The agent found the authentication tracking cookie, but

it cannot find the unique identifier of the authentication

request inside the cookie.

This error can happen if the user successfully

authenticates, but clicks the back button of the browser

to return to the previous page.

BAD_AUDIENCE The audience in the JWT does not correspond to the

audience in the cookie entry.

This error can happen if all agents working in a cluster

do not have the same Agent Profile Name.

NO_TOKEN The agent cannot find the session ID token.

Authentication failure

49 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.fail.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.default.goto.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.cookie.name.html

Reason code Meaning

TOKEN_EXPIRED The agent found the session ID token, but it is past its

expiry date.

AM_SAYS_INVALID The agent found the session ID token, the expiry time is

correct, but AM returns that the ID token is invalid.

JWT_INVALID The agent found the session ID token, but cannot parse

it.

EXCEPTION The agent found the session ID token, but threw an

exception while parsing it.

Alternatively, the agent cannot connect to AM to validate

the ID token, maybe due to a network outage.

An HTTP 400 message is not always helpful for debugging the agent flow or when

another web application depends on the error message. To change the way the agent

responds to authentication failure, configure the following properties:

Authentication Fail URL, to redirect the uses to a specific URL or URI. Use this

property to control the message the agent displays to the client.

Authentication Fail Reason Parameter Name, to send the reason for authentication

failure in a named query parameter.

Authentication Fail Reason Parameter Value Map, to map the reason for

authentication failure. Use this property to hide the reason for authentication

failure from malicious users, or to map it to something that is meaningful inside

your organization.

To mitigate the risk of brute force attacks, limit the number of failed login attempts that

are allowed during a browser session. After this number, the agent blocks requests from

the user.

Configure Login Attempt Limit (deprecated), to specify a non-zero value. For example, if

the limit is three, then the agent blocks the fourth and subsequent login requests.

Manage notifications for authentication failure

Limit the number of failed login attempts

This feature is deprecated. For more information, refer to the Deprecated section of

the Release Notes.

IMPORTANT

50 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.fail.url.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.fail.reason.parameter.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.fail.reason.remapper.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.attempt.limit.count.html
https://backstage.forgerock.com/docs/openam-jee-policy-agents/latest/release-notes/deprecated.html

Most environments deploy a load balancer and reverse proxy between the agent and

clients, and another between the agent and AM, as shown in the following diagram:

Access
Management

Access
Management
PingAM

HTTPS

HTTPS

ClientsClientsClients

HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

Agent

Protected

Resource

Java Container
HTTPS

Secure
Web

Socket

Reverse
Proxy

Load
Balancer

The reverse proxy and the load balancer can be the same entity. In complex

environments, multiple load balancers and reverse proxies can be deployed in the

network.

When a load balancer or reverse proxy is situated in the request path between the agent

and a client, the agent does not have direct access to the IP address or hostname of the

client. The agent cannot identify the client.

For load balancers and reverse proxies that support provision of the client IP and

hostname in HTTP headers, configure the following properties:

Client IP Address Header

Client Hostname Header

When there are multiple load balancers or reverse proxies in the request path, the

header values can include a comma-separated list of values, where the first value

represents the client, as in client,next-proxy,first-proxy .

Configure load balancers and reverse proxies

Identify clients behind load balancers and reverse proxies

51 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.ip.address.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.http.header.containing.remote.hostname.html

When a reverse proxy is situated between the agent and AM, it protects the AM APIs.

When a load balancer is situated between the agent and AM, it regulates the load

between different instances of AM.

Consider the points in this section when installing Java Agent in an environment where

AM is behind a load balancer or a reverse proxy.

During installation, the agent requests the path to a file containing the cookie signing

key, and then uses the key to configure the property

org.forgerock.agents.cookie.signing.value in AgentKey.properties. If the path is

empty, cookie signing is disabled.

The key must be at least 64 characters long. If it is shorter, the agent rejects it and leaves

cookies unsigned. For security, use a key of at least 80 characters.

In deployments with multiple agent instances, use the same cookie signing key for each

instance. Share a cookie signing key between agent instances as follows:

If agent instances can share the signing key file, specify the same file for each agent

installation.

If agent instances are in remote configuration mode, set the property

org.forgerock.agents.cookie.signing.value in the Advanced tab of the AM

admin UI.

When storing shared keys in AM Secure communication between the agent and AM.

Manually update the agent configuration, as defined in the following procedure:

1. Install the first agent instance.

2. Note the value of org.forgerock.agents.cookie.signing.value in the

AgentKey.properties file.

3. Install the next agent instance, and then replace the value of

org.forgerock.agents.cookie.signing.value in AgentKey.properties with

the value from the first instance.

4. Restart the instance.

The load balancer or reverse proxy conceals the IP addresses and FQDNs of the agent

and of AM. Consequently, AM cannot determine the agent base URL.

Agent - load balancer/reverse proxy - AM

Pre-authentication cookie signing

Agent’s IP address and/or FQDN

52 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.cookie.signing.value.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/about.html#agentkey-properties
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/secure-connections.html#configure-HTTPS
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/about.html#agentkey-properties
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/about.html#agentkey-properties

Do the following to prevent problems during installation, or with redirection using the

goto parameter:

Configure the load balancer or reverse proxy to forward the agent IP address

and/or FQDN in a header.

Configure AM to recover the forwarded headers. For more information, refer to

Configuring AM to use forwarded headers.

Install the agent using the IP address or FQDN of the load balancer or reverse proxy

as the point of contact for the AM site.

Improve the performance of policy evaluation by setting AM’s sticky cookie (by default,

amlbcookie) to the AM’s server ID. For more information, refer to Configuring site

sticky load balancing in AM’s Setup guide.

When configuring multiple agents, consider the impact on sticky load balancer

requirements of using one or multiple agent profiles:

If the agents are configured with multiple agent profiles, configure sticky load

balancing. This is because the agent profile name is contained in the OpenID

Connect JWT, used by the agent and AM for communication. Without session

stickiness, there is no way to make sure that the appropriate JWT ends in the

appropriate agent instance.

If multiple agents are configured with the same agent profile, decide whether to

configure sticky load balancing depending on other requirements of your

environment.

For communication between the agents and the AM servers, the load balancers and

reverse proxies must support the WebSocket protocol. For more information, refer to

the load balancer or proxy documentation.

When a load balancer or reverse proxy is situated between the agent and AM, configure

AM to recover the forwarded headers that expose the agents' real IP address or FQDN.

1. Log in to the AM admin UI as an administrative user, such as amAdmin .

AM sessions and session stickiness

WebSockets

For an example of how to configure Apache HTTP as a reverse proxy, refer to

Configure an Apache HTTP Server as a reverse proxy.

TIP

Configure AM to use forwarded headers

53 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#am-forwarded-headers
https://backstage.forgerock.com/docs/am/7.5/setup-guide/configure-lb.html#configure-lb-stateful
https://backstage.forgerock.com/docs/am/7.5/setup-guide/configure-lb.html#configure-lb-stateful
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/configure-apache-server.html

2. Select Realms > Realm Name > Services.

3. Select Add a Service > Base URL Source > Create, leaving the fields empty.

4. Configure the service with the following properties:

Base URL Source: X-Forwarded-* headers

This property allows AM to retrieve the base URL from the Forwarded header

field in the HTTP request. The Forwarded HTTP header field is standardized and

specified in RFC 7239 .

Context path: AM’s deployment URI. For example, /am .

Leave the other fields empty.

For more information, refer to Base URL source in AM’s Reference.

5. Save your changes.

When a reverse proxy is situated between the agent and client, it renders anonymous

the client traffic that enters the network.

When a load balancer is situated between the agent and client, it regulates the load

between the agents and the containers.

Consider the points in this section when installing Java Agent in an environment where

clients are behind a load balancer or a reverse proxy:

The load balancer or reverse proxy conceals the IP addresses and FQDNs of the agent

and clients. Consequently, the agent cannot determine the client base URL.

Configure the load balancer or reverse proxy to forward the client IP address and/or the

client FQDN in a header. Failure to do so prevents the agent from performing policy

evaluation, and applying not-enforced and conditional login/logout rules.

For more information, refer to Configuring client identification properties.

For POST data preservation, use sticky load balancing to ensure that the client always

hits the same agent and, therefore, their saved POST data.

Agents provide properties to set either sticky cookie or URL query string for load

balancers and reverse proxies.



Agent - load balancer/reverse proxy - client

Forward client’s IP address and/or FQDNs

Use sticky load balancing with POST data preservation

54 / 79

https://www.rfc-editor.org/rfc/rfc7239.html
https://www.rfc-editor.org/rfc/rfc7239.html
https://www.rfc-editor.org/rfc/rfc7239.html
https://backstage.forgerock.com/docs/am/7.5/reference/global-services-configuration.html#global-baseurl
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-client-properties

For more information, refer to Configuring POST Data Preservation for Load Balancers

or Reverse Proxies.

The load balancer or reverse proxy performs TLS offloading, terminating the TLS traffic

and converting the requests reaching the Java container to HTTP. This reduces the load

on the protected containers, because the public key is usually processed by a hardware

accelerator.

The following diagram shows the agent connected to a client through a reverse proxie

and load balancer. The agent connection to the reverse proxy and load balancer is on

HTTP and port 80. The client connection is on HTTPS and port 443.

https://www.example.com:443

ClientsClientsClients

http://agent1.internal.com:80 http://agent2.internal.com:80

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Reverse
Proxy

Load
Balancer

Java Container

After TLS offloading, the host, port, and protocol of the request is changed to match the

request received by the agent; it no longer matches the request from the client, as

shown in the following data flow. The agent uses this URL for the redirect_url from the

OAuth 2.0 flow, which causes the request to fail.

Override protocol, host, and port after TLS offloading

55 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-POST-data
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-POST-data

Java Container

Client Load balancer/Reverse proxy
Agent Filter/

Agent Application
Web App (HTTPS)

https://www.example.com:443 PingAM

1
Request to
https://www.example.com:443

2
Request to
http://agent1.internal.com:80
TLS termination (HTTPS->HTTP)

3
Create pre-authentication cookie with original URL
http://agent1.internal.com:80

4
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

5 Redirect for authentication

6 Redirect for authentication

7 Authentication with AM

8
Redirect to
http://agent1.internal.com:80

9
Redirect to
http://agent1.internal.com:80

1 0 HTTP 403

In the following flow, the agent overrides the host, port, and protocol for subsequent

redirects:

Java Container

Client

Client

Load balancer/Reverse proxy
https://www.example.com:443/app

Load balancer/Reverse proxy
https://www.example.com:443/app

Agent
http://agent1.internal.com:80

Agent
http://agent1.internal.com:80

Web Application (HTTPS)
https://www.example.com:443

Web Application (HTTPS)
https://www.example.com:443

PingAM

PingAM

1
Request to
https://www.example.com:443

2
Request to
http://agent1.internal.com:80
TLS termination (HTTPS->HTTP)

3
Create pre-authentication cookie with original URL
http://agent1.internal.com:80

4
Set AM login URL
(URL and `goto` parameter for OAuth 2.0 authorize endpoint)

5
Apply alternate port/host/protocol
https://www.example.com:443

6 Redirect for authentication

7 Redirect for authentication

8 Authentication with AM

9
Redirect to alternate
port/host/protocol
https://www.example.com:443

1 0
Redirect to alternate
port/host/protocol
https://www.example.com:443

1 1
Redirect to alternate
port/host/protocol
https://www.example.com:443

For this scenario, configure the agent as described in To Override Protocol, Host, and

Port.

The load balancer or reverse proxy forwards requests and responses between clients

and protected Java containers only. In this case, ports and protocols configured in the

Java container match those on the load balancer or reverse proxy, but FQDNs do not.

Match FQDNs for request forwarding

56 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-different-protocol-and-port
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-different-protocol-and-port

The following diagram illustrates this scenario:

https://www.example.com:443

ClientsClientsClients

https://agent1.internal.com:443 https://agent2.internal.com:443

Agent

Protected

Resource

Java Container

Agent

Protected

Resource

Java Container

Reverse
Proxy

Load
Balancer

For this scenario, configure the agent as described in To Map the Agent Host Name to

the Load Balancer or Reverse Proxy Host Name.

Use the alternate agent URL properties to override the agent protocol, host, and port

with that of the load balancer or reverse proxy.

The agent in this example is in remote configuration mode, but the steps mention

properties for agents in local configuration mode.

1. Log in to the AM admin UI as an administrative user with rights to modify the agent

profile.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

Override protocol, host, and port

Agent configuration for TLS offloading prevents FQDN checking and mapping.

Consequently, URL rewriting and redirection do not work correctly when the agent

is accessed directly and not through the load balancer or proxy. This should not be

a problem for client traffic, but could be a problem for web applications accessing

the protected container directly, from behind the load balancer.

IMPORTANT

57 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-same-protocol-and-port
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#lb-same-protocol-and-port
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

3. Set Alternative Agent Host Name to that of the load balancer or reverse proxy.

For example, lb.example.com .

The equivalent property setting is

org.forgerock.agents.agent.hostname=lb.example.com .

4. Set Alternative Agent Port to that of the load balancer or proxy. For example, 80 .

The equivalent property setting is org.forgerock.agents.agent.port=80 .

5. Set Alternative Agent Protocol to that of the load balancer or proxy. For example,

http or https .

The equivalent property setting is

org.forgerock.agents.agent.protocol=https .

6. Save your work.

7. Restart the Java container where the agent is installed.

When protocols and port numbers match, configure FQDN mapping.

The agent in this example is in remote configuration mode, but the steps mention

properties for agents in local configuration mode.

1. Log in to the AM admin UI as an administrative user with rights to modify the Java

agent profile.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name.

3. In the Global tab, enable FQDN Check.

The equivalent property setting is

org.forgerock.agents.fqdn.check.enabled=true .

4. Set the FQDN Default field to the fully qualified domain name of the load balancer

or proxy, such as lb.example.com , rather than the protected container FQDN

where the Java agent is installed.

The equivalent property setting is

org.forgerock.agents.fqdn.default=lb.example.com .

5. Append the FQDN of the load balancer or proxy to the field Agent Root URL for

CDSSO.

6. Map the load balancer or proxy FQDN to the FQDN where the agent is installed in

the FQDN Virtual Host Map key-pair map. For example, set the key

agent.example.com (protected Java container) and a value lb.example.com

(load balancer or proxy).

Map agent host name to the load balancer or reverse proxy host name

58 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

The equivalent property setting is

org.forgerock.agents.fqdn.map[agent.example.com]=lb.example.com .

7. Save your work.

8. Restart the Java container where the agent is installed.

After configuring proxies or load balancers to forward the client FQDN and/or IP

address, configure the agents to check the appropriate headers.

This procedure explains how to configure the client identification properties.

The agent in this example is in remote configuration mode, but the steps mention

properties for agents in local configuration mode.

1. Log in to the AM admin UI with a user that has permissions to modify the Java agent

profile.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

3. In the Client IP Address Header field, configure the name of the header containing

the IP address of the client. For example, X-Forwarded-For .

Configure this property if your AM policies are IP address-based, you configured the

agent for not-enforced IP rules, or if you configured the agent to take any decision

based on the client’s IP address.

The equivalent property setting is

org.forgerock.agents.http.header.containing.ip.address=X-Forwarded-

For .

4. In the Client Hostname Header field, configure the name of the header containing

the FQDN of the client. For example, X-Forwarded-Host .

Configure this property if your AM policies are URL-based, you configured the agent

for not-enforced URL rules, or if you configured the agent to take any decision

based on the client’s URL.

The equivalent property setting is

org.forgerock.agents.http.header.containing.remote.hostname=X-

Forwarded-Host .

5. Save your changes.

Configure the load balancer or reverse proxy and the agents for session stickiness.

Configure client identification properties

Configure POST data preservation for load balancers or reverse proxies

59 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode

The agent in this example is in remote configuration mode, but the steps mention

properties for agents in local configuration mode.

1. Log in to the AM admin UI as a user with permission to modify the agent profile.

2. Select Realms > Realm Name > Applications > Agents > Java > Agent Name >

Advanced.

3. Decide whether the agent should create a cookie or append a string to the URL to

assist with sticky load balancing.

In PDP Sticky session mode, configure one of the following options:

Cookie: The agent creates a cookie for POST data preservation session

stickiness. The contents of the cookie is configured in the next step.

URL: The agent appends to the URL a string specified in the next step.

The equivalent property setting is

org.forgerock.agents.pdp.sticky.session.mode=Cookie|URL] .

4. In the POST Data Preservation Sticky Session Key Value property, configure a key-

pair value separated by the = character.

For example, specifying lb=myserver either sets a cookie called lb with

myserver as a value, or appends lb=myserver to the URL query string.

The equivalent property setting is

org.forgerock.agents.pdp.sticky.session.value=lb=myserver .

5. Save your changes.

6. Configure your load balancer or reverse proxy to ensure session stickiness when

the cookie or URL query parameter are present.

This section provides an example of how to configure Apache as a reverse proxy

between AM and the agent. You can use any reverse proxy that supports the WebSocket

protocol.

Refer to the Apache documentation to configure Apache for load balancing and any

other requirement for your environment.

Configure an Apache HTTP Server as a reverse proxy

60 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.sticky.session.value.html

Agent

Protected

Resource

Java Container

HTTPS

ClientsClientsClients

Access
Management

Access
Management
PingAM

HTTPS

Secure
Web

Socket

HTTP

Web
Socket

Reverse
Proxy

Figure 6. Reverse Proxy Configured Between the Agent and AM

Note that the communication protocol changes from HTTPS to HTTP.

1. In your deployed reverse proxy instance, locate the httpd.conf file.

2. Add the following modules required for a proxy configuration:

The mod_proxy_wstunnel.so module is required to support the WebSocket

protocol used for notification between AM and the agents.

3. Add the proxy configuration inside the VirtualHost context, and set the following

directives:

Configure Apache as a reverse proxy

Modules required for proxy

LoadModule proxy_module modules/mod_proxy.so

LoadModule proxy_http_module modules/mod_proxy_http.so

LoadModule proxy_wstunnel_module modules/mod_proxy_wstunnel.so

<VirtualHost 192.168.1.1>

...

Proxy Config

RequestHeader set X-Forwarded-Proto "https" 1

ProxyPass "/am/notifications"

"ws://am.example.com:8080/am/notifications"

Upgrade=websocket 2

ProxyPass "/am" "http://am.example.com:8080/am" 3

ProxyPassReverseCookieDomain "am.internal.example.com"

"proxy.example.com" 4

ProxyPassReverse "/am" "http://am.example.com:8080/am" 5

61 / 79

1 RequestHeader: If the proxy is configured for https, set to https . Otherwise,

set to http . A later step configures AM to recognize the forwarded header and

use it in the goto parameter, to redirect back to the Java Agent after

authentication.

2 ProxyPass: Allow WebSocket traffic between AM and the Java Agent. If HTTPS is

configured between the proxy and AM, use wss instead of ws .

3 ProxyPass: Allow HTTP traffic between AM and the agent.

4 ProxyPassReverseCookieDomain: Rewrite the domain string of Set-Cookie

headers in this format: internal domain (AM’s domain) public domain

(proxy’s domain) .

5 ProxyPassReverse: Set to the same value configured for the ProxyPass

directive.

4. Restart the reverse proxy instance.

5. Configure AM to recover the forwarded header configured in the reverse proxy.

Also, review other configurations that may be required in an environment that uses

reverse proxies. For more information, refer to Communication Between AM and

Agents

This section describes how to add a custom task handler to the list of handlers, and

provides example handlers. At startup, Java Agent tries to instantiate the specified

service resolver class. If unsuccessful, it instantiates the original service resolver.

1. Place com.sun.identity.agents.arch.ServiceResolver on the classpath.

2. Add com.sun.identity.agents.arch.ServiceResolver to the bootstrap

property Service Resolver Class Name.

Use the following functions to return a list of class names to customize the task handler:

Function When to execute the class What the class must

implement

List<String>

getPreInboundTaskHandl

ers()

Before all other inbound

task handlers

IAmFilterTaskHandler

...

</VirtualHost>

Implement a custom task handler

62 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#comms-am-agents
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/load-balancers-proxies.html#comms-am-agents
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.service.resolver.class.name.html

Function When to execute the class What the class must

implement

List<String>

getPostInboundTaskHand

lers()

After all other inbound

task handlers

IAmFilterTaskHandler

List<String>

getPreSelfRedirectHand

lers()

Before all other self-

redirect task handlers

IAmFilterTaskHandler

List<String>

getPostSelfRedirectHan

dlers()

After all other self-redirect

task handlers

IAmFilterTaskHandler

List<String>

getPreFilterResultHand

lers()

Before all other result

handlers

IAmFilterResultHandle

r

List<String>

getPostFilterResultHan

dlers()

After all other result

handlers

IAmFilterResultHandle

r .

If the named handler classes are not on the classpath, or do not implement the required

interface, then:

Handler instantiation fails.

A message is logged at ERROR level.

The agent abandons processing and returns an HTTP 500, effectively denying all

requests.

When a handler list is built, make sure that any isActive function implemented by

your custom handler returns true , if appropriate. Any handler returning false is

evicted.

For each InboundTaskHandler and SelfRedirectHandler, the process function is

invoked until a non-null value, such as continue or block , is returned. The non-null

value becomes the result for that resource access. Returning a null value indicates to

carry on to the other handlers.

For FilterResultHandlers, returning a null value causes an error.

Example custom filter result task handler

63 / 79

/*

* Copyright © 2019 - 2024 Ping Identity Corporation

* This code is to be used exclusively in connection with Ping

Identity Corporation

* software or services.

* Ping Identity Corporation only offers such software or

services to legal entities

* who have entered into a binding license agreement with Ping

Identity Corporation.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterResultHandler;

/**

* This is an example of a custom filter result task handler

*/

@SuppressWarnings("unused")

public class CustomFilterResultTaskHandler extends

AmFilterResultHandler {

public CustomFilterResultTaskHandler(Manager manager) {

super(manager);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "CustomFilterResultTaskHandler";

64 / 79

}

@Override

public AmFilterResult process(AmFilterRequestContext

context, AmFilterResult result) {

String applicationName =

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}, result {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI(),

result.toString());

// Must return the result parameter, unless you have a

really good reason not to.

return result;

}

}

Example custom self-redirect task handler

/*

* Copyright © 2019 - 2024 Ping Identity Corporation

* This code is to be used exclusively in connection with Ping

Identity Corporation

* software or services.

* Ping Identity Corporation only offers such software or

services to legal entities

* who have entered into a binding license agreement with Ping

Identity Corporation.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

65 / 79

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.AgentException;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterTaskHandler;

import com.sun.identity.agents.filter.IBaseAuthnContext;

/**

* This is an example of a custom self-redirect task handler.

It is essentially the same as the inbound task

* handler.

*/

@SuppressWarnings("unused")

public class CustomSelfRedirectTaskHandler extends

AmFilterTaskHandler {

public CustomSelfRedirectTaskHandler(Manager manager) {

super(manager);

}

@Override

public void initialize(IBaseAuthnContext context) throws

AgentException {

super.initialize(context);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "Custom self redirect task handler";

}

@Override

public AmFilterResult process(AmFilterRequestContext

66 / 79

context) {

String applicationName =

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI());

// return null to continue to the other task handlers

(until one returns a non null value)

// return AmFilterResultStatus.STATUS_CONTINUE to

grant access (continue to the next filter after the agent)

// return AmFilterResultStatus.STATUS_REDIRECT to

redirect somewhere else

// return AmFilterResultStatus.STATUS_FORBIDDEN to

deny access

// return AmFilterResultStatus.STATUS_SERVE_DATA to

serve up data to the browser

// return AmFilterResultStatus.STATUS_SERVER_ERROR to

abort the request with a 500 server error

//

return null;

}

}

Example custom inbound task handler

/*

* Copyright © 2019 - 2024 Ping Identity Corporation

* This code is to be used exclusively in connection with Ping

Identity Corporation

* software or services.

* Ping Identity Corporation only offers such software or

services to legal entities

* who have entered into a binding license agreement with Ping

67 / 79

Identity Corporation.

*/

package com.sun.identity.agents.custom;

import static org.forgerock.agents.debug.AgentDebug.logTrace;

import javax.servlet.http.HttpServletRequest;

import org.forgerock.agents.util.Utils;

import com.sun.identity.agents.arch.AgentConfiguration;

import com.sun.identity.agents.arch.AgentException;

import com.sun.identity.agents.arch.Manager;

import com.sun.identity.agents.filter.AmFilterMode;

import com.sun.identity.agents.filter.AmFilterRequestContext;

import com.sun.identity.agents.filter.AmFilterResult;

import com.sun.identity.agents.filter.AmFilterTaskHandler;

import com.sun.identity.agents.filter.IBaseAuthnContext;

/**

* This is an example of a custom inbound task handler

*/

@SuppressWarnings("unused")

public class CustomInboundTaskHandler extends

AmFilterTaskHandler {

public CustomInboundTaskHandler(Manager manager) {

super(manager);

}

@Override

public void initialize(IBaseAuthnContext context) throws

AgentException {

super.initialize(context);

}

@Override

public boolean isActive() {

return true;

}

@Override

public String getHandlerName() {

return "Custom inbound task handler";

}

68 / 79

@Override

public AmFilterResult process(AmFilterRequestContext

context) {

String applicationName =

Utils.getApplicationName(context);

AmFilterMode amFilterMode =

AgentConfiguration.getTheFilterMode(applicationName);

HttpServletRequest request =

context.getHttpServletRequest();

logTrace("Hello from {}, application name {}, filter

mode {}, {} {}",

getHandlerName(), applicationName,

amFilterMode,

request.getMethod(), request.getRequestURI());

// return null to continue to the other task handlers

(until one returns a non null value)

// return AmFilterResultStatus.STATUS_CONTINUE to

grant access (continue to the next filter after the agent)

// return AmFilterResultStatus.STATUS_REDIRECT to

redirect somewhere else

// return AmFilterResultStatus.STATUS_FORBIDDEN to

deny access

// return AmFilterResultStatus.STATUS_SERVE_DATA to

serve up data to the browser

// return AmFilterResultStatus.STATUS_SERVER_ERROR to

abort the request with a 500 server error

//

return null;

}

}

Example of how to override the ServiceResolver class

/*

* Copyright © 2019 - 2024 Ping Identity Corporation

* This code is to be used exclusively in connection with Ping

Identity Corporation

* software or services.

69 / 79

* Ping Identity Corporation only offers such software or

services to legal entities

* who have entered into a binding license agreement with Ping

Identity Corporation.

*/

package com.sun.identity.agents.custom;

import java.util.ArrayList;

import java.util.List;

import com.sun.identity.agents.arch.ServiceResolver;

/**

* This is an example of how to override the ServiceResolver

class to provide your own custom task handlers. To use

* this example class, place the following in the custom

properties on the advanced tab in the Java Agents profile:

* <p></p>

*

org.forgerock.agents.service.resolver.class.name=com.sun.ident

ity.agents.custom.CustomServiceResolverExample

* <p></p>

* and restart the agent.

*/

@SuppressWarnings("unused")

public class CustomServiceResolverExample extends

ServiceResolver {

@Override

public List<String> getPreInboundTaskHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomInboundTaskHandler.class.getName());

return result;

}

@Override

public List<String> getPostInboundTaskHandlers() {

return new ArrayList<>();

}

@Override

public List<String> getPreSelfRedirectHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomSelfRedirectTaskHandler.class.getName());

70 / 79

Access control

Control to grant or to deny access to a resource.

Account lockout

The act of making an account temporarily or permanently inactive after successive

authentication failures.

Actions

Defined as part of policies, these verbs indicate what authorized identities can do to

resources.

Advice

In the context of a policy decision denying access, a hint to the policy enforcement

point about remedial action to take that could result in a decision allowing access.

Agent administrator

User having privileges only to read and write agent profile configuration information,

typically created to delegate agent profile creation to the user installing a web or Java

agent.

return result;

}

@Override

public List<String> getPostSelfRedirectHandlers() {

return new ArrayList<>();

}

@Override

public List<String> getPreFilterResultHandlers() {

List<String> result = new ArrayList<>();

result.add(CustomFilterResultTaskHandler.class.getName());

return result;

}

@Override

public List<String> getPostFilterResultHandlers() {

return new ArrayList<>();

}

}

Glossary

71 / 79

Agent filter

A servlet that intercepts inbound client requests to a resource, and processes them

according to the value of Agent Filter Mode Map.

Agent profile

A set of configuration properties that define the behavior of the agent.

Agent profile realm

The realm in which the agent profile is stored. See also agent profile.

Application

A service exposing protected resources. See Web Application.

In AM policies, an application is a template that constrains the policies that govern

access to protected resources. An application can have zero or more policies.

Application type

Application types act as templates for creating policy applications. Application types

define the following:

A preset list of actions and functional logic, such as policy lookup and resource

comparator logic.

Internal normalization, indexing logic, and comparator logic for applications.

Attribute-based access control (ABAC)

Access control that is based on attributes of a user, such as how old a user is or

whether the user is a paying customer.

Authentication

The act of confirming the identity of a principal.

Authentication chaining

A series of authentication modules configured together which a principal must

negotiate as configured in order to authenticate successfully.

Authentication level

Positive integer associated with an authentication module, usually used to require

success with more stringent authentication measures when requesting resources

requiring special protection.

Authentication module

AM authentication unit that handles one way of obtaining and verifying credentials.

Authorization

The act of determining whether to grant or to deny a principal access to a resource.

Authorization server

In OAuth 2.0, issues access tokens to the client after authenticating a resource owner

and confirming that the owner authorizes the client to access the protected

72 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.filter.mode.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-agent-profile-realm

resource. AM can play this role in the OAuth 2.0 authorization framework.

Auto-federation

Arrangement to federate a principal’s identity automatically based on a common

attribute value shared across the principal’s profiles at different providers.

Autonomous mode

The agent operates independently of AM, without needing to contact an AM instance.

Agents allow access to resources as defined in not-enforced lists; otherwise, they

deny access.

Bulk federation

Batch job permanently federating user profiles between a service provider and an

identity provider based on a list of matched user identifiers that exist on both

providers.

Centralized configuration mode

Replaced by remote configuration mode.

Circle of trust

Group of providers, including at least one identity provider, who have agreed to trust

each other to participate in a SAML v2.0 provider federation.

Client

In OAuth 2.0, requests protected web resources on behalf of the resource owner

given the owner’s authorization. AM can play this role in the OAuth 2.0 authorization

framework.

Client-based OAuth 2.0 tokens

After a successful OAuth 2.0 grant flow, AM returns a token to the client. This differs

from CTS-based OAuth 2.0 tokens, where AM returns a reference to token to the

client.

Client-based sessions

AM sessions for which AM returns session state to the client after each request, and

require it to be passed in with the subsequent request. For browser-based clients,

AM sets a cookie in the browser that contains the session information.

For browser-based clients, AM sets a cookie in the browser that contains the session

state. When the browser transmits the cookie back to AM, AM decodes the session

state from the cookie.

Conditions

Defined as part of policies, these determine the circumstances under which a policy

applies.

Environmental conditions reflect circumstances like the client IP address, time of day,

how the subject authenticated, or the authentication level achieved.

73 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode

Subject conditions reflect characteristics of the subject like whether the subject

authenticated, the identity of the subject, or claims in the subject’s JWT.

Configuration datastore

LDAP directory service holding AM configuration data.

Cross-domain single sign-on (CDSSO)

AM capability allowing single sign-on across different DNS domains.

CTS-based OAuth 2.0 tokens

After a successful OAuth 2.0 grant flow, AM returns a reference to the token to the

client, rather than the token itself. This differs from client-based OAuth 2.0 tokens,

where AM returns the entire token to the client.

CTS-based sessions

AM sessions that reside in the Core Token Service’s token store. CTS-based sessions

might also be cached in memory on one or more AM servers. AM tracks these

sessions in order to handle events like logout and timeout, to permit session

constraints, and to notify web applications involved in SSO when a session ends.

Custom login redirect

A mode to use SSO tokens or OpenID Connect (OIDC) ID tokens as session tokens,

and redirect login to any endpoint. For more information, refer to Login redirect.

Default login redirect

A mode to use OpenID Connect (OIDC) ID tokens as session tokens, and redirect

login to the /oauth2/authorize endpoint in the AM instance specified during

installation. For more information, refer to Login redirect.

Delegation

Granting users administrative privileges with AM.

Entitlement

Decision that defines the following:

Which resource names can and cannot be accessed for a given identity in the

context of a particular web application.

Which actions are allowed and denied.

Related advice and attributes.

Extended metadata

Federation configuration information specific to AM.

Extensible Access Control Markup Language (XACML)

Standard, XML-based access control policy language, including a processing model

for making authorization decisions based on policies.

Federation

74 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/login-redirect.html

Standardized means for aggregating identities, sharing authentication and

authorization data information between trusted providers, and allowing principals to

access services across different providers without authenticating repeatedly.

Fedlet

Service provider application capable of participating in a circle of trust and allowing

federation without installing all of AM on the service provider side; AM lets you

create Java Fedlets.

Hot swappable

Refers to configuration properties for which changes can take effect without

restarting the container where AM runs.

Identity

Set of data that uniquely describes a person or a thing such as a device or a web

application.

Identity federation

Linking of a principal’s identity across multiple providers.

Identity provider (IdP)

Entity that produces assertions about a principal (such as how and when a principal

authenticated, or that the principal’s profile has a specified attribute value).

Identity repository

Data store holding user profiles and group information; different identity

repositories can be defined for different realms.

Java Agent

Java web application installed in a web container that acts as a policy enforcement

point. The Java Agent filters requests to other applications in the container, using

policies based on web application resource URLs.

Local configuration mode

The agent reads its configuration from the AgentConfiguration.properties file.

See also remote configuration mode.

The configuration mode is defined by Location of Agent Configuration Repository.

Login redirect

Java Agent manages login redirect in the following ways: default login redirect and

custom login redirect.

Metadata

Federation configuration information for a provider.

Policy

Set of rules that define who is granted access to a protected resource when, how,

and under what conditions.

75 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-remote-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-default-login-redirect
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-custom-login-redirect

Policy agent

Java, web, or custom agent that intercepts requests for resources, directs principals

to AM for authentication, and enforces policy decisions from AM.

Policy Administration Point (PAP)

Entity that manages and stores policy definitions.

Policy decision point

Entity that evaluates access rights and then issues authorization decisions.

Policy Enforcement Point (PEP)

Entity that intercepts a request for a resource and then enforces policy decisions

from a policy decision point.

Policy evaluation realm

Entity that intercepts a request for a resource and then enforces policy decisions

from a policy decision point.

Policy Information Point (PIP)

Entity that provides extra information, such as user profile attributes that a policy

decision point needs in order to make a decision.

Principal

Represents an entity that has been authenticated (such as a user, a device, or a web

application), and is therefore distinguished from other entities.

When a Subject successfully authenticates, AM associates the Subject with the

Principal.

Protected resource

A resource that is not matched by a "not-enforced" rule.

Privilege

In the context of delegated administration, a set of administrative tasks that can be

performed by specified identities in a given realm.

Provider federation

Agreement among providers to participate in a circle of trust.

Realm

AM unit for organizing configuration and identity information.

Realms can be used, for example, when different parts of an organization have

different web applications and identity stores, and when different organizations use

the same AM deployment.

Administrators can delegate realm administration. The administrator assigns

administrative privileges to users, allowing them to perform administrative tasks

within the realm.

76 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-subject

Remote configuration mode

The agent ignores the configuration in AgentConfiguration.properties , retains

the retrieved bootstrap properties, and downloads the configuration from AM. See

also local configuration mode.

The configuration mode is defined by Location of Agent Configuration Repository.

Resource

Something a user can access over the network such as a web page.

Defined as part of policies, these can include wildcards in order to match multiple

actual resources.

Resource owner

In OAuth 2.0, entity who can authorize access to protected web resources, such as an

end user.

Resource server

In OAuth 2.0, server hosting protected web resources, capable of handling access

tokens to respond to requests for such resources.

Response attributes

Defined as part of policies, these allow AM to return additional information in the

form of "attributes" with the response to a policy decision.

Role based access control (RBAC)

Access control that is based on whether a user has been granted a set of permissions

(a role).

Security Assertion Markup Language (SAML)

Standard, XML-based language for exchanging authentication and authorization data

between identity providers and service providers.

Service provider (SP)

Entity that consumes assertions about a principal (and provides a service that the

principal is trying to access).

Authentication session

The interval while the user or entity is authenticating to AM.

Session

The interval that starts after the user has authenticated and ends when the user logs

out, or when their session is terminated. For browser-based clients, AM manages

user sessions across one or more web applications by setting a session cookie. See

also CTS-based sessions and Client-based sessions.

Session high availability

Capability that lets any AM server in a clustered deployment access shared,

persistent information about users' sessions from the CTS token store. The user does

77 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-local-configuration-mode
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.config.location.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-client-based-session

not need to log in again unless the entire deployment goes down.

Session token

Unique identifier issued by AM after successful authentication. For a CTS-based

sessions, the session token is used to track a principal’s session.

Single log out (SLO)

Capability to end a session once, and thereby end the session across multiple web

applications.

Single sign-on (SSO)

Capability to authenticate once and gain access to multiple web applications, without

authenticating again.

Site

Group of AM servers configured the same way, accessed through a load balancer

layer. The load balancer handles failover to provide service-level availability.

The load balancer can also be used to protect AM services.

Standard metadata

Standard federation configuration information that you can share with other access

management software.

Stateless service

Stateless services do not store any data locally to the service. When the service

requires data to perform any action, it requests it from a data store. For example, a

stateless authentication service stores session state for logged-in users in a

database. This way, any server in the deployment can recover the session from the

database and service requests for any user.

All AM services are stateless unless otherwise specified. See also Client-based

sessions and CTS-based sessions.

Subject

Entity that requests access to a resource .

When an identity successfully authenticates, AM associates the identity with the

Principal that distinguishes it from other identities. An identity can be associated with

multiple principals.

User realm

The realm in which a user is authenticated.

Identity store

Data storage service holding principals' profiles; underlying storage can be an LDAP

directory service or a custom IdRepo implementation.

Web Agent

78 / 79

file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-client-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-client-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-CTS-based-session
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/glossary.html#def-principal

Native library installed in a web server that acts as a policy enforcement point with

policies based on web page URLs.

Web application

An application that runs on a web server, that is accessed by the user through a web

browser. The web application exposes protected resources.

Was this helpful?

Copyright © 2010-2024 ForgeRock, all rights reserved.

79 / 79

