Security guide

Use this guide to reduce risk and mitigate threats to Java Agent security.

"
Threats

Understand and
address security
threats.

Connections

Secure network
connections.

) o

Keys and Secrets

Manage keys and
secrets.

Operating Systems

Secure your operating

systems.

Access

Remove non-essential
access and features,
update patches, and

manage cookies.

i

Audit Trails

Audit events in your
deployment.

ForgeRock Identity Platform serves as the basis for our simple and comprehensive
ldentity and Access Management solution. For more information, visit
https://www.pingidentity.comX. The common REST API provides ForgeRock Identity
Platform software common ways to access web resources and collections of resources.

1/12


https://www.pingidentity.com/
https://www.pingidentity.com/
https://www.pingidentity.com/
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/threats.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/os.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/connections.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/access.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/keys.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/security-guide/audit-log.html#audit

Threats

The following sections describe some possible threats to Java Agent, which you can
mitigate by following the instructions in this guide.

Out-of-date software

Prevent the exploitation of security vulnerabilities by using up-to-date versions of the
agent and third-party software.

Review and follow the Ping Identity security advisories. Follow similar lists from all of
your vendors.

Cached pages in browsers and web proxies

When browsers and web proxies cache pages that are accessed by a user, the cache can
include sensitive information. Caching pages in browsers and web proxies increases risk
of unwanted disclosure, especially in shared browsing environments.

Similarly, when web server responses are cached, sensitive information can be accessed
by attackers. Caching web server responses is a common method to improve loading
times and reduce server load.

To manage caching, set Custom Response Header Map so that HTTP responses
generated by the agent include the Cache-Control HTTP header. This header tells
browsers and web proxies whether they can be cached. For example, clients can set the

following value clear existing cache responses, force the cache to revalidate with the
server, and prevent new responses from being cached:

org.forgerock.agents.response.header.map[Cache-Control]=max-age=0, no-
store

In your decision to set this property, consider the impact on the performance of
customer applications. Setting this property can reduce performance because browser
pages are not cached.

For more information about caching, see HTTP caching.

Reconnaissance

The initial phase of an attack sequence is often reconnaissance. Limit the amount of
information available to attackers during reconnaissance, as follows:

e Avoid using words that identify Java Agent in error messages.

2/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.response.header.map.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching

When AM is not available, the related error message contains the agent profile
name. Consider this in your choice of agent profile name.

e Configure Agent Debug Level to use the lowest level of logging necessary. For

example, consider logging at the ERROR or WARNING level, instead of TRACE or
MESSAGE .

e In custom login redirects, calls to the custom login URL include the parameter Login
Reason Parameter Name to indicate why authentication is required, such as
NO_TOKEN and TOKEN_EXPIRED . To reduce the risk of leaking useful information,
use alternative strings for the authentication reason, by configuring Login Reason
Value Map.

Cross-site scripting

Cross-site request forgery attacks (CSRF or XSRF) can be a cause of serious
vulnerabilities in web applications. It is the responsibility of the protected
application to implement countermeasures against such attacks, because Java
Agent cannot provide generic protection against CSRF. ForgeRock recommends
following the latest guidance from the OWASP CSRF Prevention Cheat Sheet™,

When POST data preservation is enabled, captured POST data that is replayed
appears to come from the same origin as the protected application, not from the
site that originated the request. Therefore, CSRF defenses that rely solely on
checking the origin of requests, such as SameSite cookies or Origin headers, are not
reliable. ForgeRock strongly recommends using token-based mitigations against

CSRF, and relying on other measures only as a defense in depth, in accordance with
OWASP guidance.

Configure the following properties to protect against cross-site scripting attacks:

e Enable Composite Advice Encoding

e XSS Redirect URI Map

e XSS Code Element List

POST data preservation

By default, POST data is stored in the in-memory cache. Consider the following points if
you configure POST Data Preservation in Files or Cache to store POST data in the file
system:

e Payloads from unauthenticated users are stored in the agent file system. If your
threat evaluation does not accept this risk, store the data in the cache, or set POST
Data Preservation in Files or Cache to false.

3/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.debug.level.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.reason.parameter.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.reason.parameter.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.reason.remapper.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.login.reason.remapper.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.advice.b64.url.encode.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.xss.redirect.uri.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.xss.code.element.list.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.use.filesystem.enabled.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Cross-Site_Request_Forgery_Prevention_Cheat_Sheet.html

e Restrict access to the POST Data Preservation File Directory, to mitigate the risk of

permissive access or leakage of personally identifiable information (PI).

e Limit the amount of stored POST data to mitigate the risk of DoS attacks, by
configuring POST Data Preservation Storage Size or Max Entries in POST Data
Preservation Storage.

e Remove expired POST data as soon as possible by configuring the POST Data
Preservation Directory Sweep Interval.

¢ l|dentify threats in POST data before it is deleted, by making sure that Intrusion
Detection Systems inspect the data within the time specified by POST Data
Preservation Directory Sweep Interval.

For information about configuration properties, see POST data preservation.

Compromised passwords
Use secure passwords for server administration.

For information about how to create the agent password, see Preinstallation tasks. The
encrypted password is stored in the AgentPassword.properties file.

Although the agent accepts any password length and content, you are strongly
encouraged to generate secure passwords. This can be achieved in various ways,
for example using a password manager or by using the command line tool
agentadmin --key.

Misconfiguration

Misconfiguration can arise from bad or mistaken configuration decisions, and from poor

change management. Depending on the configuration error, features can stop working
in obvious or subtle ways, and potentially introduce security vulnerabilities.

For example, if a configuration change prevents the server from making HTTPS
connections, many applications can no longer connect, and the problem is detected
immediately. However, if a configuration change allows insecure TLS protocol versions
or cipher suites for HTTPS connections, some applications negotiate insecure TLS, but
appear to continue to work properly.

e Access policy is not correctly enforced.

Incorrect parameters for secure connections and incorrect Access Control
Instructions (ACI) can lead to overly permissive access to data, and potentially to a
security breach.

e The server fails to restart.

4/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.total.size.mb.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.cache.size.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.pdp.directory.sweep.seconds.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#post_data_preservation
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/pre-installation.html#preinstall-tasks
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/user-guide/about.html#agentpassword_properties
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/agentadmin.html#agentadmin-key

Although failure to start a server is not directly a threat to security, it can affect
service availability.

To guard against bad configuration decisions, implement good change management:

e For all enabled features, document why they are enabled and what your
configuration choices mean. This implies a review of configuration settings,
including default settings that you accept.

e Validate configuration decisions with thorough testing.

e Maintain a record of your configurations and the changes applied.
For example, use a filtered audit log. Use version control software for any
configuration scripts and to record changes to configuration files.

e Maintain a record of external changes to the system, such as changes to operating
system configuration, and updates to software, such as the JVM that introduces
security changes.

Unauthorized access

Data theft can occur when access policies are too permissive, and when the credentials
to gain access are too easily cracked. It can also occur when the data is not protected,
when administrative roles are too permissive, and when administrative credentials are
poorly managed.

Poor risk management

Threats can arise when plans fail to account for outside risks. To mitigate risk, develop
appropriate answers to at least the following questions:

e What happens when a server or an entire data center becomes unavailable?

e How do you remedy a serious security issue in the service, either in the Java Agent
software or the connected systems?

e How do you validate mitigation plans and remedial actions?

e How do client applications work when the Java Agent offline?

If client applications require always-on services, how do your operations ensure
high availability, even when a server goes offline?

For critical services, test expected operation and disaster recovery operation.

Denial of service

To prevent memory exhaustion DOS attacks, configure Maximum Decompression Size to
limit the maximum size to which a compressed JWT can be decompressed. This property

5/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.max.decompression.size.bytes.html

reduces the risk of a decompressed JWT consuming too much available memory.

Log overflow attacks

To prevent log overflow attacks, add a custom agent-logback.xml with a
DuplicateMessageFilter . This filter detects duplicate messages, and after the
specified number of repetitions, drops repeated messages. For more information, see
Limiting repetitive log messages.

Operating systems

When you deploy Java Agent, familiarize yourself with the recommendations for the host
operating systems that you use. For comprehensive information about securing
operating systems, see the CIS Benchmark™ documentation.

System updates

Over the lifetime of a deployment, the operating system might be subject to
vulnerabilities. Some vulnerabilities require system upgrades, whereas others require
only configuration changes. All updates require proactive planning and careful testing.

For the operating systems used in production, put a plan in place for avoiding and
resolving security issues. The plan should answer the following questions:

e How does your organization become aware of system security issues early?
This could involve following bug reports, mailing lists, forums, and other sources of
information.

e How do you test security fixes, including configuration changes, patches, service

packs, and system updates?

Validate the changes first in development, then in one or more test environments,
then in production in the same way you would validate other changes to the
deployment.

e How do you roll out solutions for security issues?

In some cases, fixes might involve both changes to the service, and specific actions
by those who use the service.

e What must you communicate about security issues?

e How must you respond to security issues?

Software providers often do not communicate what they know about a vulnerability
until they have a way to mitigate or fix the problem. Once they do communicate about

6/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/maintenance-guide/logging.html#logging-duplicate-messages
https://downloads.cisecurity.org/#/
https://downloads.cisecurity.org/#/
https://downloads.cisecurity.org/#/

security issues, the information is likely to become public knowledge quickly. Make sure
that you can expedite resolution of security issues.

To resolve security issues quickly, make sure that you are ready to validate any changes

that must be made. When you validate a change, check that the fix resolves the security

issue. Validate that the system and Java Agent software continue to function as expected
in all the ways they are used.

System audits

System audit logs make it possible to uncover system-level security policy violations that
are not recorded in Java Agent, such as unauthorized access to Java Agent files. Such
violations are not recorded in Java Agent logs or monitoring information.

Also consider how to prevent or at least detect tampering. A malicious user violating
security policy is likely to try to remove evidence of how security was compromised.

Unused features

By default, operating systems include many features, accounts, and services that Java
Agent software does not require. Each optional feature, account, and service on the
system brings a risk of additional vulnerabilities. To reduce the surface of attack, enable
only required features, system accounts, and services. Disable or remove those that are
not needed for the deployment.

The features needed to run and manage Java Agent software securely include the
following:
e AJava runtime environment, required to run Java Agent software.

e Software to secure access to service management tools; in particular, when
administrators access the system remotely.

e Software to secure access for remote transfer of software updates, backup files,
and log files.

e Software to manage system-level authentication, authorization, and accounts.
e Firewall software, intrusion-detection/intrusion-prevention software.

e Software to allow auditing access to the system.

e System update software to allow updates that you have validated previously.

e Ifrequired for the deployment, system access management software such as
SELinux.

e Any other software that is clearly indispensable to the deployment.

Consider the minimal installation options for your operating system, and the options to
turn off features.

7/12



Consider configuration options for system hardening to further limit access even to
required services.

For each account used to run a necessary service, limit the access granted to the
account to what is required. This reduces the risk that a vulnerability in access to one
account affects multiple services across the system.

Make sure that you validate the operating system behavior every time you deploy new
or changed software. When preparing the deployment and when testing changes,
maintain a full operating system with Java Agent software that is not used for any
publicly available services, but only for troubleshooting problems that might stem from
the system being too minimally configured.

Network connections

Protect network traffic by using HTTPS where possible.

Recommendations For Incoming Connections (From Clients to Java Agent)

Protocol Recommendations

HTTP HTTP connections that are not protected by TLS use cleartext
messages. When you permit insecure connections, you cannot
prevent client applications from sending sensitive data. For
example, a client could send unprotected credentials in an
HTTP Authorization header. Even if the server were to reject the
request, the credentials would already be leaked to any
eavesdroppers.

Always use HTTPS for connections up to a load-balancer or
proxy in front of the web application or server.

HTTPS Use HTTPS for secure connections. Follow industry-standard
TLS recommendations for Security/Server Side TLSE.

When using an HTTP connection handler, use HTTPS to protect
client connections.

Some client applications require a higher level of trust, such as
clients with additional privileges or access. Client application
deployers might find it easier to manage public keys as
credentials than to manage username/password credentials.
Client applications can use TLS client authentication.

Recommendations For Outgoing Connections (From Java Agent to Another Service)

8/12


https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS
https://wiki.mozilla.org/Security/Server_Side_TLS

Client Recommendations

Common Audit Configure ForgeRock Common Audit event handlers to use
event handlers HTTPS when connecting to external log services.
AM Connect to AM over HTTPS, and use Web Socket Secure (WSS)

for notifications. When AM listens on HTTPS, by default the
agent uses WSS. Otherwise, by default the agent uses Web
Sockets (WS).

Custom login pages Connect to custom login pages over HTTPS.

Message-level security

Server protocols such as HTTP, LDAP, and JMX rely on TLS to protect connections. To
enforce secure communication, see Secure communication between the agent and AM.

Communication between the agent and clients is managed by the web application
container in which the agent runs. See the web application container documentation for
information about how to secure those connections.

Access

The following sections describe how to restrict non-essential access to your deployment,
and reduce the amount of non-essential information that it provides.

Remove non-essential features

The more features you have turned on, the more features you need to secure, patch,
and audit. If something is not being used, uninstall it, disable it, or protect access to it.

Remove non-essential access

Make sure that only authorized people can access your servers and applications through
the appropriate network, using the appropriate ports, and presenting strong-enough
credentials.

Make sure that users connect to systems through the latest versions of TLS, and audit
system access periodically.

Protect read-access to endpoints that monitor Common REST, Prometheus, CSV file-
based metrics. For Common REST and Prometheus endpoints:

9/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/installation-guide/post-installation.html#configure-HTTPS

¢ Name exposed base endpoints to prevent them from being easily associated with
an application.

e Set up strict not-enforced rules, to minimize unauthenticated access.

For information, see Manage endpoints for Common REST and Prometheus metrics.

Update patches

Prevent the exploitation of security vulnerabilities by using up-to-date versions of the
agent and third-party software.

Review and follow the Ping Identity security advisories. Follow similar lists from all of
your vendors.

Manage cookies

Increase the security of cookies generated by Java Agent or the protected application in

the following ways:

e To prevent cookies from being easily associated with an application, change the
default name of key cookies. For example, change pre-authentication cookies in
Pre-Authentication Cookie Name, and JWT cookies in JWT Cookie Name.

e To transmit securely all cookies written by the agent, set Transmit Cookies Securely.

e To reduce the risk of cross-site request forgery (CSRF) attacks, set the SameSite
attribute of cookies in Set-Cookie Internal Map or Set-Cookie Attribute Map.

e To ensure that cookies cannot be accessed through client-side scripts, and to
mitigate any XSS attacks, set Enable HTTP Only Cookies to create cookies with the
httpOnly flag.

e To make cookies accessible only from HTTPS sites, prefix the cookie name with
__Secure- . Aforged insecure site cannot overwrite a secure cookie.

e To make cookies accessible only on the same host where they are set, prefix the
cookie name with __Host- . A subdomain cannot overwrite the cookie value.

e To protect the CDSSO session cookie from hijacking, configure AM as described in
Enabling restricted tokens for CDSSO session cookies in AM's Security guide.

Keys and secrets

Java Agent uses cryptographic keys for encryption, signing, and securing network
connections, and passwords. The following sections discuss how to secure keys and
secrets in your deployment.

10/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/maintenance-guide/monitoring.html#proc-enable-metrics-endpoint
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.authn.cookie.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.jwt.cookie.name.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.secure.cookies.enabled.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.set.cookie.internal.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/org.forgerock.agents.set.cookie.attribute.map.html
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/com.sun.identity.cookie.httponly.html
https://backstage.forgerock.com/docs/am/7.2/security-guide/enable-cdsso-cookie-hijacking-protection.html

Use strong keys

Small keys are easily compromised. Use at least the recommended key size.

In JVM, the default ephemeral Diffie-Hellman (DH) key size is 1024 bits. To support
stronger ephemeral DH keys, and protect against weak keys, installations in Tomcat
8.5.37 and later versions use the Tomcat default DH key size of 2048-bit.

Increase the DH key size to protect against weak keys. For WebSphere Java Agent,
setting the jdk.tls.ephemeralDHKeySize=2048 system property. For other
containers, and for more information, see Customizing Size of Ephemeral Diffie-Hellman
Keyst

Rotate keys
Rotate keys regularly to:

e Limit the amount of data protected by a single key.

e Reduce dependence on specific keys, making it easier to migrate to stronger
algorithms.

e Prepare for when a key is compromised. The first time you try key rotation shouldn’t
be during a real-time recovery.

e Conform to internal business compliance requirements.

Audits and logs

Audit trails

For security, troubleshooting, and regulatory compliance, agents are able to audit
information for allowed and/or denied requests.

The agent audit logging service adheres to the log structure common across the
ForgeRock Identity Platform. For information, see Auditing.

Java Agent supports propagation of the transaction ID across the ForgeRock Identity
Platform, using the HTTP header X-ForgeRock-TransactionId. Consider configuring
this header to prevent malicious actors from flooding the system with requests using the
same transaction ID header to hide their tracks. For information, see Configuring the
trust transaction header system property in AM’s Security guide.

Log files

11/12


https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://wiki.mozilla.org/Security/Server_Side_TLS#Intermediate_compatibility_.28recommended.29
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefguide.html#customizing_dh_keys
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefguide.html#customizing_dh_keys
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefguide.html#customizing_dh_keys
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jsse/JSSERefguide.html#customizing_dh_keys
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/maintenance-guide/auditing.html
https://backstage.forgerock.com/docs/am/7.2/security-guide/implementing-audit.html#configuring-trusttransactionheader-system-property
https://backstage.forgerock.com/docs/am/7.2/security-guide/implementing-audit.html#configuring-trusttransactionheader-system-property

Agent logs can contain informational, error, and warning events, to troubleshoot and
debug transactions and events that take place within the agent instance.

Protect logs from unauthorised access, and make sure they contain a minimum of
sensitive or personally identifiable information that could be used in attacks.

Use the lowest level of logging necessary. For example, consider logging at the ERROR or
WARNING level, instead of TRACE or MESSAGE . For more information, see logging
configuration properties.

Was this helpful? &

Copyright © 2010-2024 ForgeRock, all rights reserved.

12/12


file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#debug_and_metric
file:///home/pptruser/Downloads/build/site/openam-jee-policy-agents/properties-reference/preface.html#debug_and_metric

