
Integrator's Guide
OpenIDM 2.0.3

Anders Askåsen
Paul Bryan
Mark Craig
Andi Egloff

Laszlo Hordos
Matthias Tristl

ForgeRock AS
201 Mission St., Suite 2900

San Francisco, CA 94105, USA
+1 415-599-1100 (US)

www.forgerock.com

Copyright © 2011-2017 ForgeRock AS.

Abstract

Guide to configurating and integrating OpenIDM into identity management solutions. The
OpenIDM project offers flexible, open source services for automating management of the
identity life cycle.

This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License.

To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/3.0/ or send a letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

ForgeRock® and ForgeRock Identity Platform™ are trademarks of ForgeRock Inc. or its subsidiaries in the U.S. and in other countries. Trademarks are the property of their respective owners.

UNLESS OTHERWISE MUTUALLY AGREED BY THE PARTIES IN WRITING, LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS,
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES OF TITLE, MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NONINFRINGEMENT, OR THE ABSENCE OF LATENT
OR OTHER DEFECTS, ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH
EXCLUSION MAY NOT APPLY TO YOU.

EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE OR EXEMPLARY
DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

DejaVu Fonts

Bitstream Vera Fonts Copyright

Copyright (c) 2003 by Bitstream, Inc. All Rights Reserved. Bitstream Vera is a trademark of Bitstream, Inc.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the Font
Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so, subject to the following
conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Bitstream" or the word "Vera".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Bitstream Vera" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL BITSTREAM OR THE GNOME FOUNDATION BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, INCLUDING ANY GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR
INABILITY TO USE THE FONT SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the names of Gnome, the Gnome Foundation, and Bitstream Inc., shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior
written authorization from the Gnome Foundation or Bitstream Inc., respectively. For further information, contact: fonts at gnome dot org.

Arev Fonts Copyright

Copyright (c) 2006 by Tavmjong Bah. All Rights Reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of the fonts accompanying this license ("Fonts") and associated documentation files (the "Font Software"), to reproduce and distribute the modifications
to the Bitstream Vera Font Software, including without limitation the rights to use, copy, merge, publish, distribute, and/or sell copies of the Font Software, and to permit persons to whom the Font Software is furnished to do so,
subject to the following conditions:

The above copyright and trademark notices and this permission notice shall be included in all copies of one or more of the Font Software typefaces.

The Font Software may be modified, altered, or added to, and in particular the designs of glyphs or characters in the Fonts may be modified and additional glyphs or characters may be added to the Fonts, only if the fonts are
renamed to names not containing either the words "Tavmjong Bah" or the word "Arev".

This License becomes null and void to the extent applicable to Fonts or Font Software that has been modified and is distributed under the "Tavmjong Bah Arev" names.

The Font Software may be sold as part of a larger software package but no copy of one or more of the Font Software typefaces may be sold by itself.

THE FONT SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND NONINFRINGEMENT OF COPYRIGHT, PATENT, TRADEMARK, OR OTHER RIGHT. IN NO EVENT SHALL TAVMJONG BAH BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, INCLUDING ANY
GENERAL, SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF THE USE OR INABILITY TO USE THE FONT
SOFTWARE OR FROM OTHER DEALINGS IN THE FONT SOFTWARE.

Except as contained in this notice, the name of Tavmjong Bah shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Font Software without prior written authorization from Tavmjong Bah.
For further information, contact: tavmjong @ free . fr.

FontAwesome Copyright

Copyright (c) 2017 by Dave Gandy, http://fontawesome.io.

This Font Software is licensed under the SIL Open Font License, Version 1.1. This license is available with a FAQ at: http://scripts.sil.org/OFL

https://creativecommons.org/licenses/by-nc-nd/3.0/
https://creativecommons.org/licenses/by-nc-nd/3.0/
http://fontawesome.io
http://scripts.sil.org/OFL

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iii

Table of Contents
Preface ... vi

1. Who Should Use this Guide .. vi
2. Formatting Conventions ... vi
3. Accessing Documentation Online ... vii
4. Using the ForgeRock.org Site .. vii

1. Architectural Overview .. 1
1.1. OpenIDM Modular Framework ... 1
1.2. Infrastructure Modules ... 2
1.3. Core Services ... 2
1.4. Access Layer .. 3

2. Starting & Stopping OpenIDM .. 5
2.1. Startup & Shutdown .. 5
2.2. Command-Line Tools .. 6

3. Configuration Options ... 8
3.1. About Configuration Objects ... 8
3.2. When Changing the Configuration .. 9
3.3. Configuring OpenIDM Over REST .. 9

4. Configuring Server Logs ... 14
5. Connecting to External Resources ... 15

5.1. About OpenIDM & OpenICF ... 15
5.2. Accessing Remote Connectors .. 16
5.3. Configuring Connectors .. 18
5.4. Connector Configuration Examples ... 25
5.5. Creating Default Connector Configurations .. 33

6. Configuring Synchronization ... 40
6.1. Types of Synchronization .. 40
6.2. Flexible Data Model ... 41
6.3. Basic Data Flow Configuration ... 42
6.4. Synchronization Situations & Actions ... 48
6.5. Correlation Queries .. 53
6.6. Advanced Data Flow Configuration ... 54
6.7. Alternative Mappings ... 57

7. Scheduling Synchronization ... 58
7.1. Scheduler Configuration ... 58
7.2. Scheduler Examples ... 59

8. Managing Passwords ... 61
8.1. Enforcing Password Policy .. 61
8.2. Password Synchronization .. 64

9. Managing Authentication, Authorization & RBAC .. 70
9.1. OpenIDM Users .. 70
9.2. Authentication .. 71
9.3. Roles .. 72
9.4. Authorization .. 72

10. Securing & Hardening OpenIDM ... 76

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. iv

10.1. Use SSL and HTTPS ... 76
10.2. Encrypt Data Internally & Externally .. 76
10.3. Use Message Level Security ... 76
10.4. Replace Default Security Settings ... 78
10.5. Secure Jetty .. 79
10.6. Protect Sensitive REST Interface URLs ... 80
10.7. Protect Sensitive Files & Directories .. 80
10.8. Obfuscate Bootstrap Information .. 80
10.9. Remove or Protect Development & Debug Tools ... 81
10.10. Protect the OpenIDM Repository .. 81
10.11. Adjust Log Levels ... 81
10.12. Set Up Restart At System Boot ... 82

11. Integrating Business Processes & Workflow .. 83
11.1. About BPMN 2.0 & Activity Tools ... 83
11.2. Known Issues & Limitations ... 84
11.3. Invoking Activiti Workflows .. 84
11.4. Example Activiti Workflows With OpenIDM .. 85

12. Using Audit Logs ... 92
12.1. Audit Log Types ... 92
12.2. Audit Log File Formats ... 93
12.3. Audit Configuration .. 96
12.4. Generating Reports .. 98

13. Sending Email ... 99
13.1. Sending Mail Over REST .. 100
13.2. Sending Mail From a Script .. 101

14. OpenIDM Project Best Practices .. 102
14.1. Implementation Phases ... 102

15. Troubleshooting ... 104
15.1. OpenIDM Stopped in Background ... 104
15.2. Internal Server Error During Reconciliation or Synchronization 104
15.3. The scr list Command Shows Sync Service As Unsatisfied 105
15.4. JSON Parsing Error .. 105
15.5. System Not Available .. 106
15.6. Bad Connector Host Reference in Provisioner Configuration 106
15.7. Missing Name Attribute .. 107

A. File Layout .. 108
B. Ports Used .. 113
C. Data Models & Objects Reference ... 114

C.1. Accessing Objects .. 115
C.2. Managed Objects ... 115
C.3. Configuration Objects ... 126
C.4. System Objects .. 129
C.5. Audit Objects ... 129
C.6. Links .. 129

D. Synchronization Reference .. 130
D.1. Object-Mapping Objects ... 130
D.2. Links .. 135

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. v

D.3. Queries .. 136
D.4. Reconciliation ... 136
D.5. REST API ... 137

E. REST API Reference ... 138
E.1. URI Scheme ... 138
E.2. Object Identifiers ... 138
E.3. Content Negotiation ... 138
E.4. Conditional Operations ... 139
E.5. Supported Methods .. 139

F. Scripting Reference ... 143
F.1. Configuration ... 143
F.2. Examples .. 144
F.3. Function Reference .. 144
F.4. Places to Trigger Scripts .. 149
F.5. Debugging OpenIDM Scripts .. 150

G. Scheduler Reference ... 152
G.1. Scheduled Task Use Cases ... 154
G.2. Cron Expressions ... 154
G.3. Checking For Quartz Updates .. 155
G.4. Service Implementer Notes .. 155

H. Router Service Reference ... 156
H.1. Configuration ... 156
H.2. Example ... 160

I. Embedded Jetty Configuration .. 161
I.1. Using OpenIDM Configuration Properties in the Jetty Configuration 161
I.2. Jetty Default Settings .. 162

Index ... 164

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vi

Preface
This guide shows you how to integrate OpenIDM as part of a complete identity management solution.

1. Who Should Use this Guide
This guide is written for systems integrators building identity management solutions based on
OpenIDM services. This guide describes OpenIDM, and shows you how to set up OpenIDM as part of
your identity management solution.

You do not need to be an OpenIDM wizard to learn something from this guide, though a background
in identity management and building identity management solutions can help.

2. Formatting Conventions
Most examples in the documentation are created in GNU/Linux or Mac OS X operating environments.
If distinctions are necessary between operating environments, examples are labeled with the
operating environment name in parentheses. To avoid repetition file system directory names are
often given only in UNIX format as in /path/to/server, even if the text applies to C:\path\to\server as
well.

Absolute path names usually begin with the placeholder /path/to/. This path might translate to /opt/,
C:\Program Files\, or somewhere else on your system.

Command-line, terminal sessions are formatted as follows:
$ echo $JAVA_HOME
/path/to/jdk

Command output is sometimes formatted for narrower, more readable output even though formatting
parameters are not shown in the command.

Program listings are formatted as follows:
class Test {
 public static void main(String [] args) {
 System.out.println("This is a program listing.");
 }
}

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. vii

3. Accessing Documentation Online
ForgeRock publishes comprehensive documentation online:

• The ForgeRock Knowledge Base offers a large and increasing number of up-to-date, practical
articles that help you deploy and manage ForgeRock software.

While many articles are visible to community members, ForgeRock customers have access to much
more, including advanced information for customers using ForgeRock software in a mission-critical
capacity.

• ForgeRock product documentation, such as this document, aims to be technically accurate and
complete with respect to the software documented. It is visible to everyone and covers all product
features and examples of how to use them.

4. Using the ForgeRock.org Site
The ForgeRock.org site has links to source code for ForgeRock open source software, as well as links
to the ForgeRock forums and technical blogs.

If you are a ForgeRock customer, raise a support ticket instead of using the forums. ForgeRock
support professionals will get in touch to help you.

https://backstage.forgerock.com/knowledge/kb
https://forgerock.org

Architectural Overview
OpenIDM Modular Framework

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 1

Chapter 1

Architectural Overview

The following figure provides an overview of the OpenIDM architecture, which is covered in more
detail in subsequent sections of this chapter.

1.1. OpenIDM Modular Framework
The OpenIDM framework is based on OSGi.

OSGi

OSGi is a module system and service platform for the Java programming language that
implements a complete and dynamic component model. For a good introduction, see the OSGi
site. While OpenIDM services are designed to run in any OSGi container, OpenIDM currently runs
in Apache Felix.

http://www.osgi.org/About/WhyOSGi
http://felix.apache.org/site/index.html

Architectural Overview
Infrastructure Modules

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 2

Servlet

The optional Servlet layer provides RESTful HTTP access to the managed objects and services.
While the Servlet layer can be provided by many different engines, OpenIDM embeds Jetty by
default.

1.2. Infrastructure Modules
OpenIDM infrastructure modules provide the underlying features needed for core services.

Scheduler

The scheduler provides a cron-like scheduling component implemented using the Quartz library.
Use the scheduler, for example, to enable regular synchronizations and reconciliations.

See the Scheduling Synchronization chapter for details.

Script Engine

The script engine is a pluggable module that provides the triggers and plugin points for
OpenIDM. OpenIDM currently implements a JavaScript engine.

Audit Logging

Auditing logs all relevant system activity to the configured log stores. This includes the data from
reconciliation as a basis for reporting, as well as detailed activity logs to capture operations on
the internal (managed) and external (system) objects.

See the Using Audit Logs chapter for details.

Repository

The repository provides a common abstraction for a pluggable persistence layer. OpenIDM 2.0.3
supports use of MySQL to back the repository. Yet, plugin repositories can include NoSQL and
relational databases, LDAP, and even flat files. The repository API operates using a JSON-based
object model with RESTful principles consistent with the other OpenIDM services. The default,
embedded implementation for the repository is the NoSQL database OrientDB, making it easy to
evaluate OpenIDM out of the box before using MySQL in your production environment.

1.3. Core Services
The core services are the heart of the OpenIDM resource oriented unified object model and
architecture.

Object Model

Artifacts handled by OpenIDM are Java object representations of the JavaScript object model as
defined by JSON. The object model supports interoperability and potential integration with many

http://www.quartz-scheduler.org

Architectural Overview
Access Layer

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 3

applications, services and programming languages. As OpenIDM is a Java-based product, these
representations are instances of classes: Map, List, String, Number, Boolean, and null.

OpenIDM can serialize and deserialize these structures to and from JSON as required. OpenIDM
also exposes a set of triggers and functions that system administrators can define in JavaScript
which can natively read and modify these JSON-based object model structures. OpenIDM is
designed to support other scripting and programming languages.

Managed Objects

A managed object is an object that represents the identity-related data managed by OpenIDM.
Managed objects are configurable, JSON-based data structures OpenIDM stores in its pluggable
repository. While the default configuration of managed objects is that of a user, any object may be
defined through configuration.

System Objects

System objects are pluggable representations of objects on external systems. They follow
the same RESTful resource based design principles as managed objects. There is a default
implementation for the OpenICF framework, which allows any connector object to be represented
as a system object.

Mappings

Mappings define policies between source and target objects and their attributes during
synchronization and reconciliation. Mappings can also define triggers for validation,
customization, filtering, and transformation of source and target objects.

See the Configuring Synchronization chapter for details.

Synchronization & Reconciliation

Reconciliation provides for on-demand and scheduled resource comparisons between the
OpenIDM managed object repository and source or target systems. Comparisons can result in
different actions depending on the mappings defined between the systems.

Synchronization provides for creating, updating, and deleting resources from a source to a target
system either on demand or according to a schedule.

See the Configuring Synchronization chapter for details.

1.4. Access Layer
The access layer provides the user interfaces and public APIs for accessing and managing the
OpenIDM repository and its functions.

Architectural Overview
Access Layer

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 4

RESTful Interfaces

OpenIDM provides REST APIs for CRUD operations and invoking synchronization and
reconciliation for both HTTP and Java.

See the REST API Reference appendix for details.

User Interfaces

User interfaces provide password management, registration, self-service, and workflow services.

Starting & Stopping OpenIDM
Startup & Shutdown

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 5

Chapter 2

Starting & Stopping OpenIDM
This chapter covers scripts provided for managing OpenIDM.

2.1. Startup & Shutdown
By default you start and stop OpenIDM in interactive mode.

To start OpenIDM interactively, open a terminal or command window, change to the openidm directory,
and run the startup script:

• startup.sh (UNIX)

• startup.bat (Windows)

The startup script starts OpenIDM, and opens an OSGi console with a -> prompt where you can issue
console commands.

To stop OpenIDM interactively in the OSGi console, enter the shutdown command.
-> shutdown

You can also start OpenIDM as a background process on UNIX, Linux, and Mac OS X. Follow these
steps before starting OpenIDM for the first time.

1. If you have already started OpenIDM, then shut down OpenIDM and remove Felix cache files
under openidm/felix-cache/.
-> shutdown
...
$ rm -rf felix-cache/*

2. Disable ConsoleHandler logging before starting OpenIDM by editing openidm/conf/logging.properties
to set java.util.logging.ConsoleHandler.level = OFF, and to comment out other references to
ConsoleHandler, as shown in the following excerpt.

Starting & Stopping OpenIDM
Command-Line Tools

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 6

ConsoleHandler: A simple handler for writing formatted records to System.err
#handlers=java.util.logging.FileHandler, java.util.logging.ConsoleHandler
handlers=java.util.logging.FileHandler
...
--- ConsoleHandler ---
Default: java.util.logging.ConsoleHandler.level = INFO
java.util.logging.ConsoleHandler.level = OFF
#java.util.logging.ConsoleHandler.formatter = ...
#java.util.logging.ConsoleHandler.filter=...

3. Remove the text-based OSGi console bundle, bundle/org.apache.felix.shell.tui-version.jar.

4. Start OpenIDM in the background.
$./startup.sh &
[3] 454
$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties

$

Alternatively, use the nohup command to keep OpenIDM running after you log out.
$ nohup ./startup.sh &
[2] 394
$ appending output to nohup.out
$

To stop OpenIDM running as a background process, use the shutdown.sh script.
$./shutdown.sh
./shutdown.sh
Stopping OpenIDM (454)

2.2. Command-Line Tools
OpenIDM includes these command line tools in the openidm directory.

cli.sh

This script supports the following subcommands.

validate

Validate all .json configuration files in the conf/ directory

Starting & Stopping OpenIDM
Command-Line Tools

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 7

java -jar bundle/init/openidm-crypto-2.0.3.jar

Utility to obfuscate passwords such as the bootstrap password stored in openidm/conf/boot/
boot.properties

java -jar bundle/json-crypto-cli-1.1.0.jar

Utility to encrypt and decrypt values in JSON objects

startup.bat
startup.sh

Script to start OpenIDM and the OSGi console

shutdown.sh

Script to stop OpenIDM, especially when you run OpenIDM as a background process

Configuration Options
About Configuration Objects

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 8

Chapter 3

Configuration Options
OpenIDM configuration is split between .properties and container configuration files, and also
dynamic configuration objects. The majority of OpenIDM configuration files are stored under openidm/
conf/, as described in the appendix listing the File Layout.

OpenIDM stores configuration objects in its internal repository. You can manage the configuration by
using either the REST access to the configuration objects, or by using the JSON file based views

3.1. About Configuration Objects
OpenIDM exposes internal configuration objects in JSON. Configuration elements can be either have
single instances or multiple instances for an OpenIDM installation.

Single Instance Configuration Objects

Single instance configuration objects correspond to services that have at most one instance per
installation.

JSON file views of these configuration objects are named object-name.json.

• The audit configuration specifies how audit events are logged.

• The authentication configuration controls REST access.

• The managed configuration defines managed objects and their schemas.

• The repo.repo-type configuration such as repo.orientdb or repo.jdbc configures the internal repository.

• The router configuration specifies filters to apply for specific operations.

• The sync configuration defines all the mappings OpenIDM uses when synchronizing and reconciling
managed objects.

Multiple Instance Configuration Objects

Multiple instance configuration objects correspond to services that can have many instances per
installation.

Configuration objects are named objectname/instancename. For instance provisioner.openicf/xml.

Configuration Options
When Changing the Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 9

JSON file views of these configuration objects are named objectname-instancename.json. For instance
provisioner.openicf-xml.json.

• Multiple scheduler configurations can run reconciliations on different schedules.

• Multiple provisioner.openicf configurations correspond to the resources connected to OpenIDM.

3.2. When Changing the Configuration
When changing OpenIDM's configuration objects, take the following points into account.

• OpenIDM's authoritative configuration source is the internal repository. JSON files provide a view
of the configuration objects, but do not represent the authoritative source.

OpenIDM updates JSON files after making configuration changes, whether those changes are made
through REST access to configuration objects, or through edits to the JSON files.

• OpenIDM recognizes changes to JSON files when it is running. OpenIDM must be running when
you delete configuration objects, even if you do so by editing the JSON files.

• Avoid directly editing configuration objects in the internal repository. Use either REST access or
JSON files to ensure consistent behavior and that operations are logged.

3.3. Configuring OpenIDM Over REST
OpenIDM exposes configuration objects under the /openidm/config context.

You can list the configuration on the local host by performing a GET http://localhost:8080/openidm/
config.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config

{
 "configurations": [
 {
 "_id": "managed",
 "pid": "managed",
 "factoryPid": null
 },
 {
 "_id": "repo.orientdb",
 "pid": "repo.orientdb",
 "factoryPid": null
 },
 {
 "_id": "scheduler/reconcile_systemXmlAccounts_managedUser",

Configuration Options
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 10

 "pid": "scheduler.adc5cd2f-7086-4e30-9d80-b36077861868",
 "factoryPid": "scheduler"
 },
 {
 "_id": "org.apache.felix.fileinstall/openidm",
 "pid":
 "org.apache.felix.fileinstall.abb696a2-95c6-4432-ae74-ba60a319d1bb",
 "factoryPid": "org.apache.felix.fileinstall"
 },
 {
 "_id": "sync",
 "pid": "sync",
 "factoryPid": null
 },
 {
 "_id": "audit",
 "pid": "audit",
 "factoryPid": null
 },
 {
 "_id": "provisioner.openicf/xml",
 "pid": "provisioner.openicf.10e2dd6d-442d-466c-a077-643bb53e2006",
 "factoryPid": "provisioner.openicf"
 },
 {
 "_id": "router",
 "pid": "router",
 "factoryPid": null
 },
 {
 "_id": "authentication",
 "pid": "authentication",
 "factoryPid": null
 }
]
}

You can find single instance configuration objects under openidm/config/object-name. The following
example shows the default audit configuration.

Configuration Options
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 11

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config/audit

{
 "eventTypes": {
 "activity": {
 "filter": {
 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 }
 },
 "recon": {}
 },
 "logTo": [
 {
 "logType": "csv",
 "location": "audit",
 "recordDelimiter": ";"
 },
 {
 "logType": "repository"
 }
]
}

Multiple instance configuration objects are found under openidm/config/object-name/instance-name. The
following example shows the configuration for the XML connector provisioner.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 http://localhost:8080/openidm/config/provisioner.openicf/xml

{
 "name": "xmlfile",
 "connectorRef": {
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "1.1.0.0",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector"
 },
 "producerBufferSize": 100,
 "connectorPoolingSupported": true,
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "operationTimeout": {

Configuration Options
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 12

 "CREATE": -1,
 "TEST": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "GET": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 },
 "objectTypes": {
 "account": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__ACCOUNT__",
 "type": "object",
 "nativeType": "__ACCOUNT__",
 "properties": {
 "description": {
 "type": "string",
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "firstname": {
 "type": "string",
 "nativeName": "firstname",
 "nativeType": "string"
 },
 "email": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "email",
 "nativeType": "string"
 },
 "__UID__": {
 "type": "string",
 "nativeName": "__UID__"
 },
 "password": {
 "type": "string",
 "required": false,
 "nativeName": "__PASSWORD__",
 "nativeType": "JAVA_TYPE_GUARDEDSTRING",
 "flags": [
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "name": {

Configuration Options
Configuring OpenIDM Over REST

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 13

 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 },
 "lastname": {
 "type": "string",
 "required": true,
 "nativeName": "lastname",
 "nativeType": "string"
 }
 }
 }
 },
 "operationOptions": {}
}

See the REST API Reference appendix for additional details and examples using REST access to
update and patch objects.

Configuring Server Logs

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 14

Chapter 4

Configuring Server Logs

This chapter briefly describes server logging. For audit information, see the chapter on Using Audit
Logs.

You can configure logging by editing the openidm/conf/logging.properties file in OpenIDM.

The default configuration writes log messages in simple format to openidm/logs/openidm*.log files,
rotating files when the size reaches 5 MB, and retaining up to 5 files. Also by default, OpenIDM
writes all system and custom log messages to the files.

You can update the configuration to attach loggers to individual packages, setting the log level to
using the following values.

SEVERE (highest value)
WARNING
INFO
CONFIG
FINE
FINER
FINEST (lowest value)

Connecting to External Resources
About OpenIDM & OpenICF

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 15

Chapter 5

Connecting to External Resources

This chapter describes how to connect to external resources such as LDAP, Active Directory, flat files,
and others. Configurations shown here are simplified to show essential aspects. Not all resources
support all OpenIDM operations, however the resources shown here support most of the CRUD
operations, and also reconciliation and LiveSync.

In OpenIDM, resources are external systems, databases, directory servers, and other sources of
identity data to be managed and audited by the identity management system. OpenIDM connects
to resources through the identity connector framework, OpenICF. OpenICF aims to avoid the need
to install agents to access resources, instead using the resources' native protocols. For example,
OpenICF connects to database resources using the database's Java connection libraries or JDBC
driver. It connects to directory servers over JNDI. It connects to UNIX systems by using ssh.

Connectors are configured through files named openidm/conf/provisioner.openicf-name where name
corresponds to the name of the connector. Do not include dash characters (-) in the connector
name.

5.1. About OpenIDM & OpenICF
The following figure shows how OpenIDM can connect to resources through an OpenICF server. In
most cases, the OpenICF server runs as part of OpenIDM.

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 16

OpenICF provides a common service provider interface to allow identity services access to the
resources containing user information. OpenICF uses a connection server that can run as a local
connector server inside OpenIDM, or as a remote connector server that is a stand-alone process.

A remote connector server is needed when access libraries that cannot be included as part of the
OpenIDM process are needed. If a resource, such as Microsoft ADSI, does not provide a connection
library that can be included inside the Java Virtual Machine, then OpenICF can use the native .dll
with a remote .NET connector server. (OpenICF connects to ADSI through a remote connector server
implemented as a .NET service.)

Tip

Not only .NET connector servers but also Java connector servers can be run as stand alone, remote services.
Run them as remote services for scalability, or to have the service run in the cloud.

By default and for convenience, OpenIDM includes a Java connector server that runs as a "#LOCAL" service.

5.2. Accessing Remote Connectors

Connecting to External Resources
Accessing Remote Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 17

When configuring remote connectors, the connector info provider service to connect through remote
connector servers must be used. The configuration is stored in the the configuration file, openidm/
conf/provisioner.openicf.connectorinfoprovider.json. A sample can be found under openidm/samples/
provisioners/.

The connector info provider service takes this configuration.

{
 "connectorsLocation" : string,
 "remoteConnectorServers" : [remoteConnectorServer objects]
}

Connector Info Provider Properties

connectorsLocation

string, optional

Specifies the directory where OpenICF connectors are located. The default location is openidm/
connectors.

remoteConnectorServers

array of RemoteConnectorServer objects, optional

A list of remote connector servers managed by this service.

Remote Connector Server Properties

The following example shows a remoteConnectorServer object configuration.

{
 "name" : "testServer",
 "host" : "127.0.0.1",
 "port" : 8759,
 "useSSL" : false,
 "timeout" : 0,
 "key" : "Passw0rd",
 "trustManagers" :
 [
 "X509TrustManager",
 "BlindTrustManager"
]
}

OpenIDM supports the following remote connector server object properties.

name

string, required

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 18

The name of the remote connector server object. Used to identify the remote connector server in
connector reference objects.

host

string, required

Remote host to connect to.

port

string, optional

Remote port to connect to. Default value: 8759

useSSL

boolean, optional

Specifies to use or not SSL to connect. Default value: false

timeout

integer, optional

Specifies the timeout (in milliseconds) to use for the connection. Default value: 0

key

string, required

The secret key to use to authenticate to the remote connector server.

trustManagers

not specified

Not implemented yet. The service uses the default JVM TrustManager.

5.3. Configuring Connectors
Connectors are configured through the OpenICF provisioner service. Each configuration is stored
in an extra file/object in the openidm/conf/ folder or under the same URL respectively. The file name
convention is provisioner.openicf-name.json.

Note

Though the name part of the file name is free text, it must not contain any "-" character!

The following example shows an OpenICF provisioner service configuration.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 19

{
 "name" : "xml",
 "connectorRef" : connector-ref-object,
 "poolConfigOption" : pool-config-option-object,
 "operationTimeout" : operation-timeout-object,
 "configurationProperties" : configuration-properties-object,
 "objectTypes" : object-types-object,
 "operationOptions" : operation-options-object
}

Connector Reference

The following example shows a connector reference object.

{
 "bundleName" : "org.forgerock.openicf.connectors.file.xml",
 "bundleVersion" : "1.1.0.0",
 "connectorName" : "com.forgerock.openicf.xml.XMLConnector",
 "connectorHostRef" : "host"
}

bundleName

string, required

The ConnectorBundle-Name of the OpenICF connector.

bundleVersion

string, required

The ConnectorBundle-Version of the OpenICF connector.

connectorName

string, required

The Connector implementation class name.

connectorHostRef

string, optional

The name of the RemoteConnectorServer object.

• If the connector server is local and the connector .jar is installed in openidm/bundle/ (currently
not recommended), then the value must be "osgi:service/org.forgerock.openicf.framework.api.osgi
.ConnectorManager".

• If the connector server is local and the connector .jar is installed in openidm/connectors/, then the
value must be "#LOCAL". This is currently the default location.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 20

Pool Configuration Option

The following example shows a pool configuration option object for the connection pool between
OpenIDM and the OpenICF connector server.

{
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
}

maxObjects

Maximum number of idle and active objects.

maxIdle

Maximum number of idle objects

maxWait

The maximum time in milliseconds which the pool waits for an object before timing out. Zero
means never time out.

minEvictableIdleTimeMillis

Maximum time in milliseconds an object can be idle before it is removed. Zero means never time
out.

minIdle

The minimum number of idle objects.

Operation Timeout

This configuration sets the timeout per operation type.

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 21

{
 "CREATE" : -1,
 "TEST" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "GET" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
}

operation-name

Timeout in milliseconds

A value of -1 disables the timeout.

Configuration Properties

This object contains the configuration for the connection between the connection server and the
resource, and is therefore resource specific.

The following example shows a configuration properties object for the default XML sample resource
connector.

{
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 }

property

Individual properties depend on the type of connector.

Object Types

This configuration object specifies the supported object types. The property name defines the
objectType used in the URI: system/$systemName/$objectType

The configuration is based on JSON Schema with extensions described below.

Attribute names which start and/or end with __ are resource type specific attributes used by OpenICF
for particular purposes, such as __NAME__ as the naming attribute for objects on a resource.

{
 "account" :

http://tools.ietf.org/html/draft-zyp-json-schema-03

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 22

 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "__ACCOUNT__",
 "type" : "object",
 "nativeType" : "__ACCOUNT__",
 "properties" :
 {
 "name" :
 {
 "type" : "string",
 "nativeName" : "__NAME__",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_LONG",
 "flags" :
 [
 "NOT_CREATABLE",
 "NOT_UPDATEABLE",
 "NOT_READABLE",
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "groups" :
 {
 "type" : "array",
 "items" :
 {
 "type" : "string",
 "nativeType" : "string"
 },
 "nativeName" : "__GROUPS__",
 "nativeType" : "string",
 "flags" :
 [
 "NOT_RETURNED_BY_DEFAULT"
]
 },
 "givenName" : {
 "type" : "string",
 "nativeName" : "givenName",
 "nativeType" : "string"
 },
 }
 }
}

Object Level Extensions

nativeType

string, optional

The native OpenICF object type.

Property Level Extensions

nativeType

string, optional

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 23

The native OpenICF attribute type.

nativeName

string, optional

The native OpenICF attribute name.

flags

string, optional

The native OpenICF attribute flags. The required and multivalued flags are defined by the
JSON schema.
required = "required" : true

multivalued = "type" : "array"

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in the java script scripts.

Operation Options

Operation options define how to act on specified operations. You can for example deny operations
on specific resources to avoid OpenIDM accidentally updating a read-only resource during a
synchronization operation.

{
 "SYNC" :
 {
 "denied" : true,
 "onDeny" : "DO_NOTHING",
 "objectFeatures" :
 {
 "__ACCOUNT__" :
 {
 "denied" : true,
 "onDeny" : "THROW_EXCEPTION",
 "operationOptionInfo" :
 {
 "$schema" : "http://json-schema.org/draft-03/schema",
 "id" : "FIX_ME",
 "type" : "object",
 "properties" :
 {
 "_OperationOption-float" :
 {
 "type" : "number",
 "nativeType" : "JAVA_TYPE_PRIMITIVE_FLOAT"

Connecting to External Resources
Configuring Connectors

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 24

 }
 }
 }
 },
 "__GROUP__" :
 {
 "denied" : false,
 "onDeny" : "DO_NOTHING"
 }
 }
 }
}

The list of operations is as follows.

• AUTHENTICATE: AuthenticationApiOp

• CREATE: CreateApiOp

• DELETE: DeleteApiOp

• GET: GetApiOp

• RESOLVEUSERNAME: ResolveUsernameApiOp

• SCHEMA: SchemaApiOp

• SCRIPT_ON_CONNECTOR: ScriptOnConnectorApiOp

• SCRIPT_ON_RESOURCE: ScriptOnResourceApiOp

• SEARCH: SearchApiOp

• SYNC: SyncApiOp

• TEST: TestApiOp

• UPDATE: UpdateApiOp

• VALIDATE: ValidateApiOp

denied

boolean, optional

This property prevents operation execution if the value is true.

onDeny

string, optional

If denied is true, then the service uses this value. Default value: DO_NOTHING.

Connecting to External Resources
Connector Configuration Examples

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 25

• DO_NOTHING: On operation the service does nothing.

• THROW_EXCEPTION: On operation the service throws a ForbiddenException exception.

5.4. Connector Configuration Examples
This section explains provisioner configurations for common connectors. Also see Section 5.5,
"Creating Default Connector Configurations" for instructions on interactively building connector
configurations.

5.4.1. XML File Connector

The following example shows an excerpt of the provisioner configuration for an XML file connector.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "bundleName":
 "org.forgerock.openicf.connectors.file.file.openicf-xml-connector",
 "bundleVersion": "1.1.0.0",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector"
 }
}

The connectorHostRef is optional if the connector server is local.

The configuration properties for the XML file connector set the relative path to the file containing the
identity data, and also the paths to the XML schemas required.

{
 "configurationProperties": {
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml"
 }
}

xmlFilePath

References the XML file containing account entries

xsdIcfFilePath

References the XSD file defining schema common to all XML file resources. Do not change the
schema defined in this file.

xsdFilePath

References custom schema defining attributes specific to your project

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 26

5.4.2. Generic LDAP Connector

The following excerpt shows the connectorRef configuration property for connection to an LDAP server.
When using the connect .jar provided in openidm/connectors, and when using a local connector server,
the connectorHostRef property is optional.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.ldap.openicf-ldap-connector",
 "bundleVersion": "1.1.0.0"
 }
}

The following excerpt shows settings for many connector configuration properties.

{
 "accountSynchronizationFilter": null,
 "passwordAttributeToSynchronize": null,
 "synchronizePasswords": false,
 "removeLogEntryObjectClassFromFilter": true,
 "modifiersNamesToFilterOut": [],
 "passwordDecryptionKey": null,
 "credentials": "Passw0rd",
 "changeLogBlockSize": 100,
 "baseContextsToSynchronize": [
 "ou=People,dc=example,dc=com"
],
 "attributesToSynchronize": [
 "uid",
 "sn",
 "cn",
 "givenName",
 "mail",
 "description"
],
 "changeNumberAttribute": "changeNumber",
 "passwordDecryptionInitializationVector": null,
 "filterWithOrInsteadOfAnd": false,
 "objectClassesToSynchronize": [
 "inetOrgPerson"
],
 "port": 1389,
 "vlvSortAttribute": "uid",
 "passwordAttribute": "userPassword",
 "useBlocks": true,
 "maintainPosixGroupMembership": false,
 "failover": [],
 "ssl": false,
 "principal": "cn=Directory Manager",
 "baseContexts": [
 "dc=example,dc=com"
],
 "readSchema": true,

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 27

 "accountObjectClasses": [
 "top",
 "person",
 "organizationalPerson",
 "inetOrgPerson"
],
 "accountUserNameAttributes": [
 "uid",
 "cn"
],
 "host": "localhost",
 "groupMemberAttribute": "uniqueMember",
 "accountSearchFilter": null,
 "passwordHashAlgorithm": null,
 "usePagedResultControl": false,
 "blockSize": 100,
 "uidAttribute": "entryUUID",
 "maintainLdapGroupMembership": false,
 "respectResourcePasswordPolicyChangeAfterReset": false
}

accountSynchronizationFilter

Used during synchronization actions to filter out LDAP accounts

accountObjectClasses

The object classes used when creating new LDAP user objects. When specifying more than
one object class, add each object class as its own property. For object classes that inherit from
parents other than top, such as inetOrgPerson, specify all object classes in the class hierarchy.

accountSearchFilter

Search filter that accounts must match

accountUserNameAttributes

Attributes holding the account's user name. Used during authentication to find the LDAP entry
matching the user name.

attributesToSynchronize

List of attributes used during object synchronization. OpenIDM ignores change log updates that
do not include any of the specified attributes. If empty, OpenIDM considers all changes.

baseContexts

Base DNs for operations on the LDAP server

baseContextsToSynchronize

Base DNs for entries taken into account during synchronization

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 28

blockSize

Block size for simple paged results and VLV index searches, reflecting the maximum number of
accounts retrieved at any one time

changeLogBlockSize

Block size used when fetching change log entries

changeNumberAttribute

Change log attribute containing the last change number

credentials

Password to connect to the LDAP server

failover

LDAP URLs specifying alternative LDAP servers to connect to if OpenIDM cannot connect to the
primary LDAP server specified in the host and port properties

filterWithOrInsteadOfAnd

In most cases, the filter to fetch change log entries is AND-based. If this property is set, the filter
ORs the required change numbers instead.

groupMemberAttribute

LDAP attribute holding members for non-POSIX static groups

host

Primary LDAP server host name

maintainLdapGroupMembership

If true, OpenIDM modifies group membership when entries are renamed or deleted.

maintainPosixGroupMembership

If true, OpenIDM modifies POSIX group membership when entries are renamed or deleted.

modifiersNamesToFilterOut

Use to avoid loops caused by OpenIDM's own changes

objectClassesToSynchronize

OpenIDM synchronizes only entries having these object classes.

Connecting to External Resources
Generic LDAP Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 29

passwordAttribute

Attribute to which OpenIDM writes the predefined PASSWORD attribute

passwordAttributeToSynchronize

OpenIDM synchronizes password values on this attribute.

passwordDecryptionInitializationVector

Initialization vector used to decrypt passwords when performing password synchronization

passwordDecryptionKey

Key used to decrypt passwords when performing password synchronization

passwordHashAlgorithm

Hash password values with the specified algorithm if the LDAP server stores them in clear text

port

Primary LDAP server port number

principal

Bind DN used to connect to the LDAP server

readSchema

If true, read LDAP schema from the LDAP server.

removeLogEntryObjectClassFromFilter

If true, the filter to fetch change log entries does not contain the changeLogEntry object class, and
OpenIDM expects no entries with other object types in the change log. Default: true

respectResourcePasswordPolicyChangeAfterReset

If true, bind with the Password Expired and Password Policy controls, and throw
PasswordExpiredException and other exceptions appropriately.

ssl

If true, the specified port listens for LDAPS connections.

synchronizePasswords

If true, synchronize passwords.

uidAttribute

OpenIDM maps uid to the specified attribute.

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 30

useBlocks

If true, use block-based LDAP controls like simple paged results and virtual list view.

usePagedResultControl

If true, use simple paged results rather than virtual list view when both are available.

vlvSortAttribute

Attribute used as the sort key for virtual list view

5.4.3. Active Directory Connector
In contrast to most other connectors, the Active Directory connector is written not in Java, but
instead in .NET. OpenICF should connect to Active Directory over ADSI, the native connection
protocol for Active Directory. The connector therefore requires a connector server that has access to
the ADSI .dll files.

See the OpenICF Connnector Server page for instructions on installing a .NET connector server. Take
care to set the key as described in the instructions.

The following excerpt shows the configuration for the connector.

{
 "connectorHostRef": "dotnet",
 "connectorName":
 "Org.IdentityConnectors.ActiveDirectory.ActiveDirectoryConnector",
 "bundleName": "ActiveDirectory.Connector",
 "bundleVersion": "1.0.0.6109"
}

The connectorHostRef must point by name to an existing connector info provider configuration, that
you store in openidm/conf/provisioner.openicf.connectorinfoprovider.json. The connectorHostRef property
is required as the Active Directory connector must be installed on a .NET connector server, which is
always "remote" relative to OpenIDM.

The following excerpt shows the configuration for the connector info provider.

{
 "connectorsLocation": "connectors",
 "remoteConnectorServers": [
 {
 "name": "dotnet",
 "host": "10.0.0.10",
 "port": 8759,
 "useSSL": false,
 "timeout": 0,
 "key": "Passw0rd"
 }
]
}

Connecting to External Resources
Active Directory Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 31

The following excerpt shows typical configuration properties.

{
 "DirectoryAdminName": "EXAMPLE\\Administrator",
 "DirectoryAdminPassword": "passw0rd",
 "ObjectClass": "User",
 "Container": "dc=example,dc=com",
 "CreateHomeDirectory": true,
 "LDAPHostName": "127.0.0.1",
 "SearchChildDomains": false,
 "DomainName": "example",
 "SyncGlobalCatalogServer": null,
 "SyncDomainController": null,
 "SearchContext": "dc=example,dc=com"
}

DirectoryAdminName

Account used to authenticate. This can be a domainname\user combination, or simply the user name.

DirectoryAdminPassword

Password used to authenticate

ObjectClass

Object class for user objects

Container

Base context for all searches

CreateHomeDirectory

When true, create a home directory for new users.

LDAPHostName

Use to enforce connection to a particular Active Directory server.

SearchChildDomains

When set to true or false, apply SyncGlobalCatalogServer and SyncDomainController settings

DomainName

Windows domain name

SyncGlobalCatalogServer

Global catalog server to use when searching child domains

Connecting to External Resources
CSV File Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 32

SyncDomainController

Domain controller to use during synchronization when not searching child domains

SearchContext

Reserved for future use

5.4.4. CSV File Connector

The CSV file connector often serves when importing users, either for initial provisioning or for
ongoing updates. When used continuously in production, a CSV file serves as a change log, often
containing only user records that changed.

The following example shows an excerpt of the provisioner configuration. The default connector-jar
location is now, like all other connectors, in openidm/connectors. Therefore the connectorHostRef must
point to "#LOCAL".

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-csvfile-connector",
 "bundleVersion": "1.1.0.0"
 }
}

The following excerpt shows required configuration properties.

{
 "configurationProperties": {
 "filePath": "data/hr.csv",
 "uniqueAttribute": "uid"
 }
}

The CSV file connector also supports a number of optional configuration properties, in addition to the
required properties.

encoding (optional)

Default: "utf-8"

fieldDelimiter (optional)

Default: ","

filePath (required)

References the CSV file containing account entries

Connecting to External Resources
Scripted SQL Connector

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 33

multivalueDelimiter (optional)

Used with multi-valued attributes. Default: ";"

passwordAttribute (optional)

Attribute containing the password. Use when password-based authentication is required.

uniqueAttribute (required)

Primary key used for the CSV file

usingMultivalue (optional)

Whether attributes can have multiple values. Default: false

5.4.5. Scripted SQL Connector

The Scripted SQL Connector uses customizable Groovy scripts to interact with the database.

The connector uses one script for each of the following actions on the external database.

• Create

• Delete

• Search

• Sync

• Test

• Update

See the openidm/samples/sample3/tools/ directory for example scripts.

5.5. Creating Default Connector Configurations
Rather than creating provisioner files by hand, use the service that OpenIDM exposes through the
REST interface to create basic connector configuration files named provisioner-openicf-Connector
 Name.json file.

You create a new connector configuration file in three stages.

1. List available connectors.

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 34

2. Generate the core configuration.

3. Connect to the target system and generate the final configuration.

List available connectors using the following command.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST "http://localhost:8080/openidm/system?_action=CREATECONFIGURATION"

Available connectors are installed in openidm/connectors. OpenIDM bundles the following connectors.

• csvfile

• ldap

• scriptedsql

• xml

The command above therefore should return the following output (formatted here with lines folded to
make it easier to read.)

{
 "connectorRef": [
 {
 "connectorName": "org.identityconnectors.ldap.LdapConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.ldap.openicf-ldap-connector",
 "bundleVersion": "1.1.0.0"
 },
 {
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "1.1.0.0"
 },
 {
 "connectorHostRef":
 "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",
 "connectorName": "org.forgerock.openicf.scriptedsql.ScriptedSQLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.db.openicf-scriptedsql-connector",
 "bundleVersion": "1.1.0.0"
 },
 {
 "connectorHostRef":
 "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",
 "connectorName": "org.forgerock.openicf.csvfile.CSVFileConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-csvfile-connector",
 "bundleVersion": "1.1.0.0"
 }
]

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 35

}

To generate the core configuration, choose one of the available connectors by copying JSON objects
from the list into the body of the REST command, as shown below for the XML connector.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 -d '{"connectorRef":
 {"connectorName":"com.forgerock.openicf.xml.XMLConnector",
 "bundleName":"org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion":"1.1.0.0"}}'
 --request POST "http://localhost:8080/openidm/system?_action=CREATECONFIGURATION"

The command returns a core connector configuration. The core connector configuration returned
is not yet functional. It does not contain system specific "configurationProperties" such as the host
name and port for web based connectors, or the "xmlFilePath" for the XML file based connectors as
can be seen below. In addition, the configuration returned does not include complete "objectTypes"
and "operationOptions" parts.

{
 "connectorRef": {
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "1.1.0.0"
 },
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "resultsHandlerConfig": {
 "enableNormalizingResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableCaseInsensitiveFilter": false,
 "enableAttributesToGetSearchResultsHandler": true
 },
 "operationTimeout": {
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xmlFilePath": null,

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 36

 "xsdFilePath": null,
 "xsdIcfFilePath": null
 }
}

To generate the final configuration, add the missing "configurationProperties" to the core
configuration, and use the updated core configuration as the body for the next command.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --data '{
 "connectorRef" :
 {
 "connectorName" : "com.forgerock.openicf.xml.XMLConnector",
 "bundleName" :
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion" : "1.1.0.0"
 },
 "poolConfigOption" :
 {
 "maxObjects" : 10,
 "maxIdle" : 10,
 "maxWait" : 150000,
 "minEvictableIdleTimeMillis" : 120000,
 "minIdle" : 1
 },
 "resultsHandlerConfig" :
 {
 "enableNormalizingResultsHandler" : true,
 "enableFilteredResultsHandler" : true,
 "enableCaseInsensitiveFilter" : false,
 "enableAttributesToGetSearchResultsHandler" : true
 },
 "operationTimeout" :
 {
 "CREATE" : -1,
 "UPDATE" : -1,
 "DELETE" : -1,
 "TEST" : -1,
 "SCRIPT_ON_CONNECTOR" : -1,
 "SCRIPT_ON_RESOURCE" : -1,
 "GET" : -1,
 "RESOLVEUSERNAME" : -1,
 "AUTHENTICATE" : -1,
 "SEARCH" : -1,
 "VALIDATE" : -1,
 "SYNC" : -1,
 "SCHEMA" : -1
 },
 "configurationProperties" :
 {
 "xsdIcfFilePath" : "samples/sample1/data/resource-schema-1.xsd",
 "xsdFilePath" : "samples/sample1/data/resource-schema-extension.xsd",
 "xmlFilePath" : "samples/sample1/data/xmlConnectorData.xml"
 }
 }'
 --request POST "http://localhost:8080/openidm/system?_action=CREATECONFIGURATION"

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 37

Note

Notice the single quotes around the argument to the --data option in the command above. For most UNIX
shells, single quotes around a string prevent the shell from executing the command when encountering a
newline in the content. You can therefore pass the --data '...' option on a single line or including line feeds.

OpenIDM attempts to read the schema, if available, from the external resource in order to generate
output. OpenIDM then iterates through schema objects and attributes, creating JSON representations
for "objectTypes" and "operationOptions" for supported objects and operations.

{
 "connectorRef": {
 "connectorHostRef": "#LOCAL",
 "connectorName": "com.forgerock.openicf.xml.XMLConnector",
 "bundleName":
 "org.forgerock.openicf.connectors.file.openicf-xml-connector",
 "bundleVersion": "1.1.0.0-EA"
 },
 "poolConfigOption": {
 "maxObjects": 10,
 "maxIdle": 10,
 "maxWait": 150000,
 "minEvictableIdleTimeMillis": 120000,
 "minIdle": 1
 },
 "resultsHandlerConfig": {
 "enableNormalizingResultsHandler": true,
 "enableFilteredResultsHandler": true,
 "enableCaseInsensitiveFilter": false,
 "enableAttributesToGetSearchResultsHandler": true
 },
 "operationTimeout": {
 "CREATE": -1,
 "UPDATE": -1,
 "DELETE": -1,
 "TEST": -1,
 "SCRIPT_ON_CONNECTOR": -1,
 "SCRIPT_ON_RESOURCE": -1,
 "GET": -1,
 "RESOLVEUSERNAME": -1,
 "AUTHENTICATE": -1,
 "SEARCH": -1,
 "VALIDATE": -1,
 "SYNC": -1,
 "SCHEMA": -1
 },
 "configurationProperties": {
 "xmlFilePath": "samples/sample1/data/xmlConnectorData.xml",
 "xsdFilePath": "samples/sample1/data/resource-schema-extension.xsd",
 "xsdIcfFilePath": "samples/sample1/data/resource-schema-1.xsd"
 },
 "objectTypes": {
 "OrganizationUnit": {
 "...": "..."
 },
 "__GROUP__": {

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 38

 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__GROUP__",
 "type": "object",
 "nativeType": "__GROUP__",
 "properties": {
 "__DESCRIPTION__": {
 "type": "string",
 "required": true,
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "__NAME__": {
 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 }
 }
 },
 "__ACCOUNT__": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "__ACCOUNT__",
 "type": "object",
 "nativeType": "__ACCOUNT__",
 "properties": {
 "firstname": {
 "type": "string",
 "nativeName": "firstname",
 "nativeType": "string"
 },
 "__DESCRIPTION__": {
 "type": "string",
 "nativeName": "__DESCRIPTION__",
 "nativeType": "string"
 },
 "__UID__": {
 "type": "string",
 "nativeName": "__UID__",
 "nativeType": "string"
 },
 "__NAME__": {
 "type": "string",
 "required": true,
 "nativeName": "__NAME__",
 "nativeType": "string"
 }
 }
 }
 },
 "operationOptions": {
 "CREATE": {
 "objectFeatures": {
 "OrganizationUnit": {
 "...": "..."
 },
 "__GROUP__": {
 "...": "..."
 },
 "__ACCOUNT__": {

Connecting to External Resources
Creating Default Connector Configurations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 39

 "denied": false,
 "onDeny": "DO_NOTHING",
 "operationOptionInfo": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "FIX_ME",
 "type": "object",
 "properties": {
 "...": "..."
 }
 }
 }
 }
 },
 "UPDATE": {
 "objectFeatures": {
 "__ACCOUNT__": {
 "denied": false,
 "onDeny": "DO_NOTHING",
 "operationOptionInfo": {
 "$schema": "http://json-schema.org/draft-03/schema",
 "id": "FIX_ME",
 "type": "object",
 "properties": {
 "...": "..."
 }
 }
 }
 }
 }
 }
}

As OpenIDM produces a full property set for all attributes and all object types in the schema from
the external resource, the resulting configuration can be large. For an LDAP server, OpenIDM
can generate a configuration containing several tens of thousands of lines, for example. You might
therefore want to reduce the schema to a minimum on the external resource before you run the final
command.

Configuring Synchronization
Types of Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 40

Chapter 6

Configuring Synchronization

One of the core services of OpenIDM is synchronizing identity data from different resources. This
chapter explains what you must know to get started configuring OpenIDM's flexible synchronization
mechanism, and illustrates the concepts with examples.

6.1. Types of Synchronization
Synchronization happens either when OpenIDM receives a change directly, or when OpenIDM
discovers a change on an external resource.

For direct changes to OpenIDM, OpenIDM immediately pushes updates to all external resources
configured to receive the updates. A direct change can originate not only as a write request through
the REST interface, but also as an update resulting from reconciliation with another resource.

OpenIDM discovers changes on external resources through reconciliation, and through LiveSync.

Reconciliation

In identity management, reconciliation is the process of bidirectional synchronization of objects
between different data stores. Reconciliation applies mainly to user objects, though OpenIDM can
reconcile any objects, including groups and roles.

To perform reconciliation, OpenIDM analyzes both source and target systems to uncover the
differences that it must reconcile. Reconciliation can therefore be a heavyweight process. When
working with large data sets, finding all changes can be more work than processing the changes.

Reconciliation is, however, thorough. It recognizes system error conditions and catches changes
that might be missed by the more lightweight LiveSync mechanism. Reconciliation therefore
serves as the basis for compliance and reporting functionality.

LiveSync

LiveSync performs the same job as reconciliation. LiveSync relies on a change log on the external
resource to determine which objects have changed.

LiveSync is intended to react quickly to changes as they happen. LiveSync is however a best
effort mechanism that in some cases can miss changes.

Furthermore, not all resources provide the change log mechanism that LiveSync requires. The
change long provides OpenIDM with a list of objects changed since the last request such that

Configuring Synchronization
Flexible Data Model

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 41

OpenIDM does not need to scan all objects for changes. OpenDJ provides an external change log.
Active Directory also provides a change log.

In all cases, OpenIDM relies on mappings that you configure to determine what to synchronize and
how to carry out synchronization. LiveSync relies on the set of mappings that you configure once
per OpenIDM server, whereas reconciliation also allows you to configure specific mappings for a
particular reconciliation job.

You must trigger OpenIDM to poll for changes on external resources, usually by scheduling
reconciliation or LiveSync as described in the chapter on Scheduling Synchronization. Alternatively,
you can start reconciliation through the REST interface.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/sync?_action=recon&mapping=systemLdapAccounts_managedUser"

6.2. Flexible Data Model
Identity management software tends to favor either a meta-directory data model, where all data are
mirrored in a central repository, or a virtual data model, where only a minimum set of attributes
are stored centrally, and most are loaded on demand from the external resources on which they are
stored. The meta-directory model offers fast access at the risk of getting out-of-date data. The virtual
model guarantees fresh data, but pays for that guarantee in terms of performance.

OpenIDM leaves the data model choice with you. You determine the right trade offs for a particular
deployment. OpenIDM does not hard code any particular schema or set of attributes stored in the
repository. Instead, you define how external system objects map onto managed objects, and OpenIDM
dynamically updates the repository to store the managed object attributes that you configure.

You can, for example, choose to follow the data model defined in the Simple Cloud Identity
Management (SCIM) specification. The following object represents a SCIM user.

{
 "userName": "james1",
 "familyName": "Berg",
 "givenName": "James",
 "email": [
 "james1@example.com"
],
 "description": "Created by OpenIDM REST.",
 "password": "asdfkj23",
 "displayName": "James Berg",
 "phoneNumber": "12345",
 "employeeNumber": "12345",
 "userType": "Contractor",
 "title": "Vice President",
 "active": true
}

http://www.simplecloud.info/specs/draft-scim-core-schema-00.html

Configuring Synchronization
Basic Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 42

Note

Avoid using the dash character (-) in property names, like last-name, as dashes in names make JavaScript
syntax more complex. If you cannot avoid the dash, then write source['last-name'] instead of source.last-name
in java script.

6.3. Basic Data Flow Configuration
Data flow for synchronization involves three types of configuration files, two of which you typically
edit, and also a links table that OpenIDM maintains in its repository, as well as scripts needed
to check objects and manipulate attributes. The two types of configuration files you edit are the
connector configuration files, with one file per external resource, and the synchronization mappings
file, with one file per OpenIDM instance.

Connector configuration files

Connector configuration files are described in the chapter on Connecting to External Resources.
Connector configuration files are named openidm/conf/provisioner.resource-name.json, where
resource-name reflects the connector technology and external resource, such as openicf-xml.

An excerpt from an example connector configuration follows. The example shows the name for
the connector and two attributes of an account object type. In the attribute mapping definitions,
the attribute name is mapped from the nativeName, the attribute name used on the external
resource, to the attribute name used in OpenIDM. Thus the example shows that sn from LDAP is
mapped to lastName in OpenIDM. The homePhone attribute can have multiple values.

{
 "name": "MyLDAP",
 "objectTypes": {
 "account": {
 "lastName": {
 "type": "string",
 "required": true,
 "nativeName": "sn",
 "nativeType": "string"
 },
 "homePhone": {
 "type": "array",
 "items": {
 "type": "string",
 "nativeType": "string"
 },
 "nativeName": "homePhone",
 "nativeType": "string"
 }
 }
 }
}

Configuring Synchronization
Basic Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 43

In order for OpenIDM to access external resource objects and attributes, the object and its
attributes must match the connector configuration. Also, the connector file strictly maps external
resource objects to OpenIDM objects. To construct attributes and to manipulate their values, you
use the synchronization mappings file.

Synchronization mappings file

The synchronization mappings file is openidm/conf/sync.json. The synchronization mappings
represent the core configuration for OpenIDM synchronization.

The sync.json file describes a set of mappings. Each mapping specifies how attributes from source
objects correspond to attributes on target objects. The source and target indicate the direction
for the data flow, so you must define a mapping for each data flow. For example, if you want data
flows from an LDAP server to the repository and also from the repository to the LDAP server, you
must define two separate mappings.

You identify external resource sources and targets as system/name/object-type, where name is
the name used in the connector configuration file, and object-type is the object defined in the
connector configuration file list of object types. For objects in OpenIDM's internal repository,
you use managed/object-type, where object-type is defined in openidm/conf/managed.json. The name for
the mapping by convention is set to a string of the form source_target, as shown in the following
example.

{
 "mappings": [
 {
 "name": "systemLdapAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user",
 "properties": [
 {
 "target": "familyName",
 "source": "lastName"
 },
 {
 "target": "homePhone",
 "source": "homePhone"
 },
 {
 "target": "phoneExtension",
 "default": "0047"
 },
 {
 "target": "mail",
 "comment": "Set mail if non-empty.",
 "source": "email",
 "condition": {
 "type": "text/javascript",
 "source": "(source.email != null)"
 }
 },
 {
 "target": "displayName",

Configuring Synchronization
Basic Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 44

 "source": "";
 "transform": {
 "type": "text/javascript",
 "source": "(source.lastName +', ' + source.firstName;)"
 }
 }
]
 }
]
}

In this example, the source is the external resource, MyLDAP, and the target is OpenIDM's
repository, specifically the managed user objects. The properties reflect OpenIDM attribute
names. For example, the mapping has the attribute lastName defined in the MyLDAP connector
configuration file mapped to familyName in the OpenIDM managed user object. Notice that the
attribute names come from the connector configuration, rather than the external resource itself.

You can create attributes on the target as part of the mapping. In the example, OpenIDM creates
a phoneExtension attribute with a default value of 0047.

You can also set up conditions under which OpenIDM maps attributes as shown for the email
attribute in the example. By default, OpenIDM synchronizes all attributes. In the example, the
mail attribute is set only if the script for the condition returns true.

OpenIDM lets you transform attributes as well. In the example, the displayName attribute is
set using a combination of the lastName and firstName attribute values from the source. For
transformations, the source property is optional. However, the source object is only available when
you specify the source property. Therefore, in order to use source.lastName and source.firstName to
calculate the displayName, the example specifies "source" : "".

To add a flow from the repository to MyLDAP, you would define a mapping with source managed/user
and target system/MyLDAP/account, named for example managedUser_systemLdapAccounts.

Configuring Synchronization
Basic Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 45

OpenIDM stores managed objects in the repository, and exposes them under /openidm
/managed. System objects on external resources are exposed under /openidm/system.

By default, OpenIDM synchronizes all objects matching those defined in the connector
configuration for the resource. Many connectors let you limit the scope of objects the connector
accesses. For example, the LDAP connector lets you specify base DNs and LDAP filters so you
need not access every entry in the directory. Yet, OpenIDM also lets you filter what is considered
a valid source or valid target for synchronization by using JavaScript code. To apply these filters,
use the validSource, and validTarget properties in your mapping.

validSource

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If
the script is not specified, then all source objects are considered valid.

{
 "validSource": {
 "type": "text/javascript",
 "source": "source.ldapPassword != null"
 }
}

Configuring Synchronization
Using Encrypted Values

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 46

validTarget

A script used during reconciliation's second phase, that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
source object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

{
 "validTarget": {
 "type": "text/javascript",
 "source": "target.employeeType == 'internal'"
 }
}

During synchronization, your scripts always have access to a source object and a target object.
Examples already shown in this section use source.attributeName to retrieve attributes from the
source objects. Your scripts can also write to target attributes using target.attributeName syntax.

{
 "onUpdate": {
 "type": "text/javascript",
 "source": "if ((source.email != null) {target.mail = source.email;}"
 }
}

See the Scripting Reference appendix for more on scripting.

6.3.1. Using Encrypted Values

OpenIDM supports reversible encryption of attribute values for managed objects. Attribute values to
encrypt include passwords (if passwords are not already encrypted on the external resource, which
would usually exclude them from the synchronization process, see the chapter about Passwords),
and also authentication questions, credit card numbers, and social security numbers.

You configure encryption in the managed object configuration. The file to edit is openidm/conf/
managed.json. The following example shows a managed object configuration that encrypts and decrypts
securityAnswer, ssn, and password attributes using the default symmetric key, and additional scripts for
extra passwords.

{
 "objects": [
 {
 "name": "user",
 "properties": [
 {
 "name": "securityAnswer",
 "encryption": {
 "key": "openidm-sym-default"

Configuring Synchronization
Constructing & Manipulating Attributes

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 47

 }
 },
 {
 "name": "ssn",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }
],
 "onStore": {
 "type": "text/javascript",
 "file": "script/encryptExtraPassword.js"
 },
 "onRetrieve": {
 "type": "text/javascript",
 "file": "script/decryptExtraPassword.js"
 }
 }
]
}

Do not use the default symmetric key, openidm-sym-default, in production. See the chapter on Securing
& Hardening OpenIDM for instructions on adding your own symmetric key.

6.3.2. Constructing & Manipulating Attributes

OpenIDM lets you construct and manipulate attributes using scripts triggered when an object is
created (onCreate), updated (onUpdate), or deleted (onDelete), or when a link is created (onLink), or
removed (onUnlink).

The following example derives a DN for an LDAP entry when the entry is created in the internal
repository.

{
 "onCreate": {
 "type": "text/javascript",
 "source":
 "target.dn = 'uid=' + source.uid + ',ou=people,dc=example,dc=com'"
 }
}

6.3.3. Reusing Links

When two mappings exist to sync the same objects bidirectionally, you can use the links property in
one mapping to have OpenIDM use the same internally managed link for both mappings. Otherwise, if
no links property is specified, OpenIDM maintains a link for each mapping.

Configuring Synchronization
Synchronization Situations & Actions

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 48

The following excerpt shows two mappings, one from MyLDAP accounts to managed users, and
another from managed users to MyLDAP accounts. In the second mapping, the link property tells
OpenIDM to reuse the links created in the first mapping, rather than create new links.

{
 "mappings": [
 {
 "name": "systemMyLDAPAccounts_managedUser",
 "source": "system/MyLDAP/account",
 "target": "managed/user"
 },
 {
 "name": "managedUser_systemMyLDAPAccounts",
 "source": "managed/user",
 "target": "system/MyLDAP/account",
 "links": "systemMyLDAPAccounts_managedUser"
 }
]
}

6.4. Synchronization Situations & Actions
During synchronization, OpenIDM categorizes objects by situation. Situations are characterized
by whether an object exists on a source or target system, whether OpenIDM has registered a
link between the source object and the target object, and whether the object is considered valid.
OpenIDM takes action depending on the situation.

You can define actions for particular situations in the policies section of a synchronization mapping,
as shown in the following excerpt.

{
 "policies": [
 {
 "situation": "CONFIRMED",
 "action": "UPDATE"
 },
 {
 "situation": "FOUND",
 "action": "IGNORE"
 },
 {
 "situation": "ABSENT",
 "action": "CREATE"
 },
 {
 "situation": "AMBIGUOUS",
 "action": "IGNORE"
 },
 {
 "situation": "MISSING",
 "action": "IGNORE"
 },
 {

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 49

 "situation": "UNQUALIFIED",
 "action": "IGNORE"
 },
 {
 "situation": "UNASSIGNED",
 "action": "IGNORE"
 }
]
}

If you do not define a policy for a particular situation, OpenIDM takes the default action for the
situation.

The situations and their corresponding actions are described in the sections below.

6.4.1. Synchronization Situations
OpenIDM performs synchronization action in two phases. First, OpenIDM performs the so called
source reconciliation, where OpenIDM accounts for source objects and associated links based on the
mapping configured. Second, OpenIDM runs the target reconciliation, where OpenIDM iterates over
the target objects not processed in the first phase.

During reconciliation OpenIDM builds three lists, assigning values to the objects to reconcile.

1. All valid objects from the source

OpenIDM assigns valid source objects qualifies=1. Invalid objects, including those not found in
the source system, and those filtered out by the script specified in the validSource property get
qualifies=0.

2. All records from the appropriate link table

Objects with corresponding links in the link table of the repository get link=1. Objects without
corresponding links get link=0.

3. All valid objects on the target system

Object found in the target system get target=1. Objects not found in the target system get target=0.

Based on the values assigned to objects during source reconciliation, OpenIDM assigns situations,
listed here with their default actions.

"CONFIRMED" (qualifies=1, link=1, target=1)

The mapping qualifies for a target object, and a link to an existing target object was found.
Detected during change events and reconciliation. Default action: "UPDATE".

"FOUND" (qualifies=1, link=0, target=1)

The mapping qualifies for a target object, there is no link to a target object, and there is a single
target object, correlated by the logic found in the correlationQuery. Detected during change
events and reconciliation. Default action: "UPDATE".

Configuring Synchronization
Synchronization Situations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 50

"ABSENT" (qualifies=1, link=0, target=0)

The mapping qualifies for a target object, there is no link to a target object, and there is no
correlated target object found. Detected during change events and reconciliation. Default action:
"CREATE".

"AMBIGUOUS" (qualifies=1, link=0, target>1)

The mapping qualifies for a target object, there is no link to a target object, but there is more
than one correlated target object. Detected during source object changes and reconciliation.
Default action: "EXCEPTION".

"MISSING" (qualifies=1, link=1, target=0)

The mapping is qualified for a target object, and there is a qualified link to a target object, but
the target object is missing. Only detected during reconciliation and source object changes in
synchronous mappings. Default action: "EXCEPTION".

"UNQUALIFIED" (qualifies=0, link=0 or 1, target=1 or >1)

The mapping is not qualified for a source object. There is one or more targets found through the
correlation logic. Detected during change events and reconciliation. Default action: "DELETE".

"SOURCE_IGNORED" (qualifies=0, link=0, target=0)

The source object is unqualified (by validSource), no link, no target is found. Detected during
source object changes and reconciliation. Default action: "IGNORE".

Based on the values assigned to objects during target reconciliation, OpenIDM assigns situations,
listed here with their default actions.

"TARGET_IGNORED" (qualifies=0)

During target reconciliation the target becomes unqualified by the "validTagrt" script. Only
detected during reconciliation. Default action: "IGNORE"

"UNASSIGNED" (qualifies=1, link=0)

A target object exists for which there is no link. Only detected during reconciliation. Default
action: "EXCEPTION".

"CONFIRMED" (qualifies=1, link=1, source=1)

The mapping qualifies for a target object, and a link to a source object exists. Detected only
during reconciliation. Default action: "UPDATE".

"UNQUALIFIED" (qualifies=0, link=1, source=1, but source does not qualify)

The mapping is not qualified (by validTarget) for a target object, and there is a link from an
existing source object where the source exists. Detected during change events and reconciliation.
Default action: "DELETE".

Configuring Synchronization
Source Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 51

SOURCE_MISSING (qualifies=1, link=1, source=0)

The target qualifies and a link is found. But the source object is missing. Only detected during
reconciliation. Default action: "EXCEPTION".

The following sections reiterate in detail how OpenIDM assigns situations during each of the two
synchronization phases.

6.4.2. Source Reconciliation

OpenIDM starts reconciliation and LiveSync by reading a list of objects from the resource. For
reconciliation, the list includes all objects available through the connector. For LiveSync, the list
contains only changed objects. The connector can filter objects out of the list, too. You can filter
objects out of the list by using the validSource property.

OpenIDM then iterates over the list, checking each entry against the validSource filter, classifying
objects according to their situations as described in Section 6.4.1, "Synchronization Situations".
OpenIDM uses the list of links for the current mapping to classify objects. Finally, OpenIDM executes
the action configured for the situation.

The following table shows how OpenIDM assigns the appropriate situation during source
reconciliation, depending on whether a valid source exists (Source Qualifies), whether a link with the
appropriate type exists in the repository (Link Exists), and how many target objects are found either
based on links or correlation results.

Table 6.1. Resolving Source Reconciliation Situations

Source Qualifies? Link Exists? Target Objects Founda

Yes No Yes No 0 1 > 1
Situation

 X X X SOURCE_IGNORED
 X X X UNQUALIFIED
 X X X UNQUALIFIED
 X X X UNQUALIFIED
 X X X UNQUALIFIED
 X X X UNQUALIFIED
X X X ABSENT
X X X FOUND
X X X AMBIGUOUS
X X X MISSING
X X X CONFIRMED

aIf no link exists for the source object, then OpenIDM executes a correlation query.

Configuring Synchronization
Target Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 52

6.4.3. Target Reconciliation

During source reconciliation, OpenIDM cannot detect situations where no source object exists, such
as the UNASSIGNED situation. When no source object exists, OpenIDM detects the situation during
the second reconciliation phase, target reconciliation. During target reconciliation, OpenIDM iterates
over all target objects that do not have a representation on the source, checking each object against
the validTarget filter, determining the appropriate situation, and executing the action configured for
the situation.

The following table shows how OpenIDM assigns the appropriate situation during target
reconciliation, depending on whether a valid target exists (Target Qualifies), whether a link with an
appropriate type exists in the repository (Link Exists), whether a source object exists (Source Exists),
and whether the source object qualifies (Source Qualifies). Not all situations assigned during source
reconciliation are assigned during target reconciliation.

Table 6.2. Resolving Target Reconciliation Situations

Target Qualifies? Link Exists? Source Exists? Source Qualifies?
Yes No Yes No Yes No Yes No

Situation

 X TARGET_IGNORED
X X X UNASSIGNED
X X X X CONFIRMED
X X X X UNQUALIFIED
X X X SOURCE_MISSING

6.4.4. Synchronization Actions

Once OpenIDM has assigned a situation to an object, OpenIDM takes the actions configured in
the mapping. If no action is configured, then OpenIDM takes the default action for the situation.
OpenIDM supports the following actions.

"CREATE"

Create and link a target object.

"UPDATE"

Link and update a target object.

"DELETE"

Delete and unlink the target object.

"LINK"

Link the correlated target object.

Configuring Synchronization
Correlation Queries

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 53

"UNLINK"

Unlink the linked target object.

"EXCEPTION"

Flag the link situation as an exception.

"IGNORE"

Do not change the link or target object state.

6.5. Correlation Queries
Every time OpenIDM creates an object through synchronization, it creates a link between the source
and target objects. OpenIDM then uses the link to determine the object's situation during later
synchronization operations.

Initial, bulk synchronization operations can involve correlating many objects that exist both on source
and target systems. In this case, OpenIDM uses correlation queries to find target objects that already
exist, and that correspond to source objects. For the target objects that match a correlation query,
OpenIDM needs only to create a link, rather than a new target object.

Correlation queries run against target resources. The query syntax therefore depends on the target
system, and is either specific to the data store underlying the OpenIDM repository, or to OpenICF
query capabilities.

6.5.1. Managed Object as Correlation Query Target
Queries on managed objects in the repository must be defined in the configuration file for the
repository, which is either openidm/conf/repo.orientdb.json, or openidm/conf/repo.jdbc.json.

The following example shows a correlation query defined in openidm/conf/repo.orientdb.json.

"for-userName" : "SELECT * FROM ${_resource} WHERE userName = '${uid}'"

The following correlation query example shows the JavaScript to call the query defined for
OrientDB. The _query-id property value matches the name of the query specified in openidm/conf/
repo.orientdb.json, for-userName. The source.name value replaces ${uid} in the query. OpenIDM replaces
${_resource} in the query with the name of table that holds managed objects.

{
 "correlationQuery": {
 "type": "text/javascript",
 "source":
 "var query = {'_query-id' : 'for-userName', 'uid' : source.name}; query;"
 }
}

Configuring Synchronization
System Object as Correlation Query Target

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 54

The query can return zero or more objects, so the situation OpenIDM assigns to the source object
depends on the number of target objects returned.

With a JDBC-based repository, the query defined in openidm/conf/repo.jdbc.json is more complex due
to how the tables are indexed. The correlation query you define in openidm/conf/sync.json is the same,
however.

6.5.2. System Object as Correlation Query Target
Correlation queries on system objects access the connector. The connector then executes the query
on the external resource.

Your correlation query JavaScript must return a map holding a generic query with the following
elements.

• A condition such as "Equals"

• The naming attribute to compare on the system object. In the example that follows, the naming
attribute is uid.

• The value from the source object to use in the search filter. You set this as the value of the value
property, which takes an array. In the example that follows, the value to use in the search filter is
source.userName.

varmap={"query": {"Equals": {"field": "uid", "values": [source.userName]}}};
map;

6.6. Advanced Data Flow Configuration
Section 6.3, "Basic Data Flow Configuration" shows how to trigger scripts when objects are created
and updated. Other situations require you to trigger scripts in response to other synchronization
actions. For example, you might not want OpenIDM to delete a managed user directly when an
external account is deleted, but instead unlink the objects and deactivate the user in another
resource. (Alternatively, you might delete the object in OpenIDM but nevertheless execute a script.)
The following example shows a more advanced mapping configuration.
 1
 2 {
 3 "mappings": [
 4 {
 5 "name": "systemLdapAccount_managedUser",
 6 "source": "system/ldap/account",
 7 "target": "managed/user",
 8 "validSource": {
 9 "type": "text/javascript",
 10 "file": "script/isValid.js"
 11 },
 12 "correlationQuery": {
 13 "type": "text/javascript",

Configuring Synchronization
Advanced Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 55

 14 "file": "script/ldapCorrelationQuery.js"
 15 },
 16 "properties": [
 17 {
 18 "source": "uid",
 19 "transform": {
 20 "type": "text/javascript",
 21 "source": "source.toLowerCase()"
 22 },
 23 "target": "userName"
 24 },
 25 {
 26 "source": "",
 27 "transform": {
 28 "type": "text/javascript",
 29 "source": "if (source.myGivenName)
 30 {source.myGivenName;} else {source.givenName;}"
 31 },
 32 "target": "givenName"
 33 },
 34 {
 35 "source": "",
 36 "transform": {
 37 "type": "text/javascript",
 38 "source": "if (source.mySn)
 39 {source.mySn;} else {source.sn;}"
 40 },
 41 "target": "familyName"
 42 },
 43 {
 44 "source": "cn",
 45 "target": "fullname"
 46 },
 47 {
 48 "comment": "Multi-valued in LDAP, single-valued in AD.
 49 Retrieve first non-empty value.",
 50 "source": "title",
 51 "transform": {
 52 "type": "text/javascript",
 53 "file": "script/getFirstNonEmpty.js"
 54 },
 55 "target": "title"
 56 },
 57 {
 58 "condition": {
 59 "type": "text/javascript",
 60 "source": "var clearObj = openidm.decrypt(object);
 61 ((clearObj.password != null) &&
 62 (clearObj.ldapPassword != clearObj.password))"
 63 },
 64 "transform": {
 65 "type": "text/javascript",
 66 "source": "source.password"
 67 },
 68 "target": "__PASSWORD__"
 69 }
 70],
 71 "onCreate": {
 72 "type": "text/javascript",

Configuring Synchronization
Advanced Data Flow Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 56

 73 "source": "target.ldapPassword = null;
 74 target.adPassword = null;
 75 target.password = null;
 76 target.ldapStatus = 'New Account'"
 77 },
 78 "onUpdate": {
 79 "type": "text/javascript",
 80 "source": "target.ldapStatus = 'OLD'"
 81 },
 82 "onUnlink": {
 83 "type": "text/javascript",
 84 "file": "script/triggerAdDisable.js"
 85 },
 86 "policies": [
 87 {
 88 "situation": "CONFIRMED",
 89 "action": "UPDATE"
 90 },
 91 {
 92 "situation": "FOUND",
 93 "action": "UPDATE"
 94 },
 95 {
 96 "situation": "ABSENT",
 97 "action": "CREATE"
 98 },
 99 {
100 "situation": "AMBIGUOUS",
101 "action": "EXCEPTION"
102 },
103 {
104 "situation": "MISSING",
105 "action": "EXCEPTION"
106 },
107 {
108 "situation": "UNQUALIFIED",
109 "action": "UNLINK"
110 },
111 {
112 "situation": "UNASSIGNED",
113 "action": "EXCEPTION"
114 }
115]
116 }
117]
118 }

Here is the complete list of properties you can use as hooks in mapping configurations to call scripts.

Triggered by Situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object Filter

vaildSource, validTarget

Configuring Synchronization
Alternative Mappings

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 57

Correlating Objects

correlationQuery

Triggered on Reconciliation

result

Scripts Inside Properties

condition, transform

Your scripts can get data from any connected system at any time by using the openidm.read(id)
function, where id is the identifier of the object to read.

The following example reads a managed user object from the repository.

repoUser = openidm.read("managed/user/ddoe);

The following example reads an account from an external LDAP resource.

externalAccount = openidm.read("system/ldap/account/ddoe");

6.7. Alternative Mappings
Mappings for synchronization are usually stored in openidm/conf/sync.json for reconciliation, LiveSync,
and for pushing changes made to managed objects to external resources. You can, however,
provide alternative mappings for scheduled reconciliation by adding the mapping to the scheduler
configuration instead of referencing the sync.json mapping.

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 08 16 * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": {
 "name": "CSV_XML",
 "source": "system/Ldap/account",
 "target": "managed/user",
 "properties": [
 {
 "source": "firstname",
 "target": "firstname"
 },
 ...
],
 "policies": [...]
 }
 }
}

Scheduling Synchronization
Scheduler Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 58

Chapter 7

Scheduling Synchronization

OpenIDM provides scheduling for synchronization operations such as LiveSync and reconciliation.
You schedule the operations using cron-like syntax.

This chapter describes scheduling for reconciliation and LiveSync. Yet, you can use OpenIDM's
scheduler service to schedule other events, too. See the Scheduler Reference appendix for details.

You configure the scheduler through JSON objects. The corresponding configuration file names take
the form openidm/conf/[org.forgerock.openidm.]scheduler-schedule-name.json, where [org.forgerock.openidm
.] is optional and added automatically when OpenIDM reads the configuration, and schedule-name is
the logical name for the scheduled operation, such as reconcile_systemXmlAccounts_managedUser.

7.1. Scheduler Configuration
The scheduler configuration file, openidm/conf/[org.forgerock.openidm.]scheduler-schedule-name.json has
the following format.
{
 "enabled" : true,
 "type" : "cron",
 "startTime" : "(optional) time",
 "endTime" : "(optional) time",
 "schedule" : "cron expression",
 "timeZone" : "(optional) time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

• The optional properties "startTime", "endTime", and "timeZone" properties can be absent, or empty.

When specifying times and dates, use ISO 8601 format, YYYY-MM-DDThh:mm:ss.

• OpenIDM relies on the Quartz Scheduler. The cron expression to use is described in the
CronTrigger Tutorial and in Lesson 6: CronTrigger.

• The "invokeService" property takes either "sync" for reconciliation or "provisioner" for LiveSync.

You can also specify the service identifier by its full name as in "invokeService" : "org.forgerock
.openidm.sync".

• The "invokeContext" property depends on the setting for "invokeService".

http://www.quartz-scheduler.org/docs/tutorials/crontrigger.html
http://www.quartz-scheduler.org/docs/tutorial/TutorialLesson06.html

Scheduling Synchronization
Scheduler Examples

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 59

For LiveSync, "source" takes an external resource name and object type.

{
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

For reconciliation, "mapping" takes the name of the mapping configured in openidm/conf/sync.json.

{
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

For reconciliation, you can define the mapping in two ways.

• Referencing the mapping by its name in sync.json as shown in the example above. The mapping
must exist in the sync.json file.

• Configuring the mapping in the scheduler configuration by using the "mapping" property as shown in
the example in Alternative Mappings Location.

7.2. Scheduler Examples
The following example shows a schedule for reconciliation that is not enabled. When enabled
("enabled" : true,), reconciliation runs every 30 minutes, starting on the hour.

{
 "enabled": false,
 "type": "cron",
 "schedule": "0 0/30 * * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccounts_managedUser"
 }
}

The following example shows a schedule for LiveSync enabled to run every 15 seconds, starting at
the beginning of the minute.

Scheduling Synchronization
Scheduler Examples

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 60

{
 "enabled": false,
 "type": "cron",
 "schedule": "0/15 * * * * ?",
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/ldap/account"
 }
}

Managing Passwords
Enforcing Password Policy

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 61

Chapter 8

Managing Passwords

OpenIDM provides password management features that help you enforce password policies, limit the
number of passwords users must remember, and let users reset and change their passwords.

8.1. Enforcing Password Policy
A password policy is a set of rules defining what sequence of characters constitutes an acceptable
password. Acceptable passwords generally are too complex for users or automated programs to
generate or guess.

Password policies set requirements for password length, character sets that passwords must contain,
dictionary words and other values that passwords must not contain. Password policies also require
that users not reuse old passwords, and that users change their passwords on a regular basis.

OpenIDM can enforce password policy rules by applying validation rules to attributes of managed
user objects. Suppose you want to rule out use of the following user passwords.

• password

• 123456

• 12345678

• qwerty

• abc123

You could include the following configuration in openidm/conf/managed.json to validate passwords.

Managing Passwords
Enforcing Password Policy

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 62

{
 "objects" : [
 {
 "name" : "user",
 "properties" : [
 {
 "name" : "password",
 "encryption" : {
 "key" : "openidm-sym-default"
 }
 }
],
 "onValidate" : {
 "type" : "text/javascript",
 "file" : "script/password-validator.js"
 }
 }
]
}

The corresponding script, openidm/script/password-validator.js, returns true if the password is valid. For
example, the following script checks that the password is not one of those listed above.

const dictionary = ['password','123456','12345678', 'qwerty', 'abc123'];

function isValidPassword() {
 var cleartextObject = openidm.decrypt(object);
 for (var i = 0; i < dictionary.length; i++) {
 if (cleartextObject.password == dictionary[i]) {
 throw "Password Policy Violation Exception";
 };
 };
};

isValidPassword();

To try this script with the default example, update openidm/conf/managed.json as shown above, change
the sample user's password in openidm/samples/sample1/data/xmlConnectorData.xml to something invalid
such as 123456, and add a mapping for the password property to openidm/conf/sync.json:

"properties" : [
 {
 "source" : "description",
 "target" : "description"
 },
 {
 "source" : "firstname",
 "target" : "givenName"
 },
 {
 "source" : "email",
 "target" : "email"
 },
 {

Managing Passwords
Enforcing Password Policy

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 63

 "source" : "lastname",
 "target" : "familyName"
 },
 {
 "source" : "name",
 "target" : "userName"
 },
 {
 "source" : "password",
 "target" : "password"
 },
 {
 "source" : "name",
 "target" : "_id"
 }
],

In addition remove "flags" : ["NOT_READABLE","NOT_RETURNED_BY_DEFAULT"] from the password property in
the provisioner.openicf-xml.json file.

The script called for onValidate lets you define rules to validate a property's value before OpenIDM
stores the object. If the value violates the rules, OpenIDM throws an exception.

The following excerpt from openidm/logs/openidm0.log.0 shows the exception when trying to reconcile a
user having an invalid password.

Jan 16, 2012 10:21:11 AM
 org.forgerock.openidm.sync.impl.ObjectMapping createTargetObject
WARNING: Failed to create target object
org.forgerock.openidm.objset.ForbiddenException:
 Password Policy Violation Exception

The password validation mechanism can apply in many situations.

Password change and password reset

Password change involves changing a user or account password in accordance with password
policy. Password reset involves setting a new user or account password on behalf of a user.

You can configure OpenIDM to control password values as they are provisioned as shown in the
previous examples.

To change the default administrative user password, openidm-admin, see the procedure, To Replace
the Default User & Password, for instructions.

Password recovery

Password recovery involves recovering a password or setting a new password when the password
has been forgotten.

OpenIDM can provide a self-service end user interface for password changes, password recovery,
and password reset.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 64

Password comparisons with dictionary words

You can add dictionary lookups to prevent use of password values that match dictionary words.

Password history

You can add checks to prevent reuse of previous password values

Password expiration

You can configure OpenIDM to call a workflow that ensures users are able to change expiring or
to reset expired passwords.

8.2. Password Synchronization
Password synchronization intercepts user password changes, and ensures uniform password
changes across resources that store the password. Following password synchronization, the user
authenticates using the same password on each resource. No centralized directory or authentication
server is required for performing authentication. Password synchronization reduces the number of
passwords users need to remember, so they can use fewer, stronger passwords.

OpenIDM can propagate passwords to the resources storing a user's password. OpenIDM can
intercept and synchronize passwords changed natively on OpenDJ and Active Directory. See
the example in samples/misc/managed.json where you installed OpenIDM for a sample password
synchronization configuration.

Before using the sample, you must set up OpenDJ and Active Directory, and adjust the password
attributes, set in the sample as ldapPassword for OpenDJ, adPassword for Active Directory, and password
for the internal OpenIDM password. Also, either set up password policy enforcement on OpenDJ or
Active Directory rather than OpenIDM, or ensure that all password policies enforced are identical to
prevent password updates on one resource from being rejected by OpenIDM or by another resource.

Also set up password synchronization plugins for OpenDJ and for Active Directory. The password
synchronization plugins help by intercepting password changes on the resource before the passwords
are stored in encrypted form. The plugins then send intercepted password values to OpenIDM over
an encrypted channel.

Procedure 8.1. To Install the OpenDJ Password Synchronization Plugin

Before you start, make sure you configure OpenDJ to communicate over LDAPS as described in the
OpenDJ documentation.

The following steps install the plugin in OpenDJ directory server running on the same host as
OpenIDM. If you run OpenDJ on a different host use the fully qualified domain name rather than
localhost, and use your certificates rather than the example.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 65

1. Import the self-signed OpenIDM certificate into the trust store for OpenDJ.
$ cd /path/to/OpenDJ/config
$ keytool
 -import
 -alias openidm-localhost
 -keystore truststore
 -storepass `cat keystore.pin`
 -file /path/to/openidm/samples/security/openidm-localhost-cert.txt
Owner: CN=localhost, O=OpenIDM Self-Signed Certificate
Issuer: CN=localhost, O=OpenIDM Self-Signed Certificate
Serial number: 4e4bc38e
Valid from: Wed Aug 17 15:35:10 CEST 2011 until: Tue Aug 17 15:35:10 CEST 2021
Certificate fingerprints:
 MD5: B8:B3:B4:4C:F3:22:89:19:C6:55:98:C5:DF:47:DF:06
 SHA1: DB:BB:F1:14:55:A0:53:80:9D:62:E7:39:FB:83:15:DA:60:63:79:D1
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

2. Download the OpenDJ password synchronization plugin, OpenIDM Agents - OpenDJ 1.0.0, from
the OpenIDM download page.

3. Unzip the module delivery.
$ unzip ~/Downloads/opendj-accountchange-handler-1.0.0-SNAPSHOT.zip
 creating: opendj/
 creating: opendj/config/
 creating: opendj/config/schema/
...

4. Copy files to the directory where OpenDJ is installed.
$ cd opendj
$ cp -r * /path/to/OpenDJ/

5. Restart OpenDJ to load the additional schema from the module.
$ cd /path/to/OpenDJ/bin
$./stop-ds --restart

6. Add the configuration provided to OpenDJ's configuration.
$./ldapmodify
 --port 1389
 --hostname `hostname`
 --bindDN "cn=Directory Manager"
 --bindPassword "password"
 --defaultAdd
 --filename ../config/openidm-pwsync-plugin-config.ldif
Processing ADD request for cn=OpenIDM Notification Handler,
 cn=Account Status Notification Handlers,cn=config
ADD operation successful for DN cn=OpenIDM Notification Handler
 ,cn=Account Status Notification Handlers,cn=config

7. Restart OpenDJ.

https://backstage.forgerock.com/downloads

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 66

$./stop-ds --restart
...
[16/Jan/2012:15:55:47 +0100] category=EXTENSIONS severity=INFORMATION
 msgID=1049147 msg=Loaded extension from file '/path/to/OpenDJ/lib/extensions
 /opendj-accountchange-handler-1.0.0.jar' (build <unknown>,
 revision <unknown>)
...
[16/Jan/2012:15:55:51 +0100] category=CORE severity=NOTICE msgID=458891 msg=The
 Directory Server has sent an alert notification generated by class
 org.opends.server.core.DirectoryServer (alert type
 org.opends.server.DirectoryServerStarted, alert ID 458887):
 The Directory Server has started successfully

8. Enable the plugin for the appropriate password policy.

The following command enables the plugin for the default password policy.
$./dsconfig
 set-password-policy-prop
 --port 4444
 --hostname `hostname`
 --bindDN "cn=Directory Manager"
 --bindPassword password
 --policy-name "Default Password Policy"
 --set account-status-notification-handler:"OpenIDM Notification Handler"
 --trustStorePath ../config/admin-truststore
 --no-prompt

Procedure 8.2. To Install the Active Directory Password Synchronization Plugin

You install the plugin on Active Directory primary domain controllers (PDCs) to intercept password
changes, and send the password values to OpenIDM over an encrypted channel. You must have
Administrator privileges to install the plugin. In a clustered Active Directory environment, you must
also install the plugin on all PDCs.

1. Download the Active Directory password synchronization plugin, OpenIDM Agents - AD 2.0.1,
from the OpenIDM download page.

2. Unzip the plugin, and double-click setup.exe to launch the installation wizard.

3. Complete the installation with the help of the following hints.

CDDL license agreement

You must accept the agreement to proceed with the installation.

OpenIDM URL

URL where OpenIDM is deployed such as https://openidm.example.com:8444/openidm for SSL
mutual authentication

https://backstage.forgerock.com/downloads

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 67

Private Key alias

Alias used for the OpenIDM certificate also stored in the keystore.jceks file, such as openidm-
localhost used for evaluation

Private Key password

Password to access the PFX keystore file, such as changeit for evaluation. PFX files contain
encrypted private keys, certificates used for authentication and encryption.

Directory poll interval (seconds)

Number of seconds between calls to check that Active Directory is available, such as 60

Query ID parameter

Query identifier configured in OpenIDM the openidm/conf/repo.*.json file. Use for-userName for
evaluation.

OpenIDM user password attribute

Password attribute for the managed/user object to which OpenIDM applies password changes

OpenIDM user search attribute

The sAMAccountName value holder attribute name in the query definition. For example, "SELECT *
 FROM ${_resource} WHERE userName = '${uid}'". Use uid for the evaluation.

Select Certificate File

The PKCS 12 format PFX file containing the certificate used to encrypt communications with
OpenIDM. Use openidm/samples/security/openidm-localhost.p12 for evaluation.

Select Output Directory

Select a secure directory where the password changes are queued. The queue contains the
encrypted passwords. Yet, the server has to prevent access to this folder except access by the
Password Sync service. The path name cannot include spaces.

Select Log Directory

The plugin stores logs in the location you select. The path name cannot include spaces.

Select Destination Location

Setup installs the plugin in the location you select, by default C:\Program Files\OpenIDM Password
 Sync.

4. After running the installation wizard, restart the computer.

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 68

5. If you must change any settings after installation, access settings using the Registry Editor under
HKEY_LOCAL_MACHINE > SOFTWARE > ForgeRock > OpenIDM > PasswordSync.

Procedure 8.3. To Set Up OpenIDM to Handle Password Changes

Follow these steps to configure OpenIDM to access password changes from the directory server.

1. Add the directory server certificate to the OpenIDM trust store so that OpenIDM knows to trust
the directory server during mutual authentication.

The following commands show how to do this with the default OpenDJ and OpenIDM settings.
$ cd /path/to/OpenDJ/config/
$ keytool
 -keystore keystore
 -storepass `cat keystore.pin`
 -export
 -alias server-cert
 > /tmp/opendj.crt
$ cd /path/to/openidm/security/
$ keytool
 -import
 -alias opendj-server-cert
 -file /tmp/opendj.crt
 -keystore truststore
 -storepass changeit
 -trustcacerts
Owner: CN=localhost.localdomain, O=OpenDJ Self-Signed Certificate
Issuer: CN=localhost.localdomain, O=OpenDJ Self-Signed Certificate
Serial number: 4f143976
Valid from: Mon Jan 16 15:51:34 CET 2012 until: Wed Jan 15 15:51:34 CET 2014
Certificate fingerprints:
 MD5: 7B:7A:75:FC:5A:F0:65:E5:84:43:6D:10:B9:EA:CC:F0
 SHA1: D1:C6:C9:8A:EA:09:FD:1E:48:BB:B2:F5:95:41:50:2C:AB:4D:0F:C9
 Signature algorithm name: SHA1withRSA
 Version: 3
Trust this certificate? [no]: yes
Certificate was added to keystore

2. Add the configuration to managed objects to handle password synchronization.

You can find an example for synchronization with both OpenDJ and Active Directory in samples/
misc/managed.json, JavaScript lines folded for readability:

{
 "objects": [
 {
 "name": "user",
 "properties": [
 {
 "name": "ldapPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },

Managing Passwords
Password Synchronization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 69

 {
 "name": "adPassword",
 "encryption": {
 "key": "openidm-sym-default"
 }
 },
 {
 "name": "password",
 "encryption": {
 "key": "openidm-sym-default"
 }
 }
],
 "onUpdate": {
 "type": "text/javascript",
 "source":
 "if (newObject.ldapPassword != oldObject.ldapPassword) {
 newObject.password = newObject.ldapPassword
 } else if (newObject.adPassword != oldObject.adPassword) {
 newObject.password = newObject.adPassword
 }"
 }
 }
]
}

This sample assumes you define the password as ldapPassword for OpenDJ, and adPassword for Active
Directory.

3. When you change a password on the directory server and run reconciliation, you notice the value
changes in OpenIDM.
$ tail -f openidm/audit/activity.csv | grep bjensen
...userName=bjensen, ... password={$crypto={...data=tEsy7ZXo6nZtEqzW/uVE/A==...
...userName=bjensen, ... password={$crypto={...data=BReT79lnQEPcvfQG3ibLpg==...

Managing Authentication, Authorization & RBAC
OpenIDM Users

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 70

Chapter 9

Managing Authentication, Authorization &
RBAC

OpenIDM currently provides a simple, yet flexible authentication and authorization mechanism based
on REST interface URLs and on roles stored in the repository.

9.1. OpenIDM Users
OpenIDM distinguishes between internal users and managed users.

9.1.1. Internal Users
OpenIDM sets up two internal users by default, anonymous and openidm-admin. OpenIDM separates
these accounts from all other accounts to protect them from any reconciliation or sync processes. You
can add or remove internal users at any time.

anonymous

This user serves to access OpenIDM anonymously, for users who do not have their own accounts.
The anonymous user is primarily intended to allow self-registration.

OpenIDM stores the anonymous user's password, amonymous, in clear text in the repository internal
user table. The password is not considered to be secret.

openidm-admin

This user serves as the super administrator. After installation, the openidm-admin user has full
access, and provides a fall back in case other users are locked out. Do not use openidm-admin
for normal tasks. Usually no one is associated with the openidm-admin user, so audit log records
pertaining to openidm-admin do not reflect the actions of any real person.

OpenIDM encrypts the password, openidm-admin, by dfault. Change the password immediately after
installation. For instructions, see To Replace the Default User & Password.

OpenIDM stores internal users and their role membership in a table in the repository called
internaluser when implemented in MySQL.

9.1.2. Managed Users

Managing Authentication, Authorization & RBAC
Authentication

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 71

External users that OpenIDM manages are referred to as managed users. OpenIDM stores managed
users in the managed objects table of the repository, called managedobjects when implemented in
MySQL. A second table, managedobjectproperties in MySQL, serves as the index table.

By default, the attribute names for managed user login and password are email and password,
respectively.

9.2. Authentication
OpenIDM does not allow access to the REST interface unless you authenticate. If a project requires
anonymous access, to allow users to self-register for example, then allow access by user anonymous,
password anonymous, as described in Section 9.1.1, "Internal Users". In production, only applications
are expected to access the REST interface.

OpenIDM supports an improved authentication mechanism on the REST interface. The reason for not
using standards, like basic authentication or form based authentication, is their leak of compatibility
with AJAX.

OpenIDM authentication with standard header fields

$ curl --user userName:password

This authentication is compatible with standard basic authentication except that it will not
prompt for credentials if they are missing in the request.

OpenIDM authentication with OpenIDM header fields

$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"

For more details about the OpenIDM authentication mechanism please see Use Message Level
Security .

You can change the attributes OpenIDM uses to store user login and password values. The attribute
names are shown in a database query defined in openidm/conf/repo.repo-type.json.

Two queries are defined by default.

credential-internaluser-query

Uses the user object ID for login

credential-query

Uses the user email attribute for login

The openidm/conf/authentication.json file defines the currently active query as the value of the queryId
property. In the following example, credential-query is active.

Managing Authentication, Authorization & RBAC
Roles

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 72

{
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "defaultUserRoles": [
 "openidm-authorized"
]
}

9.3. Roles
OpenIDM sets up the following roles by default.

openidm-reg

Role for users accessing OpenIDM with the default anonymous account

openidm-admin

OpenIDM administrator role

openidm-authorized

Default role for any user authenticated with a user name and password

openidm-cert

Default role for any user authenticated with mutual SSL authentication

You configure default roles assigned to successfully authenticated users authentication using the
defaultUserRoles property in openidm/conf/authentication.json, which takes a list. The default value is
openidm-authorized.

{
 "queryId": "credential-query",
 "queryOnResource": "managed/user",
 "defaultUserRoles": [
 "openidm-authorized"
]
}

9.4. Authorization
OpenIDM access control can be based on REST interface URLs.

The openidm/script/router-authz.js script controls access to REST interface URLs. OpenIDM calls the
script for each request. The script either throws the string Access denied, or nothing. If it throws Access
 denied, then OpenIDM denies the request. The default script is shown below.

Managing Authentication, Authorization & RBAC
Authorization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 73

const allowCert = false;

function contains(a, o) {
 if (typeof(a) != 'undefined' && a != null) {
 for (var i = 0; i <= a.length; i++) {
 if (a[i] === o) {
 return true;
 }
 }
 }
 return false;
}

function allow() {
 if (typeof(request.parent) === 'undefined' ||
 request.parent.type != 'http') {
 return true;
 }
 var roles = request.parent.security['openidm-roles'];
 if (contains(roles, 'openidm-admin')) {
 return true;
 } else if (allowCert && contains(roles, 'openidm-cert')) {
 return true;
 } else {
 return false;
 }
}

if (!allow()) {
 throw "Access denied";
}

The script can be seen as having three parts: constants, functions, and a decision.

constants

The constants can function as global switches, for example to toggle whether certificate-based
authentication is allowed.

The example that follows shows a constant used to toggle whether anonymous authentication is
allowed.

functions

The default script defines two functions. The allow() function is called by the final if-statement.
The contains() function takes the list of roles assigned to an authenticated user, and checks
whether the list contains the role specified as the second argument. If the list does contain the
role, then contains() returns true.

decision

The if-statement at the end of the script executes first. It calls the allow() function, which calls
other functions. The allow() function returns true or false, triggering the behavior of the final if-
statement.

Managing Authentication, Authorization & RBAC
Authorization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 74

The following example extends the script to filter out requests not under /openidm/config or /openidm/
managed.

const allowCert = false;
const allowAnon = false;

function contains(a, o) {
 if (typeof(a) != 'undefined' && a != null) {
 for (var i = 0; i <= a.length; i++) {
 if (a[i] === o) {
 return true;
 }
 }
 }
 return false;
}

function matchesContext(path, context, allowRoot, allowSubcontext) {
 if (allowRoot && path === context) {
 return true;
 }
 if (allowSubcontext && path.substring(0, context.length + 1)
 === context + "/") {
 return true;
 }
 return false;
}

function allow() {
 if (typeof(request.parent) === 'undefined' ||
 request.parent.type != 'http') {
 return true;
 }

 // Restrict the URLs that are accessible externally
 var path = request.parent.path;
 if (!(matchesContext(path, "/openidm/config", true, true)
 || matchesContext(path, "/openidm/managed", false, true))) {
 return false;
 }

 var roles = request.parent.security['openidm-roles'];
 if (contains(roles, 'openidm-admin')) {
 return true;
 } else if (allowCert && contains(roles, 'openidm-cert')) {
 return true;
 } else if (allowAnon && contains(roles, 'openidm-reg')) {
 return true;
 } else {
 return false;
 }
}

if (!allow()) {
 throw "Access denied";
}

Managing Authentication, Authorization & RBAC
Authorization

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 75

Compared to the default, this example has a second global constant, allowAnon, used to allow or deny
anonymous access. The new constant serves in the allow() function when checking for openidm-reg
membership, the role for anonymous users.

Furthermore this example includes an additional function, matchesContext(), called from the allow()
function before the role test. The additional test filters out all requests not to /openidm/config or below
/openidm/managed. The context root itself is excluded in the latter call to avoid actions like patch by
query on /openidm/managed/user.

Securing & Hardening OpenIDM
Use SSL and HTTPS

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 76

Chapter 10

Securing & Hardening OpenIDM

After following the guidance in this chapter, make sure that you test your installation to verify that it
behaves as expected before putting it into production.

Out of the box, OpenIDM is set up for ease of development and deployment. When deploying
OpenIDM in production, take the following precautions.

10.1. Use SSL and HTTPS
Disable plain HTTP access, included for development convenience, as described in the section titled
Secure Jetty.

Use TLS/SSL to access OpenIDM, ideally with mutual authentication so that only trusted systems
can invoke each other. TLS/SSL protects data on the wire. Mutual authentication with certificates
imported into the applications' trust and key stores provides some confidence for trusting application
access.

Augment this protect with message level security where appropriate.

10.2. Encrypt Data Internally & Externally
Beyond relying on end-to-end availability of TLS/SSL to protect data, OpenIDM also supports explicit
encryption of data that goes on the wire. This can be important if the TLS/SSL termination happens
prior to the final end point.

OpenIDM also supports encryption of data it puts into the repository, using a symmetric key. This
protects against some attacks on the data store.

OpenIDM automatically encrypts sensitive data in configuration files, such as passwords. OpenIDM
replaces clear text values when the system first reads the configuration file. Take care with
configuration files having clear text values that OpenIDM has not yet read and updated.

10.3. Use Message Level Security
OpenIDM supports message level security, forcing authentication before granting access.
Authentication works by means of a filter-based mechanism that lets you use either a HTTP Basic

Securing & Hardening OpenIDM
Use Message Level Security

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 77

like mechanism or OpenIDM-specific headers, setting a cookie in the response that you can use for
subsequent authentication. If you attempt to access OpenIDM URLs without the appropriate headers
or session cookie, OpenIDM returns HTTP 401 Unauthorized.

The following examples show successful authentications.
$ curl
 --dump-header /dev/stdout
 --user openidm-admin:openidm-admin
 "http://localhost:8080/openidm/managed/user/?_query-id=query-all-ids"

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=2l0zobpuk6st1b2m7gvhg5zas;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:36:19 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

$ curl
 --dump-header /dev/stdout
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user/?_query-id=query-all-ids"

HTTP/1.1 200 OK
Set-Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8;Path=/
Expires: Thu, 01 Jan 1970 00:00:00 GMT
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:36:40 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":0,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

$ curl
 --dump-header /dev/stdout
 --header "Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8"
 "http://localhost:8080/openidm/managed/user/?_query-id=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:37:20 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

Notice that the last example uses the cookie OpenIDM set in the response to the penultimate request.
You can also request one-time authentication without a session.

Securing & Hardening OpenIDM
Replace Default Security Settings

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 78

$ curl
 --dump-header /dev/stdout
 --header "X-OpenIDM-NoSession: true"
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 "http://localhost:8080/openidm/managed/user/?_query-id=query-all-ids"

HTTP/1.1 200 OK
Content-Type: application/json; charset=UTF-8
Date: Wed, 18 Jan 2012 10:52:27 GMT
Accept-Ranges: bytes
Server: Restlet-Framework/2.0.9
Transfer-Encoding: chunked

{"query-time-ms":1,"result":[{"_id":"ajensen"},{"_id":"bjensen"}]}

To log out and destroy the session, send the specific OpenIDM header.
$ curl
 --dump-header /dev/stdout
 --header "Cookie: JSESSIONID=ixnekr105coj11ji67xcluux8"
 --header "X-OpenIDM-Logout: true"
 "http://localhost:8080/openidm/"

HTTP/1.1 204 No Content

OpenIDM creates the openidm-admin user with password openidm-admin by default. This internal user is
stored in OpenIDM's repository.
mysql> select objectid,roles from internaluser;
+---------------+----------------------------------+
| objectid | roles |
+---------------+----------------------------------+
| anonymous | openidm-reg |
| openidm-admin | openidm-admin,openidm-authorized |
+---------------+----------------------------------+
2 rows in set (0.00 sec)

OpenIDM uses the internal table for authentication, and also to set the roles for RBAC authorization
of an authenticated user. The router service, described in the Router Service Reference appendix,
enables you to apply filters as shown in openidm/conf/router.json and the associated script, openidm/
script/router-authz.js. See the chapter on Managing Authentication, Authorization & RBAC for details.

10.4. Replace Default Security Settings
Default security settings facilitate evaluation. Change the default encryption key, and then replace
the default user password

Procedure 10.1. To Change Default Encryption Keys

By default, OpenIDM uses an symmetric encryption key with alias openidm-sym-default. Change this
default key before deploying OpenIDM in production.

Securing & Hardening OpenIDM
Secure Jetty

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 79

1. Add the new key to the key store.
$ cd /path/to/openidm/
$ keytool
 -genseckey
 -alias new-sym-key
 -keyalg AES
 -keysize 128
 -keystore security/keystore.jceks
 -storetype JCEKS
Enter keystore password:
Enter key password for <new-sym-key>
 (RETURN if same as keystore password):
Re-enter new password:
$

Also see openidm/samples/security/keystore_readme.txt.

2. Change the alias used in openidm/conf/boot/boot.properties.

Procedure 10.2. To Replace the Default User & Password

After changing the default encryption key, change at least the default user password.

1. Get the encrypted version of the new password.
$ cd /path/to/openidm/
$ echo \"newpwd\" > /tmp/newpwd.json
$ java -jar bundle/json-crypto-cli-1.1.0.jar
 -encrypt
 -keystore security/keystore.jceks
 -storetype jceks
 -storepass changeit
 -alias "new-sym-key"
 -srcjson /tmp/newpwd.json

{
 "$crypto": {
 "value": {
 "iv": "sL0KM93PmvvvaQQ8rP+QAQ==",
 "data": "eSH8YgeezoWsDDIvX1WQ2A==",
 "cipher": "AES/CBC/PKCS5Padding",
 "key": "new-sym-key"
 },
 "type": "x-simple-encryption"
 }
}

2. Replace the user object in the openidm/db/scripts/mysql/openidm.sql script before setting up MySQL
as a repository for OpenIDM.

Alternatively, replace the user in the internal user table.

10.5. Secure Jetty

Securing & Hardening OpenIDM
Protect Sensitive REST Interface URLs

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 80

Before running OpenIDM in production, edit the openidm/conf/jetty.xml configuration to avoid clear
text HTTP. Opt instead for HTTPS either with or without mutual authentication. To disable plain
HTTP access, comment out the section in openidm/conf/jetty.xml that enables HTTP on port 8080.

<!--
<Item>
 <New class="org.eclipse.jetty.server.nio.SelectChannelConnector">
 <Set name="host"><Property name="jetty.host" /></Set>
 <Set name="port">8080</Set>
 <Set name="maxIdleTime">300000</Set>
 <Set name="Acceptors">2</Set>
 <Set name="statsOn">false</Set>
 <Set name="confidentialPort">8443</Set>
 <Set name="lowResourcesConnections">20000</Set>
 <Set name="lowResourcesMaxIdleTime">5000</Set>
 </New>
</Item>
-->

10.6. Protect Sensitive REST Interface URLs
Although the repository is accessible directly by default, since anything attached to the router is
accessible with the default policy, avoid direct HTTP access in production. If you do not need such
access, deny it in the authorization policy to reduce the attack surface.

Similarly deny direct HTTP access to system objects in production, particularly access to action.
As a rule of thumb, do not expose anything not used in production. The main public interfaces over
HTTP are /openidm/managed/ and /openidm/config/. Other URIs are triggered indirectly, or are for internal
consumption.

See the chapter on Managing Authentication, Authorization & RBAC for an example showing how to
protect sensitive URLs.

10.7. Protect Sensitive Files & Directories
Protect OpenIDM files from access by unauthorized users.

In particular, prevent other users from reading files in at least the openidm/conf/boot/ and openidm/
security/ directories.

10.8. Obfuscate Bootstrap Information
OpenIDM uses the information in conf/boot/boot.properties including the key store password to start
up. You can set an obfuscated version in the file, or prompt for the password at start up time.

Securing & Hardening OpenIDM
Remove or Protect Development & Debug Tools

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 81

To generate obfuscated versions of a password, invoke openidm-crypto-2.0.3.jar from the openidm/
directory.
$ cd /path/to/openidm
$ java -jar bundle/init/openidm-crypto-2.0.3.jar

This utility helps obfuscate passwords to prevent casual observation. It is not securely encrypted and
needs further measures to prevent disclosure. Enter the password as shown.
OBF:1v2j1uum1xtv1zej1zer1xtn1uvk1v1v
CRYPT:1206319abab995251d745b151b73131c

10.9. Remove or Protect Development & Debug Tools
Before deploying OpenIDM in production, remove or protect development and debug tools, including
the OSGi console exposed under /system/console. Authentication for this console is not integrated with
authentication for OpenIDM.

To remove the OSGi console, remove the web console bundle, org.apache.felix.webconsole-version.jar.

If you cannot remove the OSGi console, then protect it by overriding the default admin:admin
credentials. Create a file called openidm/conf/org.apache.felix.webconsole.internal.servlet.OsgiManager.cfg
containing the user name and password to access the console in Java properties file format.

username=user-name
password=password

10.10. Protect the OpenIDM Repository
Use the JDBC repository. OrientDB is not yet supported for production use.

Use a strong password for the JDBC connection. Do not rely on default passwords.

Use a case sensitive database, particularly if you work with systems with different identifiers that
match except for case. Otherwise correlation queries can pick up identifiers that should not be
considered the same.

10.11. Adjust Log Levels
Leave log levels at INFO in production to ensure that you capture enough information to help diagnose
issues. See the chapter on Configuring Server Logs for more information.

At start up and shut down, INFO can produce many messages. Yet, during stable operation, INFO
generally results in log messages only when coarse-grain operations such as scheduled reconciliation
start or stop.

Securing & Hardening OpenIDM
Set Up Restart At System Boot

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 82

10.12. Set Up Restart At System Boot
You can run OpenIDM in the background as a service (daemon), and add startup and shutdown
scripts to manage the service at system boot and shutdown. For details see the section titled Startup
& Shutdown.

See your operating system documentation for details on adding a service such as OpenIDM to be
started at boot and shut down at system shutdown.

Integrating Business Processes & Workflow
About BPMN 2.0 & Activity Tools

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 83

Chapter 11

Integrating Business Processes & Workflow

Key to any identity management solution is the ability to provide workflow driven provisioning
activities, whether for self-service actions such as request for entitlements, roles or resources,
running sunrise or sunset processes, handling approvals with escalations, or performing
maintenance.

OpenIDM provides an embedded workflow and business process engine based on Activiti and the
Business Process Model and Notation (BPMN) 2.0 standard.

Note

The embedded workflow and business process engine is currently provided as part of a separate, experimental
download, the OpenIDM 2.0.3 Experimental Nightly build available from the download page.

You install the experimental download in the same way as standard OpenIDM. See the Installation Guide in the
Installation Guide for instructions. After starting OpenIDM, run the scr list command at the console, and check
that the bundle is active.

-> scr list
...
[14] [active] org.forgerock.openidm.workflow.activiti
...

Contact ForgeRock at info@forgerock.com for details on support for the experimental embedded workflow and
business process engine.

More information about Activiti and the Activiti project can be found at http://www.activiti.org.

11.1. About BPMN 2.0 & Activity Tools
Business Process Model and Notation 2.0 is the result of consensus among Business Process
Management (BPM) system vendors. The Object Management Group (OMG) has developed and
maintained the BPMN standard since 2004.

The first version of the BPMN specification focused only on graphical notation, and quickly became
popular with the business analyst audience. BPMN 1.x defines how constructs such as human tasks,
executable scripts, and automated decisions are visualized in a vendor-neutral, standard way. The
second version of BPMN extends that focus to include execution semantics, and a common exchange
format. Thus, BPMN 2.0 process definition models can be exchanged not only between different

https://backstage.forgerock.com/downloads
mailto:info@forgerock.com
http://www.activiti.org
http://omg.org/
http://www.omg.org/spec/BPMN/

Integrating Business Processes & Workflow
Known Issues & Limitations

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 84

graphical editors, but also can be executed as is on any BPMN 2.0-compliant engine, such as the
engine embedded in OpenIDM.

Using BMPN 2.0, you can add artifacts describing workflow and business process behavior to
OpenIDM for provisioning and other purposes. For example, you can craft the actual artifacts
defining business processes and workflow in a text editor such as vi, or using a special Eclipse plugin.
The Eclipse plugin provides visual design capabilities, simplifying packaging and deployment of the
artifact to OpenIDM. See the Activiti BPMN 2.0 Eclipse Plugin documentation for instructions on
installing Activiti Eclipse BPMN 2.0 Designer.

Also read the Activiti User Guide section covering BPMN 2.0 Constructs, which describes in detail
the graphical notations and XML representations for events, flows, gateways, tasks, and process
constructs.

11.2. Known Issues & Limitations
The following are known issues and limitation for the experimental embedded workflow and business
process engine.

• OpenIDM does not include a form generator, making it difficult to include embedded forms
(OPENIDM-468).

• Error handling needs improvement.

• This version depends on Activiti 5.8, which does not have the fix for ACT-583: Processes are not
found in the .bar file if they are below root.

To work around this issue, create a directory inside the .bar, and put the BPMN XML artifact in the
directory so that it is properly picked up by the Process Engine.

11.3. Invoking Activiti Workflows
You can invoke workflows and business processes from any trigger point OpenIDM offers, including
reacting to situations discovered during reconciliation. Invocation relies on the openidm.action()
function.

/*
 * Calling 'myWorkflow' workflow
 */
var map = {
 "_action" : "myWorkflow",
 "_workflowParams" : {
 "foo" : "bar"
 }
};

openidm.action("workflow/activiti", map);

http://docs.codehaus.org/display/ACT/Activiti+BPMN+2.0+Eclipse+Plugin
http://www.activiti.org/userguide/#bpmnConstructs
http://jira.codehaus.org/browse/ACT-583

Integrating Business Processes & Workflow
Example Activiti Workflows With OpenIDM

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 85

11.4. Example Activiti Workflows With OpenIDM
This section describes two example workflows, one using email notification, the other involving a
sunset process triggered during reconciliation.

11.4.1. Example Email Notification Workflow

This example uses the Activiti Eclipse BPMN 2.0 Designer to set up an email notification business
process. The example relies on an SMTP server listening on localhost, port 25.

The example sets up a workflow that can accept parameters used to specify the sender and recipient
of the mail.

${fromSender}

Used to specify the sender

${toEmail}

Used to specify the recipient

Once you have defined the workflow, drag and drop components to create the workflow. This simple
example uses only a StartEvent, MailTask, and EndEvent.

After creating the workflow, adjust the generated XML source code to use the variables inside the
<serviceTask> tag shown in the following listing.

<?xml version="1.0" encoding="UTF-8"?>
<definitions
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:activiti="http://activiti.org/bpmn"
 xmlns:bpmndi="http://www.omg.org/spec/BPMN/20100524/DI"
 xmlns:omgdc="http://www.omg.org/spec/DD/20100524/DC"
 xmlns:omgdi="http://www.omg.org/spec/DD/20100524/DI"
 typeLanguage="http://www.w3.org/2001/XMLSchema"
 expressionLanguage="http://www.w3.org/1999/XPath"
 targetNamespace="http://www.activiti.org/test">
 <process id="EmailNotification" name="emailNotification">
 <documentation>Simple Email Notification Task</documentation>
 <startEvent id="startevent1" name="Start"></startEvent>
 <sequenceFlow id="flow1" name="" sourceRef="startevent1"

Integrating Business Processes & Workflow
Example Email Notification Workflow

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 86

 targetRef="mailtask1"></sequenceFlow>
 <endEvent id="endevent1" name="End"></endEvent>
 <sequenceFlow id="flow2" name="" sourceRef="mailtask1"
 targetRef="endevent1"></sequenceFlow>
 <serviceTask id="mailtask1" name="Email Notification"
 activiti:type="mail">
 <extensionElements>
 <activiti:field name="to" expression="${toEmail}"
 ></activiti:field>
 <activiti:field name="from" expression="no-reply@forgerock.com"
 ></activiti:field>
 <activiti:field name="subject" expression="Simple Email Notification"
 ></activiti:field>
 <activiti:field name="html">
 <activiti:expression><![CDATA[Here is a simple Email Notification
 from ${fromSender}.]]></activiti:expression>
 </activiti:field>
 </extensionElements>
 </serviceTask>
 </process>
 <bpmndi:BPMNDiagram id="BPMNDiagram_EmailNotification">
 <bpmndi:BPMNPlane bpmnElement="EmailNotification"
 id="BPMNPlane_EmailNotification">
 <bpmndi:BPMNShape bpmnElement="startevent1" id="BPMNShape_startevent1">
 <omgdc:Bounds height="35" width="35" x="170" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="endevent1" id="BPMNShape_endevent1">
 <omgdc:Bounds height="35" width="35" x="410" y="250"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNShape bpmnElement="mailtask1" id="BPMNShape_mailtask1">
 <omgdc:Bounds height="55" width="105" x="250" y="240"></omgdc:Bounds>
 </bpmndi:BPMNShape>
 <bpmndi:BPMNEdge bpmnElement="flow1" id="BPMNEdge_flow1">
 <omgdi:waypoint x="205" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="250" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 <bpmndi:BPMNEdge bpmnElement="flow2" id="BPMNEdge_flow2">
 <omgdi:waypoint x="355" y="267"></omgdi:waypoint>
 <omgdi:waypoint x="410" y="267"></omgdi:waypoint>
 </bpmndi:BPMNEdge>
 </bpmndi:BPMNPlane>
 </bpmndi:BPMNDiagram>
</definitions>

In Eclipse, select the project, then right click and select Create deployment artifacts to generate the
components and package them in a .bar file for deployment in the openidm/workflow directory.

Before you deploy the .bar, work around the issue mentioned above by adding the XML artifact in the
right place in the .bar, for example by expanding the .bar, moving the EmailNotification.bpmn20.xml file
inside a directory, and recreating the .bar.

After you deploy the .bar, create a script in openidm/script/invokeEmailNotification.js. The script invokes
the workflow.

Integrating Business Processes & Workflow
Example Sunset Workflow Triggered By Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 87

/*
 * Calling 'EmailNotification' workflow
 */
var map = {
 "_action" : "emailNotification",
 "_workflowParams" : {
 "fromSender" : "noreply@openidm",
 "toEmail" : "john.doe@corp.com"
 }
};

openidm.action("workflow/activiti", map);

Also, create a schedule configuration object in openidm/conf/schedule-EmailNotification.json. The
following schedule invokes the workflow once per minute.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 0/1 * * * ?",
 "invokeService" : "script",
 "invokeContext" : {
 "script" : {
 "type" : "text/javascript",
 "file" : "script/invokeEmailNotification.js"
 },
 }
}

11.4.2. Example Sunset Workflow Triggered By Reconciliation

OpenIDM can allow deferred deprovisioning and disabling, such as needed when an external
consultant's contract expires or is up for renewal. This example shows how OpenIDM can be used to
handle such scenarios.

To understand the scenario, consider the target resource and the authoritative source.

Set up a CSV file connector to connect to an authoritative source file containing the following.

firstName,uid,"lastName","email","employeeNumber",password,"sunrise","sunset","active"
"Darth","DDOE","Doe","doe@...","123456","Z29vZA==","2011-11-30T...","2011-12-23T...","TRUE"

The authoritative source contains the field, sunset, containing a time and date string referring to a
time in the future.

Set up a simple XML connector to replicate fields in the authoritative CSV source on a 1-to-1 basis.

Define a Sunset Workflow using Activiti Eclipse BPMN 2.0 Designer.

Integrating Business Processes & Workflow
Example Sunset Workflow Triggered By Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 88

Use the following XML artifact.

<?xml version="1.0" encoding="UTF-8"?>

<definitions id="definitions"
 xmlns="http://www.omg.org/spec/BPMN/20100524/MODEL"
 xmlns:activiti="http://activiti.org/bpmn"
 targetNamespace="Examples"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.omg.org/spec/BPMN/20100524/MODEL
 http://www.omg.org/spec/BPMN/2.0/20100501/BPMN20.xsd">

 <process id="sunset" name="sunset usecase">
 <startEvent id="start" />
 <sequenceFlow sourceRef="start" targetRef="saveInvokeContext"/>
 <scriptTask id="saveInvokeContext" scriptFormat="groovy"
 activiti:returnVariable="invokecontext">
 <script>
 <![CDATA[
 invokecontext =
 org.forgerock.openidm.context.InvokeContext.getContext()
]]>
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="saveInvokeContext"
 targetRef="timerintermediatecatchevent1"/>

 <intermediateCatchEvent id="timerintermediatecatchevent1"
 name="TimerCatchEvent">
 <extensionElements>
 <activiti:field name="t" expression="${time}"
 ></activiti:field>
 </extensionElements>
 <timerEventDefinition>
 <timeDate >${time}</timeDate>
 </timerEventDefinition>
 </intermediateCatchEvent>

 <sequenceFlow sourceRef="timerintermediatecatchevent1"
 targetRef="idmCall"/>

 <serviceTask id="idmCall" activiti:delegateExpression="${openidm}"
 activiti:async="true">
 <extensionElements>
 <activiti:field name="userName" expression="${userName}"
 ></activiti:field>
 <activiti:field name="system" expression="${system}"
 ></activiti:field>
 </extensionElements>
 </serviceTask>

Integrating Business Processes & Workflow
Example Sunset Workflow Triggered By Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 89

 <sequenceFlow sourceRef="idmCall" targetRef="readUserAccount"/>
 <scriptTask id="readUserAccount" scriptFormat="groovy"
 activiti:returnVariable="user" >
 <script>
 <![CDATA[
 out:println '********Sunset date for user ' + userName
 org.forgerock.openidm.context.InvokeContext.getContext().
 putApprover(invokecontext.getApprover())
 org.forgerock.openidm.context.InvokeContext.getContext().
 putRequester(invokecontext.getRequester())
 org.forgerock.openidm.context.InvokeContext.getContext().
 pushActivityId(invokecontext.popActivityId())

 user = openidm.read(system + userName);
]]>
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="readUserAccount" targetRef="sendMail"/>

 <serviceTask id="sendMail" name="Email Notification"
 activiti:type="mail">
 <extensionElements>
 <activiti:field name="to" expression="${toEmail}"
 ></activiti:field>
 <activiti:field name="from" expression="no-reply@forgerock.com"
 ></activiti:field>
 <activiti:field name="subject" expression="Disabling User"
 ></activiti:field>
 <activiti:field name="text">
 <activiti:expression><![CDATA[
 The following user has been disabled:
 ${user}]]>
 </activiti:expression>
 </activiti:field>
 </extensionElements>
 </serviceTask>

 <sequenceFlow sourceRef="sendMail" targetRef="disableAccount"/>
 <scriptTask id="disableAccount" scriptFormat="groovy">
 <script>
 <![CDATA[
 out:println '********Disabling user account ' + userName
 user['__ENABLE__'] = false
 openidm.update(system + userName, null, user)
]]>
 </script>
 </scriptTask>
 <sequenceFlow sourceRef="disableAccount" targetRef="end"/>
 <endEvent id="end"/>

 </process>
</definitions>

Set up a deferred action during reconciliation by reacting to a FOUND situation. When called, the script
invoked must return the proper action to the found situation, which in the case of this example is LINK.

Integrating Business Processes & Workflow
Example Sunset Workflow Triggered By Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 90

Add the following script to script/triggerSunset.js where you installed OpenIDM, invoked when
reconciliation encounters a FOUND situation.

/*
 * Calling 'sunrise' workflow
 */
var map = {
 "_action" : "sunrise",
 "_workflowParams" : {
 "userName" : target.__UID__,
 "system" : "system/xmlfile/account/",
 "time" : source.sunset,
 "toEmail" : "manager@corp.org",
 "fromSender" : "noreply@openidm"
 }
};

openidm.action("workflow/activiti", map);

"LINK"

Add the following schedule to conf/scheduler-reconcile_HR_XML.json where you installed OpenIDM to
invoke the script.

{
 "enabled" : true,
 "type" : "cron",
 "schedule" : "0 08 16 * * ?",
 "invokeService" : "sync",
 "invokeContext" : {
 "action" : "reconcile",
 "mapping" : {
 "name" : "CSV_XML",
 "source" : "system/CSV/persons",
 "target" : "system/xmlfile/account",
 "correlationQuery" : {
 "type" : "text/javascript",
 "source" : "var myarray = [source.uid];var map = {
 'query' : {
 'Equals': {'field' : 'name','values' : myarray}
 }
 };map;"
 },
 "properties" : [
 {
 "source" : "firstname",
 "target" : "firstname"
 },
 {
 "source" : "uid",
 "target" : "name"
 },
 {
 "source" : "lastname",
 "target" : "lastname"
 },
 {

Integrating Business Processes & Workflow
Example Sunset Workflow Triggered By Reconciliation

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 91

 "source" : "email",
 "target" : "email"
 }
],
 "policies" : [
 {
 "situation" : "CONFIRMED",
 "action" : "IGNORE"
 },
 {
 "situation" : "FOUND",
 "action" : {
 "type" : "text/javascript",
 "file" : "script/triggerSunset.js"
 }
 },
 {
 "situation" : "ABSENT",
 "action" : "IGNORE"
 },
 {
 "situation" : "AMBIGUOUS",
 "action" : "IGNORE"
 },
 {
 "situation" : "MISSING",
 "action" : "IGNORE"
 },
 {
 "situation" : "UNQUALIFIED",
 "action" : "IGNORE"
 },
 {
 "situation" : "UNASSIGNED",
 "action" : "IGNORE"
 }
]
 }
 }
}

Using Audit Logs
Audit Log Types

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 92

Chapter 12

Using Audit Logs

OpenIDM auditing can publish and log all relevant system activity to the targets you specify. Auditing
can include data from reconciliation as a basis for reporting, to access details, to activity logs that
capture operations on internal (managed) objects and external (system) objects. Auditing provides
the data for all the relevant reports, including orphan account reports.

The auditing interface allows you to push auditing data to files and to the OpenIDM repository.

12.1. Audit Log Types
This section describes the types of audit log OpenIDM provides.

Access Log

OpenIDM writes messages concerning access to the REST API in this log.

Default file: openidm/audit/access.csv

Activity Log

OpenIDM logs operations on internal (managed) and external (system) objects to this log type.

Entries in the activity log contain identifiers both for the reconciliation or synchronization action
that triggered the activity, and also for the original caller and the relationships between related
actions.

Default file: openidm/audit/activity.csv

Reconciliation Log

OpenIDM logs the results of a reconciliation run, including situations and the resulting actions
taken to this log type. The activity log contains details about the actions, where log entries
display parent activity identifiers, recon/reconID.

Default file: openidm/audit/recon.csv

Where an action happens the context of a higher level business function, the log entry points to a
parent activity for the context. The relationships are hierarchical. For example, a synchronization

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 93

operation could result from scheduled reconciliation for an object type. OpenIDM also logs the top
level root activity with each entry, making it possible to query related activities.

12.2. Audit Log File Formats
This section describes the audit log file formats to help you map these to the reports you generate.

Access Log Fields

Access messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

"action"

Action requested, such as "authenticate"

"ip"

IP address of the client. For access from the local host, this can appear for example as
"0:0:0:0:0:0:0:1%0".

"principal"

Principal requesting the operation, such as "openidm-admin"

"roles"

Roles associated with the principal, such as "[openidm-admin, openidm-authorized]"

"status"

Result of the operation, such as "SUCCESS"

"timestamp"

Time when OpenIDM logged the message, such as "2012-01-10T10:45:42"

Activity Log Fields

Activity messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 94

"action"

Action performed, such as "create". See the section on Event Types for a list.

"activityId"

UUID for the activity corresponding to the UUID of the resource context

"after"

JSON representation of the object resulting from the activity

"before"

JSON representation of the object prior to the activity

"message"

Human readable text about the activity

"objectId"

Object identifier such as "managed/user/DDOE1"

"parentActionId"

UUID of the action leading to the activity

"requester"

Principal requesting the operation

"rev"

Object revision number

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in a
reconciliation message.

"status"

Result of the operation, such as "SUCCESS"

"timestamp"

Time when OpenIDM logged the message, such as "2012-01-10T10:45:42"

Using Audit Logs
Audit Log File Formats

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 95

Reconciliation Log Fields

Reconciliation messages are split into the following fields.

"_id"

UUID for the message object, such as "0419d364-1b3d-4e4f-b769-555c3ca098b0"

"action"

Synchronization action, such as "CREATE". See the section on Actions for a list.

"ambiguousTargetObjectIds"

When the situation is AMBIGUOUS or UNQUALIFIED and OpenIDM cannot distinguish between
more than one target object, OpenIDM logs the identifiers of the objects in this field in comma-
separated format. This makes it possible to figure out what was ambiguous afterwards.

"entryType"

Kind of reconciliation log entry, such as "start", or "summary".

"message"

Human readable text about the reconciliation action

"reconciling"

What OpenIDM is reconciling, "source" for the first phase, "target" for the second phase

"reconId"

UUID for the reconciliation operation, which is the same for all entries pertaining to the
reconciliation run

"rootActionId"

UUID of the root cause for the activity. This matches a corresponding "rootActionId" in an activity
message.

"situation"

The situation encountered. See the section describing sychronization situations for a list.

"sourceObjectId"

UUID for the source object.

Using Audit Logs
Audit Configuration

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 96

"status"

Result of the operation, such as "SUCCESS"

"targetObjectId"

UUID for the target object

"timestamp"

Time when OpenIDM logged the message, such as "2012-01-10T10:45:42".

12.3. Audit Configuration
OpenIDM exposes the audit logging configuration under http://host:port/openidm/config/audit for the
REST API, and in the file conf/audit.json where you installed OpenIDM. The default conf/audit.json file
contains the following object.

{
 "eventTypes": {
 "activity": {
 "filter": {
 "actions": [
 "create",
 "update",
 "delete",
 "patch",
 "action"
]
 }
 },
 "recon": {}
 },
 "logTo": [
 {
 "logType": "csv",
 "location": "audit",
 "recordDelimiter": ";"
 },
 {
 "logType": "repository"
 }
]
}

12.3.1. Event Types
The eventTypes configuration specifies what events OpenIDM writes to audit logs. OpenIDM supports
two eventTypes: activity for the activity log, and recon for the reconciliation log. The filter for actions
under activity logging shows the actions on managed or system objects for which OpenIDM writes to
the activity log.

Using Audit Logs
Event Types

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 97

The filter actions list lets you configure under what conditions OpenIDM writes to the activity log.

read

When an object is read by using its identifier

create

When an object is created.

update

When an object is updated.

delete

When an object is deleted.

patch

When an object is partially modified.

query

When a query is performed on an object.

action

When an action is performed on an object.

The logTo list lets you define where OpenIDM writes the log.

csv

Write to a comma-separated variable format file in the location specified relative to the directory
where you installed OpenIDM.

Audit file names are fixed, access.csv, activity.csv, and recon.csv.

repository

Write to the OpenIDM database repository.

OpenIDM stores entries under the /openidm/repo/audit/ context, such entries appear as audit/
access/_id, audit/activity/_id, and audit/recon/_id, where the _id is the UUID of the entry such as
0419d364-1b3d-4e4f-b769-555c3ca098b0.

In the OrientDB repository, OpenIDM stores records in audit_activity, audit_activity, and
audit_recon tables.

In a JDBC repository, OpenIDM stores records in auditaccess, auditactivity, and auditrecon tables.

Using Audit Logs
Generating Reports

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 98

12.4. Generating Reports
When generating reports from audit logs, you can correlate information from activity and
reconciliation logs by matching the "rootActionId" on entries in both logs.

The following MySQL query shows a join of the audit activity and audit reconciliation tables using
root action ID values.

mysql> select distinct auditrecon.activity,auditrecon.sourceobjectid,
 auditrecon.targetobjectid,auditactivity.activitydate,auditrecon.status
 from auditactivity inner join auditrecon
 auditactivity.rootactionid=auditrecon.rootactionid
 where auditrecon.activity is not null group by auditrecon.sourceobjectid;
+----------+--------------------------+----------------------+---------------------+---------+
| activity | sourceobjectid | targetobjectid | activitydate | status |
+----------+--------------------------+----------------------+---------------------+---------+
CREATE	system/xmlfile/account/1	managed/user/juser	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/2	managed/user/ajensen	2012-01-17T07:59:12	SUCCESS
CREATE	system/xmlfile/account/3	managed/user/bjensen	2012-01-17T07:59:12	SUCCESS
+----------+--------------------------+----------------------+---------------------+---------+
3 rows in set (0.00 sec)

Sending Email

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 99

Chapter 13

Sending Email

This chapter shows you how to configure the outbound email service, so that you can send email
through OpenIDM either by script or through the REST API.

Procedure 13.1. To Set Up Outbound Email

The outbound email service relies on a configuration object to identify the email account used to send
messages.

1. Shut down OpenIDM.

2. Copy the sample configuration to openidm/conf.
$ cd /path/to/openidm/
$ cp samples/misc/external.email.json conf/

3. Edit external.email.json to reflect the account used to send messages.

{
 "host" : "smtp.example.com",
 "port" : "25",
 "username" : "openidm",
 "password" : "secret12",
 "mail.smtp.auth" : "true",
 "mail.smtp.starttls.enable" : "true"
}

OpenIDM encrypts the password you provide.

Follow these hints when editing the configuration.

"host"

SMTP server host name or IP address. This can be "localhost" if the server is on the same
system as OpenIDM.

"port"

SMTP server port number such as 25, or 587

Sending Email
Sending Mail Over REST

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 100

"username"

Mail account user name needed when "mail.smtp.auth" : "true"

"password"

Mail account user password needed when "mail.smtp.auth" : "true"

"mail.smtp.auth"

If "true", use SMTP authentication

"mail.smtp.starttls.enable"

If "true", use TLS

"from"

Optional default From: address

4. Start up OpenIDM.

5. Check that the email service is active.
-> scr list
...
[6] [active] org.forgerock.openidm.external.email
...

13.1. Sending Mail Over REST
Although you are more likely to send mail from a script in production, you can send email using the
REST API by sending an HTTP POST to /openam/external/email in order to test that your configuration
works. You pass the message parameters as POST parameters, URL encoding the content as
necessary.

The following example sends a test email using the REST API.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST
 "http://localhost:8080/openidm/external/email?
 _from=openidm@example.com&_to=admin@example.com&
 _subject=Test&_body=Test"

Sending Email
Sending Mail From a Script

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 101

13.2. Sending Mail From a Script
You can send email from using the resource API functions with the external/email context, as in the
following example, where params is an object containing the POST parameters.

var params = new Object();
params._from = "openidm@example.com";
params._to = "admin@example.com";
params._cc = "wally@example.com,dilbert@example.com";
params._subject = "OpenIDM recon report";
params._type = "text/html";
params._body = "<html><body><p>Recon report follows...</p></body></html>";

openidm.action("external/email", params);

OpenIDM supports the following POST parameters.

_from

Sender mail address

_to

Comma-separated list of recipient mail addresses

_cc

Optional comma-separated list of copy recipient mail addresses

_bcc

Optional comma-separated list of blind copy recipient mail addresses

_subject

Email subject

_body

Email body text

_type

Optional MIME type. One of "text/plain", "text/html", or "text/xml".

OpenIDM Project Best Practices
Implementation Phases

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 102

Chapter 14

OpenIDM Project Best Practices

This chapter lists points to check when implementing an identity management solution with
OpenIDM.

14.1. Implementation Phases
Any identity management project should follow a set of well defined phases, where each phase
defines discrete deliverables. The phases take the project from initiation to finally going live with a
tested solution.

14.1.1. Initiation
The project's initiation phase involves identifying and gathering project background, requirements,
and goals at a high level. The deliverable for this phase is a statement of work or a mission statement.

14.1.2. Definition
In the definition phase, you gather more detailed information on existing systems, determine
how to integrate, describe account schemas, procedures, and other information relevant to the
OpenIDM deployment. The deliverable for this phase is one or more documents that define detailed
requirements for the project, and that cover project definition, the business case, use cases to solve,
and functional specifications.

The definition phase should capture at least the following.

User Administration and Management

Procedures for managing users and accounts, who manages users, what processes look like for
joiners, movers and leavers, and what is required of OpenIDM to manage users

Password Management and Password Synchronization

Procedures for managing account passwords, password policies, who manages passwords, and
what is required of OpenIDM to manage passwords

Security Policy

What security policies defines for users, accounts, passwords, and access control

OpenIDM Project Best Practices
Design

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 103

Target Systems

Target systems and resources with which OpenIDM must integrate. Information such as schema,
attribute mappings and attribute transformation flow, credentials and other integration specific
information.

Entitlement Management

Procedures to manage user access to resources, individual entitlements, grouping provisioning
activities into encapsulated concepts such as roles and groups

Synchronization and Data Flow

Detailed outlines showing how identity information flows from authoritative sources to target
systems, attribute transformations required

Interfaces

How to secure the REST, user and file-based interfaces, and to secure the communication
protocols involved

Auditing and Reporting

Procedures for auditing and reporting, including who takes responsibility for auditing and
reporting, and what information is aggregated and reported. Characteristics of reporting engines
provided, or definition of the reporting engine to be integrated.

Technical Requirements

Other technical requirements for the solution such as how to maintain the solution in terms
of monitoring, patch management, availability, backup, restore and recovery process. This
includes any other components leveraged such as a ConnectorServer and plug-ins for password
synchronization on Active Directory, or OpenDJ.

14.1.3. Design
This phase focuses on solution design including on OpenIDM and other components. The deliverables
for this phase are the architecture and design documents, and also success criteria with detailed
descriptions and test cases to verify when project goals have been met.

14.1.4. Build
This phase builds and tests the solution prior to moving the solution into production.

14.1.5. Production
This phase deploys the solution into production until an application steady state is reached and
maintenance routines and procedures can be applied.

Troubleshooting
OpenIDM Stopped in Background

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 104

Chapter 15

Troubleshooting

When things are not working check this chapter for tips and answers.

15.1. OpenIDM Stopped in Background
When you start OpenIDM in the background without having disabled the text console, the job can
stop immediately after startup.
$./startup.sh &
[2] 346
$./startup.sh
Using OPENIDM_HOME: /path/to/openidm
Using OPENIDM_OPTS: -Xmx1024m
Using LOGGING_CONFIG:
 -Djava.util.logging.config.file=/path/to/openidm/conf/logging.properties
Using boot properties at /path/to/openidm/conf/boot/boot.properties
->

[2]+ Stopped ./startup.sh

To resolve this problem, make sure you remove openidm/bundle/org.apache.felix.shell.tui-1.4.1.jar
before starting OpenIDM, and also remove Felix cache files in openidm/felix-cache/.

15.2. Internal Server Error During Reconciliation or
Synchronization
You might see an error message such as the following returned from reconciliation or
synchronization.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 Cowardly refusing to perform reconciliation with an
 empty source object set: Cowardly refusing to perform
 reconciliation with an empty source object set"
}

Troubleshooting
The scr list Command Shows Sync Service As Unsatisfied

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 105

This error can be misleading. This usually means the connector is not able to communicate with the
target source.

Check the settings for your connector. For example, with the XML connector you get this error if the
filename for the source is invalid. With the LDAP connector, you can get this error if your connector
cannot contact the target LDAP server.

15.3. The scr list Command Shows Sync Service As
Unsatisfied
You might encounter this message in the logs.

WARNING: Loading configuration file /path/to/openidm/conf/sync.json failed
org.forgerock.openidm.config.InvalidException:
 Configuration for org.forgerock.openidm.sync could not be parsed and may not
 be valid JSON : Unexpected character ('}' (code 125)): expected a value
 at [Source: java.io.StringReader@3951f910; line: 24, column: 6]
 at org.forgerock.openidm.config.crypto.ConfigCrypto.parse...
 at org.forgerock.openidm.config.crypto.ConfigCrypto.encrypt...
 at org.forgerock.openidm.config.installer.JSONConfigInstaller.setConfig...

This indicates a syntax error in openidm/conf/sync.json. After fixing your configuration, change to the /
path/to/openidm/ directory, and use the cli.sh validate command to check that your configuration files
are valid.
$ cd /path/to/openidm ; ./cli.sh validate
Using boot properties at /path/to/openidm/conf/boot/boot.properties
...
[Validating] Load JSON configuration files from:
[Validating] /path/to/openidm/conf
[Validating] audit.json SUCCESS
[Validating] authentication.json SUCCESS
[Validating] managed.json SUCCESS
[Validating] provisioner.openicf-xml.json SUCCESS
[Validating] repo.orientdb.json SUCCESS
[Validating] router.json SUCCESS
[Validating] scheduler-reconcile_systemXmlAccounts_managedUser.json SUCCESS
[Validating] sync.json SUCCESS

15.4. JSON Parsing Error
You might encounter this error message in the logs.

"Configuration for org.forgerock.openidm.provisioner.openicf could not be
 parsed and may not be valid JSON : Unexpected character ('}' (code 125)):
 was expecting double-quote to start field name"

Troubleshooting
System Not Available

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 106

The error message usually points precisely to the point where the JSON file has the syntax problem.
The error above was caused by a excess comma in the JSON file, {"attributeName":{},{},}. The second
comma is too much.

The situation usually results in the service the JSON file configures being left in the unsatisfied state.

After fixing your configuration, change to the /path/to/openidm/ directory, and use the cli.sh validate
command to check that your configuration files are valid.

15.5. System Not Available
OpenIDM throws the following error as a result of a reconciliation where the source systems
configuration can not be found.

{
 "error": "Conflict",
 "description": "Internal Server Error:
 org.forgerock.openidm.sync.SynchronizationException:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 org.forgerock.openidm.objset.ObjectSetException:
 System: system/HR/account is not available.:
 System: system/HR/account is not available."
}

This error occurs when the "name" property value in provisioner.resource.json is changed from HR to
something else.

The same error also occurs when a provisioner configuration fails to load due to misconfiguration, or
when the path to the data file for a CSV or XML connector is incorrectly set.

15.6. Bad Connector Host Reference in Provisioner
Configuration
You might see the following error when a provision configuration loads.

Wait for meta data for config org.forgerock.openidm.provisioner.openicf-scriptedsql

In this case the configuration fails to load because some information is missing. One possible cause is
a wrong value for connectorHostRef in the provisioner configuration file.

For local Java connector servers, the following rules apply.

• If the connector .jar is installed as a bundle under openidm/bundle, then the value must be
"connectorHostRef" : "osgi:service/org.forgerock.openicf.framework.api.osgi.ConnectorManager",.

Troubleshooting
Missing Name Attribute

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 107

• If the connector .jar is installed as a connector under openidm/connectors, then the value must be
"connectorHostRef" : "#LOCAL",.

15.7. Missing Name Attribute
In this case, the situation in the audit recon log shows "NULL".

A missing name attribute error, followed by an IllegalArgumentException, points to misconfiguration of
the correlation rule, with the correlation query pointing to the external system. Such queries usually
reference the "name" field which, if empty, leads to the error below.

Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.commons.AttributeInfoHelper build
SEVERE: Failed to build name attribute out of [null]
Jan 20, 2012 1:59:58 PM
 org.forgerock.openidm.provisioner.openicf.impl.OpenICFProvisionerService query
SEVERE: Operation [query, system/ad/account] failed with Exception on system
 object: java.lang.IllegalArgumentException: Attribute value must be an
 instance of String.
Jan 20, 2012 1:59:58 PM org.forgerock.openidm.router.JsonResourceRouterService
 handle
WARNING: JSON resource exception
org.forgerock.json.resource.JsonResourceException: IllegalArgumentException
 at org.forgerock.openidm.provisioner....OpenICFProvisionerService.query...
 at org.forgerock.openidm.provisioner.....OpenICFProvisionerService.handle...
 at org.forgerock.openidm.provisioner.impl.SystemObjectSetService.handle...
 at org.forgerock.json.resource.JsonResourceRouter.handle...

Check your correlationQuery. Another symptom of a broken correlationQuery is that the audit recon log
shows a situation of "NULL", and no onCreate, onUpdate or similar scripts are executed.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 108

Appendix A. File Layout

When you unpack and start OpenIDM 2.0.3, you create the following files and directories.

openidm/audit/

OpenIDM audit log directory default location, created at run time as configured in openidm/conf/
audit.json

openidm/audit/access.csv

Default OpenIDM access audit log

openidm/audit/activity.csv

Default OpenIDM activity audit log

openidm/audit/recon.csv

Default OpenIDM reconciliation audit log

openidm/bin/

OpenIDM core libraries

openidm/bundle/

OSGi bundles and modules required by OpenIDM. Upgrade can install new and upgraded bundles
here.

openidm/bundle/json-crypto-cli-1.1.0.jar

Utility to encrypt and decrypt values in JSON objects

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 109

openidm/cli.sh

Management commands for operations such as validating configuration files

openidm/conf/

OpenIDM configuration files, including .properties files and JSON views. You can also access
JSON views through the REST interface.

openidm/conf/audit.json

Audit event publisher configuration view

openidm/conf/authentication.json

Authentication configuration view for access to the REST API

openidm/conf/boot/boot.properties

OpenIDM bootstrap properties

openidm/conf/config.properties

Felix and OSGi bundle configuration properties

openidm/conf/jetty.xml

Jetty configuration controlling access to the REST interface

openidm/conf/logging-config.xml

Experimental log configuration

openidm/conf/logging.properties

OpenIDM log configuration properties

openidm/conf/managed.json

Managed object configuration view

openidm/conf/provisioner.openicf-xml.json

Sample XML connector configuration view. After evaluation, replace this with your own
connector configurations.

Each connector instance has a corresponding provisioner.openicf-name.json configuration file. Each
file specifies connector configuration details such as network information, credentials, attribute
schema, and which OpenICF features are supported.

openidm/conf/repo.orientdb.json

OrientDB internal repository configuration view

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 110

openidm/conf/router.json

Router service configuration view

openidm/conf/scheduler-reconcile_systemXmlAccounts_managedUser.json

Sample XML scheduler configuration view. After evaluation, replace this with your own
configurations.

openidm/conf/sync.json

Sample XML synchronization configuration view. After evaluation, replace this with your
configuration to describe all mappings used by OpenIDM for synchronization and reconciliation.

openidm/conf/system.properties

System configuration properties used when starting OpenIDM services

openidm/connectors/

OpenICF connector libraries. OSGi enabled connector libraries can also be stored in openidm/
bundle/.

openidm/db/

Internal repository files, including both OrientDB files and data definition language scripts for
JDBC based repositories such as MySQL

openidm/logs/

OpenIDM service log directory

openidm/logs/openidm0.log.*

OpenIDM service log files as configured in openidm/conf/logging.properties

openidm/samples/

OpenIDM sample configurations

openidm/sample/misc/

Sample configuration files

openidm/sample/provisioners/

Sample connector configuration files

openidm/sample/sample1/

XML file connector sample installed with OpenIDM

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 111

openidm/sample/sample2/

OpenDJ connector sample with no back link

openidm/sample/sample2b/

OpenDJ connector sample with back link

openidm/sample/sample3/

Scripted SQL connector sample for MySQL

openidm/sample/sample4/

CSV connector sample

openidm/sample/sample5/

LDAP to OpenIDM to Active Directory attribute flow sample using XML resources rather than
actual directories

openidm/sample/sample6/

LiveSync sample for use with one or two LDAP servers

openidm/sample/schedulers/

Sample scheduler configuration files

openidm/sample/security/

Sample key store, trust store, and certificates

openidm/script/

OpenIDM location for JavaScript files referenced in the configuration

openidm/script/router-authz.js

Default authorization policy script

openidm/security/

OpenIDM security configuration, key store, and trust store

openidm/shutdown.sh

Script to shutdown OpenIDM services based on the process identifier

openidm/startup.bat

Script to start OpenIDM services on Windows

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 112

openidm/startup.sh

Script to start OpenIDM services

openidm/workflow/

OpenIDM location for BPMN 2.0 workflows and .bar files

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 113

Appendix B. Ports Used

By default the OpenIDM 2.0.3 Jetty configuration in openidm/conf/jetty.xml specifies the following
ports.

8080

HTTP access to the REST API, requiring OpenIDM authentication. This port is not secure,
exposing clear text passwords and all data that is not encrypted. This port is therefore not
suitable for production use.

8443

HTTPS access to the REST API, requiring OpenIDM authentication

8444

HTTPS access to the REST API, requiring SSL mutual authentication. Clients presenting
certificates found in the trust store under openidm/security/ are granted access to the system.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 114

Appendix C. Data Models & Objects Reference

OpenIDM allows you to customize of a variety of objects that can be addressed via a URL or URI, and
that have a common set of functions that OpenIDM can perform on them such as CRUD, query, and
action.

Depending on how you intend to use them, different objects are appropriate.

Table C.1. OpenIDM Objects

Object Type Intended Use Special Functionality
Managed objects Serve as targets and sources for

synchronization, and to build virtual
identities.

Provide appropriate auditing,
script hooks, declarative
mappings and so forth
in addition to the REST
interface.

Configuration objects Ideal for look-up tables or other custom
configuration, which can be configured
externally like any other system configuration.

Adds file view, REST
interface, and so forth

Repository objects The equivalent of arbitrary database table
access. Appropriate when it is appropriate to
manage data purely through the underlying
data store or repository API.

Persistence and API access

System objects Representation of target resource objects,
such as accounts, but also resource objects
such as groups.

Audit objects Houses audit data in the OpenIDM internal
repository.

Links Defines a relation between two objects.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 115

C.1. Accessing Objects
OpenIDM's uniform programming model means that all objects are queried and manipulated in the
same way from your scripts using the Resource API. The URL or URI used to identify the target
object for an operation depends on the object type. Also additional functionality is available for
different types of object, known as Resource Sets.

For example, you get managed objects, configuration objects, and repository objects in the following
way using the Resource API. See the section on URI Scheme for information on how to construct and
object ID.

val = openidm.read("managed/organization/mysampleorg")

val = openidm.read("config/custom/mylookuptable")

val = openidm.read("repo/custom/mylookuptable")

You update entire objects with the update() function.

openidm.update("managed/organization/mysampleorg", mymap)

openidm.update("config/custom/mylookuptable", mymap)

openidm.update("repo/custom/mylookuptable", mymap)

The create(), delete(), and query() functions work in similar fashion.

To get a managed object through the REST API, depending on your security settings and
authentication configuration, perform an HTTP GET on a similar URL, such as https://localhost:8443/
openidm/managed/organization/mysampleorg.

By default, the HTTP GET returns a JSON representation of the object. See the REST API Reference
appendix for details.

C.2. Managed Objects
A managed object in OpenIDM is an object which represents the identity-related data managed by
OpenIDM. Managed objects are stored by OpenIDM in its data store. All managed objects are JSON-
based data structures.

C.2.1. Managed Object Schema

Managed objects have an associated schema to enforce a specific data structure. Schema is specified
using the JSON Schema specification. This is currently an Internet-Draft, with implementations in
multiple programming languages.

http://tools.ietf.org/html/draft-zyp-json-schema-03

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 116

C.2.1.1. Managed Object Reserved Properties

Top-level properties in a managed object that begin with an underscore (_) are reserved by
OpenIDM for internal use, and are not explicitly part of its schema. Internal properties are read-only,
and are ignored when provided by the REST API client.

The following properties exist for all managed objects in OpenIDM.

_id

string

The unique identifier for the object. This value forms a part of the managed object's URI.

_rev

string

The revision of the object. This is the same value that is exposed as the object's ETag through
the REST API. The content of this attribute is not defined. No consumer should make any
assumptions of its content beyond equivalence comparison. This attribute may be provided by the
underlying data store.

_schema_id

string

The a reference to the schema object that the managed object is associated with.

_schema_rev

string

The revision of the schema that was used for validation when the object was last stored.

C.2.1.2. Managed Object Schema Validation

Schema validation is performed unequivocally whenever an object is stored, and conditionally
whenever an object is retrieved from the data store and exhibits a _schema_rev value that differs
from the _rev of the schema that the OpenIDM instance currently has for that managed object type.
Whenever a schema validation is performed, the _schema_rev of the object is updated to contain the
_rev value of the current schema.

C.2.1.3. Managed Object Derived Properties

Properties can be defined to be strictly derived from other properties within the object. This allows
computed and composite values to be created in the object. Whenever an object undergoes a change,
all derived properties are recomputed. The value of derived properties are stored in the data store,
and are not recomputed upon retrieval.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 117

C.2.2. Data Consistency

Single-object operations shall be consistent within the scope of the operation performed, limited by
capabilities of the underlying data store. Bulk operations shall not have any consistency guarantees.
OpenIDM does not expose any transactional semantics in the managed object access API.

All access through the REST API uses the ETag and associated conditional headers: If-Match, If-None-
Match. In operations that modify model objects, conditional headers are mandatory.

C.2.3. Managed Object Triggers

Triggers are user-definable functions that validate or modify object or property state.

C.2.3.1. State Triggers

Managed objects are resource-oriented. A set of triggers is defined to intercept the supported request
methods on managed objects. Such triggers are intended to perform authorization, redact, or modify
objects before the action is performed. The object being operated on is in scope for each trigger,
meaning that the object is retrieved by the data store before the trigger is fired.

If retrieval of the object fails, the failure occurs before any trigger is called. Triggers are executed
before any optimistic concurrency mechanisms are invoked. The reason for this is to prevent a
potential attacker from getting information about an object (including its presence in the data store)
before authorization is applied.

onCreate

Called upon a request to create a new object. Throwing an exception causes the create to fail.

onRead

Called upon a request to retrieve a whole object or portion of an object. Throwing an exception
causes the object to not be included in the result. This method is also called when lists of objects
are retrieved via requests to its container object; in this case, only the requested properties are
included in the object. Allows for uniform access control for retrieval of objects, regardless of the
method in which they were requested.

onUpdate

Called upon a request to store an object. The "old" and "new" objects are in-scope for the trigger.
The "old" object represents a complete object as retrieved from the data store. The trigger
can elect to change "new" object properties. If as a result of the trigger the object's "old" and
"new" values are identical (that is, update is reverted), the update ends prematurely, though
successfully. Throwing an exception causes the update to fail.

onDelete

Called upon a request to delete an object. Throwing an exception causes the deletion to fail.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 118

C.2.3.2. Object Storage Triggers
An object-scoped trigger applies to an entire object. Unless otherwise specified, the object itself is in
scope for the trigger.

onValidate

Validates an object prior to its storage into the data store. Throws an exception in the event of a
validation failure.

onRetrieve

Called when an object is retrieved from the data store. Typically used to transform an object after
it has been retrieved (for example decryption, JIT data conversion).

onStore

Called just prior to when an object is stored into the data store. Typically used to transform an
object just prior to its storage (for example, encryption).

C.2.3.3. Property Storage Triggers
A property-scoped trigger applies to a specific property within an object. Only the property itself is
in scope for the trigger—no other properties in the object should be accessed during execution of the
trigger. Unless otherwise specified, the order of execution of property-scoped triggers is intentionally
left undefined.

onValidate

Validates a given property value after its retrieval from and prior to its storage into the data
store. Throws an exception in the event of a validation failure.

onRetrieve

Called after an object is retrieved from the data store. Typically used to transform a given
property after its object's retrieval.

onStore

Called prior to when an object is stored into the data store. Typically used to transform a given
property prior to its object's storage.

C.2.3.4. Storage Trigger Sequences
The triggers are executed in the following orders.

Object Retrieval Sequence

1. Retrieve the raw object from the data store

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 119

2. Call object onRetrieve trigger

3. Per-property within the object (order undefined):

• Call property onRetrieve trigger

• Perform schema validation if _schema_rev does not match (see the Schema Validation section)

Object Storage Sequence

1. Per-property within the object (order undefined):

• Call property onValidate trigger

• Call object onValidate trigger

• Perform schema validation (see the Schema Validation section)

2. Per-property trigger within the object (order undefined):

• Call property onStore trigger

• Call object onStore trigger

• Store the object with any resulting changes to the data store

C.2.4. Managed Object Encryption

Sensitive object properties can be encrypted prior to storage, typically through the property onStore
trigger. The trigger has access to configuration data, which can include arbitrary attributes that you
define, such as a symmetric encryption key. Such attributes can be decrypted during retrieval from
the data store through the property onRetrieve trigger.

C.2.5. Managed Object Configuration

Configuration of managed objects is provided through an array of managed object configuration
objects.

{
 "objects": [managed-object-config object, ...]
}

objects

array of managed-object-config objects, required

Specifies the objects that the managed object service manages.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 120

Managed-Object-Config Object Properties

Specifies the configuration of each managed object.

{
 "name" : string,
 "schema" : json-schema object,
 "onCreate" : script object,
 "onRead" : script object,
 "onUpdate" : script object,
 "onDelete" : script object,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "properties": [property-configuration object, ...]
}

name

string, required

The name of the managed object. Used to identify the managed object in URIs and identifiers.

schema

json-schema object, optional

The schema to use to validate the structure and content of the managed object. The schema-
object format is specified by the JSON Schema specification.

onCreate

script object, optional

A script object to trigger when the creation of an object is being requested. The object to be
created is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, the create aborts with an exception.

onRead

script object, optional

A script object to trigger when the read of an object is being requested. The object being read
is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, the read aborts with an exception.

onUpdate

script object, optional

A script object to trigger when an update to an object is requested. The old value of the object
being updated is provided in the root scope as an oldObject property. The new value of the object

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 121

being updated is provided in the root scope as a newObject property. The script may change the
newObject. If an exception is thrown, the update aborts with an exception.

onDelete

script object, optional

A script object to trigger when the deletion of an object is being requested. The object being
deleted is provided in the root scope as an object property. If an exception is thrown, the deletion
aborts with an exception.

onValidate

script object, optional

A script object to trigger when the object requires validation. The object to be validated is
provided in the root scope as an object property. If an exception is thrown, the validation fails.

onRetrieve

script object, optional

A script object to trigger once an object is retrieved from the repository. The object that was
retrieved is provided in the root scope as an object property. The script may change the object. If
an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when an object is about to be stored in the repository. The object to be
stored is provided in the root scope as an object property. The script may change the object. If an
exception is thrown, then object storage fails.

properties

array of property-config objects, optional

A list of property specifications.

Script Object Properties

{
 "type" : "text/javascript",
 "source": string
 }

type

string, required

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 122

Specifies the type of script to be executed. Currently, only "text/javascript" is supported.

source, file

string, required (only one, source or file is required)

Specifies the source code of the script (key word script), or the pointer to the file containing the
script (key word file), to be executed.

Property Config Properties

{
 "name" : string,
 "onValidate": script object,
 "onRetrieve": script object,
 "onStore" : script object,
 "encryption": property-encryption object
}

name

string, required

The name of the property being configured.

onValidate

script object, optional

A script object to trigger when the property requires validation. The property to be validated is
provided in the root scope as the property property. If an exception is thrown, the validation fails.

onRetrieve

script object, optional

A script object to trigger once a property is retrieved from the repository. The property that
was retrieved is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object retrieval fails.

onStore

script object, optional

A script object to trigger when a property is about to be stored in the repository. The property
to be stored is provided in the root scope as the property property. The script may change the
property value. If an exception is thrown, then object storage fails.

encryption

property-encryption object, optional

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 123

Specifies the configuration for encryption of the property in the repository. If omitted or null, the
property is not encrypted.

Property Encryption Object

{
 "cipher": string,
 "key" : string
}

cipher

string, optional

The cipher transformation used to encrypt the property. If omitted or null, the default cipher of
"AES/CBC/PKCS5Padding" is used.

key

string, required

The alias of the key in the OpenIDM cryptography service keystore used to encrypt the property.

C.2.6. Custom Managed Objects

Managed objects in OpenIDM are inherently fully user definable and customizable. Like all OpenIDM
objects, managed objects can maintain relationships to each other in the form of links. Managed
objects are intended for use as targets and sources for synchronization operations to represent
domain objects, and to build up virtual identities. The name comes from the intention that OpenIDM
stores and manages these objects, as opposed to system objects that are present in external systems.

OpenIDM can synchronize and map directly between external systems (system objects), without
storing intermediate managed objects. Managed objects are appropriate, however, as a way to cache
the data—for example, when mapping to multiple target systems, or when decoupling the availability
of systems—to more fully report and audit on all object changes during reconciliation, and to build
up views that are different from the original source, such transformed and combined or virtual views.
Managed objects can also be allowed to act as an authoritative source if no other appropriate source
is available.

Other object types exist for other settings that should be available to a script, such as configuration
or look-up tables that do not need audit logging.

C.2.6.1. Setting Up a Managed Object Type

To set up a managed object, you declare the object in the conf/managed.json file where OpenIDM is
installed. The following example adds a simple foobar object declaration after the user object type.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 124

{
 "objects": [
 {
 "name": "user"
 },
 {
 "name": "foobar"
 }
]
}

C.2.6.2. Manipulating Managed Objects Declaratively
By mapping an object to another object, either an external system object or another internal managed
object, you automatically tie the object life cycle and property settings to the other object. See the
chapter on Configuring Synchronization for details.

C.2.6.3. Manipulating Managed Objects Programmatically
You can address managed objects as resources using URLs or URIs with the managed/ prefix. This
works whether you address the managed object internally as a script running in OpenIDM or
externally through the REST interface.

You can use all resource API functions in script objects for create, read, update, delete operations,
and also for arbitrary queries on the object set, but not currently for arbitrary actions. See the
Scripting Reference appendix for details.

OpenIDM supports concurrency through a multi version concurrency control (MVCC) mechanism. In
other words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans as defined in JSON.

C.2.6.3.1. Creating Objects

The following script example creates an object type.

openidm.create("managed/foobar/myidentifier", mymap)

C.2.6.3.2. Updating Objects

The following script example updates an object type.
var expectedRev = origMap._rev
openidm.update("managed/foobar/myidentifier", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the object

http://www.json.org

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 125

concurrently, OpenIDM rejects the update, and you must either retry or inspect the concurrent
modification.

C.2.6.3.3. Patching Objects

You can partially update an object using a patch, which changes only the specified properties of the
object. OpenIDM supports patch by query, so the caller need not know the identifier of the object to
change.
$ curl
 --header "X-OpenIDM-Username: openidm-admin"
 --header "X-OpenIDM-Password: openidm-admin"
 --request POST -d '[{"replace":"/adPassword","value": "Password"}]'
 http://localhost:8080/openidm/managed/user?_action=patch&_query-id=for-username&uid=DDOE

For the syntax on how to formulate the query _query-id=for-username&uid=DDOE see Section C.2.6.3.6,
"Querying Object Sets".

C.2.6.3.4. Deleting Objects

The following script example deletes an object type.
var expectedRev = origMap._rev
openidm.delete("managed/foobar/myidentifier", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the
object concurrently, OpenIDM rejects deletion, and you must either retry or inspect the concurrent
modification.

C.2.6.3.5. Reading Objects

The following script example reads an object type.

val = openidm.read("managed/foobar/myidentifier")

C.2.6.3.6. Querying Object Sets

The following script example queries object type instances.

var params = {
 "_query-id": "my-custom-query-id",
 "mycustomtoken": "samplevalue"
};
val = openidm.query("managed/foobar", params);

The example sets up a query with ID my-custom-query-id. The query definition (not shown) is found
in the repository configuration. The query definition includes the parameter mycustomtoken for token
substitution.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 126

An example for a query can be found in chapter Managed Object as Correlation Query Target .

C.2.7. Accessing Managed Objects Through the REST API

OpenIDM exposes all managed object functionality through the REST API unless you configure a
policy to prevent such access. In addition to the common REST functionality of create, read, update,
delete, patch, and query, the REST API also supports patch by query. See the REST API Reference
appendix for details.

OpenIDM requires authentication to access the REST API. Authentication configuration is shown in
openidm/conf/authentication.json. The default authorization filter script is openidm/script/router-authz.js.

C.3. Configuration Objects
OpenIDM provides an extensible configuration to allow you to leverage regular configuration
mechanisms.

Unlike native OpenIDM configuration, which OpenIDM interprets automatically and can start new
services, OpenIDM stores custom configuration objects and makes them available to your code
through the API.

See the chapter on Configuration Options for an introduction to standard configuration objects.

C.3.1. When To Use Custom Configuration Objects

Configuration objects are ideal for metadata and settings that need not be included in the data to
reconcile. In other words, use configuration objects for data that does not require audit log, and does
not serve directly as a target or source for mappings.

Although you can set and manipulate configuration objects both programmatically and also manually,
configuration objects are expected to change slowly, perhaps through a mix of both manual file
updates and also programmatic updates. To store temporary values that can change frequently and
that you do not expect to be updated by configuration file changes, custom repository objects can be
more appropriate.

C.3.2. Custom Configuration Object Naming Conventions

By convention custom configuration objects are added under the reserved context, config/custom.

You can choose any name under config/context. Be sure, however, to choose a value for context that
does not clash with future OpenIDM configuration names.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 127

C.3.3. Mapping Configuration Objects To Configuration Files

If you have not disabled the file based view for configuration, you can view and edit all configuration
including custom configuration in openidm/conf/*.json files. The configuration maps to a file named
context-config-name.json, where context for custom configuration objects is custom by convention, and
config-name is the configuration object name. A configuration object named escalation thus maps to a
file named conf/custom-escalation.json.

OpenIDM detects and automatically picks up changes to the file.

OpenIDM also applies changes made through APIs to the file.

By default, OpenIDM stores configuration objects in the repository. The file view is an added
convenience aimed to help you in the development phase of your project.

C.3.4. Configuration Objects File & REST Payload Formats

By default, OpenIDM maps configuration objects to JSON representations.

OpenIDM represents objects internally in plain, native types like maps, lists, strings, numbers,
booleans, null. OpenIDM constrains the object model to simple types so that mapping objects to
external representations is trivial.

The following example shows a representation of a configuration object with a look-up map.
{
 "CODE123" : "ALERT",
 "CODE889" : "IGNORE"
}

In the JSON representation, maps are represented with braces ({ }), and lists are represented with
brackets ([]). Objects can be arbitrarily complex, as in the following example.
{
 "CODE123" : {
 "email" : ["sample@sample.com", "john.doe@somedomain.com"],
 "sms" : ["555666777"]
 }
 "CODE889" : "IGNORE"
}

C.3.5. Accessing Configuration Objects Through the REST API

You can list all available configuration objects, including system and custom configurations, using an
HTTP GET on /openidm/config.

The _id property in the configuration object provides the link to the configuration details with an
HTTP GET on /openidm/config/id-value. By convention, the id-value for a custom configuration object
called escalation is custom/escalation.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 128

OpenIDM supports REST mappings for create, read, update, and delete of configuration objects.
Currently OpenIDM does not support patch and custom query operations for configuration objects.

C.3.6. Accessing Configuration Objects Programmatically

You can address configuration objects as resources using the URL or URI config/ prefix both
internally and also through the REST interface. The resource API provides script object functions for
create, read, update, and delete operations.

OpenIDM supports concurrency through a multi version concurrency control mechanism. In other
words, each time an object changes, OpenIDM assigns it a new revision.

Objects can be arbitrarily complex as long as they use supported types, such as maps, lists, numbers,
strings, and booleans.

C.3.7. Creating Objects

The following script example creates an object type.

openidm.create("config/custom/myconfig", mymap)

The following script example updates an object type.
var expectedRev = origMap._rev
openidm.update("managed/custom/myconfig", expectedRev, mymap)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the object
concurrently, OpenIDM rejects the update, and you must either retry or inspect the concurrent
modification.

C.3.9. Deleting Objects

The following script example deletes an object type.
var expectedRev = origMap._rev
openidm.delete("config/custom/myconfig", expectedRev)

The MVCC mechanism requires that expectedRev be set to the expected revision of the object to
update. You obtain the revision from the object's _rev property. If something else changes the
object concurrently, OpenIDM rejects deletion, and you must either retry or inspect the concurrent
modification.

C.3.10. Reading Objects

The following script example reads an object type.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 129

val = openidm.read("config/custom/myconfig")

C.4. System Objects
System objects are pluggable representations of objects on external systems. They follow the same
RESTful resource based design principles as managed objects. There is a default implementation for
the OpenICF framework, which allows any connector object to be represented as a system object.

C.5. Audit Objects
Audit objects house audit data selected for local storage in the OpenIDM repository. For details, see
the chapter on Using Audit Logs.

C.6. Links
Link objects define relations between source objects and a target objects, usually relations between
managed objects and system objects. The link relationship is established by provisioning activity that
either results in a new account on a target system, or a reconciliation or synchronization scenario
that takes a LINK action.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 130

Appendix D. Synchronization Reference

The synchronization engine is one of the core services of OpenIDM. You configure the
synchronization service through a mappings property that specifies mappings between objects
managed by the synchronization engine.
{
 "mappings": [object-mapping object, ...]
}

D.1. Object-Mapping Objects
An object-mapping object specifies the configuration for a mapping of source objects to target
objects.
 {
 "name" : string,
 "source" : string,
 "target" : string,
 "validSource" : script object,
 "validTarget" : script object,
 "correlationQuery": script object,
 "properties" : [property object, ...],
 "policies" : [policy object, ...],
 "onCreate" : script object,
 "onUpdate" : script object,
 "onLink" : script object,
 "onUnlink" : script object
}

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 131

Mapping Object Properties

name

string, required

Uniquely names the object mapping. Used in the link object identifier.

source

string, required

Specifies the path of the source object set. Example: "managed/user".

target

string, required

Specifies the path of the target object set. Example: "system/ldap/account".

validSource

script object, optional

A script that determines if a source object is valid to be mapped. The script yields a boolean
value: true indicates the source object is valid; false can be used to defer mapping until some
condition is met. In the root scope, the source object is provided in the "source" property. If the
script is not specified, then all source objects are considered valid.

validTarget

script object, optional

A script used during the target phase of reconciliation that determines if a target object is valid
to be mapped. The script yields a boolean value: true indicates the target object is valid; false
indicates that the target object should not be included in reconciliation. In the root scope, the
target object is provided in the "target" property. If the script is not specified, then all target
objects are considered valid for mapping.

correlationQuery

script object, optional

A script that yields a query object to query the target object set when a source object has no
linked target. The syntax for writing the query depends on the target system of the correlation.
See chapter Correlation for examples of some common targets. The source object is provided in
the "source" property in the script scope.

properties

array of property-mapping objects, optional

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 132

Specifies mappings between source object properties and target object properties, with optional
transformation scripts.

policies

array of policy objects, optional

Specifies a set of link conditions and associated actions to take in response.

onCreate

script object, optional

A script to execute when a target object is to be created, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property and the link situation that led to the create operation in "situation".
The _id property in the target object can be modified, allowing the mapping to select an identifier;
if not set then the identifier is expected to be set by the target object set. If the script throws an
exception, then target object creation is aborted.

onUpdate

script object, optional

A script to execute when a target object is to be updated, after property mappings have been
applied. In the root scope, the source object is provided in the "source" property, projected target
object in the "target" property, link situation that led to the update operation in "situation". If the
script throws an exception, then target object update is aborted.

onLink

script object, optional

A script to execute when a source object is to be linked to a target object, after property
mappings have been applied. In the root scope, the source object is provided in the "source"
property, projected target object in the "target" property. If the script throws an exception, then
target object linking is aborted.

onUnlink

script object, optional

A script to execute when a source and a target object are to be unlinked, after property mappings
have been applied. In the root scope, the source object is provided in the "source" property,
projected target object in the "target" property. If the script throws an exception, then target
object unlinking is aborted.

result

script object, optional

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 133

A script to execute on each mapping event, independent of the nature of the operation. In the
root scope, the source object is provided in the "source" property, projected target object in the
"target" property. If the script throws an exception, then target object unlinking is aborted.

The "result" script is executed only during reconciliation operations!

D.1.1. Property Objects

A property object specifies how the value of a target property is determined.
 {
 "target" : string,
 "source" : string,
 "transform" : script object,
 "condition" : script object,
 "default": value
}

Property Object Properties

target

string, required

Specifies the path of the property in the target object to map to.

source

string, optional

Specifies the path of the property in the source object to map from. If not specified, then the
target property value is derived from the script or default value.

transform

script object, optional

A script to determine the target property value. The root scope contains the value of the source in
the "source" property, if specified. If the "source" property has a value of "", then the entire source
object of the mapping is contained in the root scope. The resulting value yielded by the script is
stored in the target property.

condition

script object, optional

A script to determine whether the mapping should be executed or not. The root scope contains
the value of the source in the "source" property (if specified). The script is considered to return a
boolean value.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 134

default

any value, optional

Specifies the value to assign to the target property if a non-null value is not established by
"source" or "transform". If not specified, the default value is null.

D.1.2. Policy Objects
A policy object specifies a link condition and the associated actions to take in response.
{
 "situation": string,
 "action" : string or script object
}

Policy Object Properties

situation

string, required

Specifies the situation for which an associated action is to be defined.

action

string or script object, required

Specifies the action to perform. If a script is specified, the script is executed and is expected to
yield a string containing the action to perform.

D.1.2.1. Script Object
Script objects take the following form.
{
 "type" : "text/javascript",
 "source": string
}

type

string, required

Specifies the type of script to be executed. Currently, OpenIDM supports only "text/javascript".

source

string, required

Specifies the source code of the script to be executed.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 135

D.2. Links
To maintain links between source and target objects in mappings, OpenIDM stores an object set in
the repository. The object set identifier follows this scheme.
links/mapping

Here, mapping represents the name of the mapping for which links are managed.

Link entries have the following structure.
{
 "_rev":string,
 "linkType":string,
 "secondId":string,
 "_id":string,
 "reconId":string,
 "firstId":string
}{
 "f": string,
 "targetId": string,
 "reconId" : string
}

_rev

string, required

The value of link object's revision.

linkType

string, required

The type of the link. Usually then name of the mapping which created the link.

firstId

string, required

The identifier of the first of the two linked objects.

_id

string

The identifier of the link object.

reconId

string or null

The identifier of the last reconciliation job that processed this link. OpenIDM uses this during
reconciliation to detect orphan source and target objects.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 136

secondId

string

The identifier of the second of the two linked objects.

D.3. Queries
OpenIDM performs the following queries on a link object set.

1. Find link(s) for a given firstId object identifier.
SELECT * FROM links WHERE linkType = value AND firstId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

2. Select link(s) for a given second object identifier.
SELECT * FROM links WHERE linkType = value AND secondId = value

Although a single result makes sense, this query is intended to allow multiple results so that this
scenario can be handled as an exception.

D.4. Reconciliation
OpenIDM performs reconciliation on a per-mapping basis. The process of reconciliation for a given
mapping includes these stages.

1. Iterate through all objects for the object set specified as "source". For each source object, carry
out the following steps.

a. Look for a link to a target object in the link object set, and perform a correlation query (if
defined).

b. Determine the link condition, as well as whether a target object can be found.

c. Determine the action to perform based on the policy defined for the condition.

d. Perform the action.

e. Keep track of the target objects for which a condition and action has already been determined.

f. Write the results.

2. Iterate through all object identifiers for the object set specified as "target". For each identifier,
carry out the following steps.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 137

a. Find the target in the link object set.

Determine if target object already was handled in the first phase.

b. Determine the action to perform based on the policy defined for the condition.

c. Perform the action.

d. Write the results.

3. Iterate through all link objects, carrying out the following steps.

a. If the reconId is "my", then skip the object.

If the reconId is not recognized, then the source or the target is missing.

b. Determine the action to perform based on the policy.

c. Perform the action.

d. Store the reconId identifer in the mapping to indicate that it was processed in this run.

D.5. REST API
External synchronized objects expose an API to request immediate synchronization. This API includes
the following requests and responses.

Request

Example:

POST /openidm/system/xml/account/jsmith?action=sync HTTP/1.1

Response (success)

Example:

HTTP/1.1 204 No Content
...

Response (synchronization failure)

Example:

HTTP/1.1 409 Conflict
...
[JSON representation of error]

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 138

Appendix E. REST API Reference

OpenIDM provides a RESTful API for accessing managed objects.

E.1. URI Scheme
The URI scheme for accessing a managed object follows this convention, assuming the OpenIDM web
application was deployed at /openidm.
/openidm/managed/type/id

E.2. Object Identifiers
Each managed object has an identifier—expressed as id in the URI scheme—which is used to address
the object through the REST API. The REST API allows for the client-generated and server-generated
identifiers, through PUT and POST methods. The default server-generated identifier type is a UUID.
Object identifiers that begin with underscore (_) are reserved for future use.

E.3. Content Negotiation
The REST API fully supports negotiation of content representation through the Accept HTTP header.
Currently, the supported content type is JSON; omitting content-negotiation is equivalent to including
the following header:
Accept: application/json

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 139

E.4. Conditional Operations
The REST API fully supports conditional operations through the use of the ETag, If-Match and If-None
-Match HTTP headers. The use of HTTP conditional operations is the basis of OpenIDM's optimistic
concurrency control system. Clients should make requests conditional in order to prevent inadvertent
modification of the wrong version of an object.

E.5. Supported Methods
The managed object API uses standard HTTP methods to access managed objects.

GET

Retrieves a managed object in OpenIDM.

Example Request

GET /openidm/managed/user/bdd793f8 HTTP/1.1
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"
...

[JSON representation of the managed object]

HEAD

Returns metainformation about a managed object in OpenIDM.

Example Request

HEAD /openidm/managed/user/bdd793f8 HTTP/1.1
...

Example Response

HTTP/1.1 200 OK
Content-Type: application/json
Content-Length: 123
ETag: "0"

PUT

Creates or updates a managed object. PUT is the preferred method of creating managed objects.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 140

Example Request: Creating a new object

PUT /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/json
Content-Length: 123
If-None-Match: *
...

[JSON representation of the managed object to create]

Example Response: Creating a new object

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

Example Request: Updating an existing object

PUT /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/json
Content-Length: 123
If-Match: "0"
...

[JSON representation of managed object to update]

Example Response: Updating an existing object (success)

HTTP/1.1 204 No Content
ETag: "1"
...

Example Response: Updating an existing object (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

POST

The POST method allows arbitrary actions to be performed on managed objects. The _action query
parameter defines the action to be performed.

The create action is used to create a managed object. Because POST is neither safe nor
idempotent, PUT is the preferred method of creating managed objects, and should be used if

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 141

the client know what identifier it wants to assign the object. The response contains the server-
generated _id of the newly created managed object.

The POST method create optionally accepts an _id query parameter to specify the identifier to
give the newly created object. If not provided, then the server selects its own identifier.

Example Request

POST /openidm/managed/user?_action=create HTTP/1.1
Content-Type: application/json
Content-Length: 123
...

[JSON representation of the managed object to create]

Example Response

HTTP/1.1 201 Created
Content-Type: application/json
Content-Length: 45
ETag: "0"
...

[JSON representation containing metadata (underscore-prefixed) properties]

DELETE

Deletes a managed object.

Example Request

DELETE /openidm/managed/user/c3471805b60f
If-Match: "0"
...

Example Response (success)

HTTP/1.1 204 No Content
...

Example Response (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

PATCH

Performs a partial modification of a managed object.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 142

See the JSON Patch Internet-Draft for details.

Example Request

PATCH /openidm/managed/user/5752c0fd9509 HTTP/1.1
Content-Type: application/patch+json
Content-Length: 456
If-Match: "0"
...

[JSON representation of patch document to apply]

Example Response (success)

HTTP/1.1 204 No Content
ETag: "1"
...

Example Response (version conflict)

HTTP/1.1 409 Conflict
Content-Type: application/json
Content-Length: 89
...

[JSON representation of error]

X-HTTP-Method-Override

If an HTTP client or server container does not support a particular method, a request can be
submitted through POST with the X-HTTP-Method-Override header set to the intended method.

Example Request

POST /openidm/managed/user/5752c0fd9509 HTTP/1.1
X-HTTP-Method-Override: PATCH
Content-Type: application/patch+json
Content-Length: 456
If-Match: "0"
...

[JSON representation of patch document to apply]

http://tools.ietf.org/html/draft-pbryan-json-patch-04

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 143

Appendix F. Scripting Reference

Scripting lets you customize how OpenIDM works in various ways, such as providing custom logic
between source and target mappings, defining correlation rules, filters, and triggers.

F.1. Configuration
You define scripts using script objects, which can either include the code directly in the
configuration, or call an external file containing the script.
{
 "type" : "text/javascript",
 "source": string
}

or
{
 "type" : "text/javascript",
 "file" : file location
}

type

string, required

Specifies the type of script to be executed. Currently, OpenIDM supports only "text/javascript".

source

string, required if file is not specified

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 144

Specifies the source code of the script to be executed.

file

string, required if source is not specified

Specifies the file containing the source code of the script to execute.

F.2. Examples
The following example returns true if the employeeType is equal to external, otherwise returns false. This
script can be useful during reconciliation to establish whether the source object should be a part of
the reconciliation, or ignored.

"validTarget": {
 "type" : "text/javascript",
 "source": "object.employeeType == 'external'"
}

The following example sets the __PASSWORD__ attribute to defaultpwd when OpenIDM creates a target
object.

"onCreate" : {
 "type" : "text/javascript",
 "source": "target.__PASSWORD__ = 'defaultpwd'"
}

The following example shows a trigger to create Solaris home directories using a script. The script is
located in a file, /path/to/openidm/script/createUnixHomeDir.js.

{
 "filters" : [{
 "pattern" : "^system/solaris/account$",
 "methods" : ["create"],
 "onResponse" : {
 "type" : "text/javascript",
 "file" : "script/createUnixHomeDir.js"
 }
 }]
}

F.3. Function Reference
Functions (access to managed objects, system objects, configuration objects) within OpenIDM are
accessible to scripts via the openidm object, which is included in the top-level scope provided to each
script.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 145

F.3.1. openidm.create(id, value)

This function creates a new resource object.

Parameters

id

string

The identifier of the object to be created.

value

object

The value of the object to be created.

Returns

• A null value if successful.

Throws

• An exception is thrown if the object could not be created for any reason.

F.3.2. openidm.read(id)

This function reads and returns an OpenIDM resource object.

Parameters

id

string

The identifier of the object to be read.

Returns

• The read OpenIDM resource object, or null if not found.

F.3.3. openidm.update(id, rev, value)

This function updates a resource object.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 146

Parameters

id

string

The identifier of the resource object to be updated.

rev

string

The revision of the object to be updated, or null if the object is not subject to revision control.

value

object

The value of the object to be updated.

Returns

• A null value if successful.

Throws

• An exception is thrown if the object could not be updated for any reason.

F.3.4. openidm.delete(id, rev)

This function deletes a resource object.

Parameters

id

string

The identifier of the object to be deleted.

rev

string

The revision of the object to be deleted, or null if the object is not subject to revision control.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 147

Returns

• A null value if successful.

Throws

• An exception is thrown if the object could not be deleted for any reason.

F.3.5. openidm.query(id, params)
This function performs a query on the specified OpenIDM resource object.

Parameters

id

string

The identifier of the object to perform the query on.

params

object

An object containing the parameters to pass to the query.

Returns

• The result of the query.

Throws

• An exception is thrown if the given query could not be processed for any reason.

F.3.6. openidm.action(id, params, value)
This function performs an action on the specified OpenIDM resource object.

Parameters

id

string

The identifier of the object to perform the action on.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 148

params

object

An object containing the parameters to pass to the action.

value

object

A value that can be provided to the action for processing.

Returns

• The result of the action. May be null if no result is provided.

Throws

• An exception is thrown if the given action could not be executed for any reason.

F.3.7. openidm.encrypt(value, cipher, alias)

This function encrypts a value.

Parameters

value

any

The value to be encrypted.

cipher

string

The cipher with which to encrypt the value, using the form "algorithm/mode/padding" or just
"algorithm". Example: AES/ECB/PKCS5Padding.

alias

string

The key alias in the key store with which to encrypt the node.

Returns

• The value, encrypted with the specified cipher and key.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 149

Throws

• An exception is thrown if the object could not be encrypted for any reason.

F.3.8. openidm.decrypt(value)

This function decrypts a value.

Parameters

value

any

The value to be decrypted.

Returns

• A deep copy of the value, with any encrypted value decrypted.

Throws

• An exception is thrown if the object could not be decrypted for any reason.

F.4. Places to Trigger Scripts
Scripts can be triggered at different places, by different events.

In openidm/conf/sync.json

Triggered by situation

onCreate, onUpdate, onDelete, onLink, onUnlink

Object filter

vaildSource, validTarget

Correlating objects

correlationQuery

Triggered on any reconciliation

result

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 150

Scripts inside properties

condition, transform

In openidm/conf/managed.json

onRetreive, onValidate

In openidm/conf/router.json

onRequest, onResponse

F.5. Debugging OpenIDM Scripts
OpenIDM includes Eclipse JSDT libraries so you can use Eclipse to debug your OpenIDM scripts
during development.

Procedure F.1. To Enable Debugging

Follow these steps to enable debugging using Eclipse.

1. Install the environment to support JavaScript development in either of the following ways.

• Download and install Eclipse IDE for JavaScript Web Developers from the Eclipse download
page.

• Add JavaScript Development Tools to your existing Eclipse installation.

2. Create an empty JavaScript project called External JavaScript Source in Eclipse.

Eclipse then uses the External JavaScript Source directory in the default workspace location to
store sources that it downloads from OpenIDM.

3. Stop OpenIDM.

4. Edit openidm/conf/boot/boot.properties to enable debugging.

a. Uncomment and edit the following line.

#openidm.script.javascript.debug=transport=socket,suspend=y,address=9888,trace=true

Here suspend=y prevents OpenIDM from starting until the remote JavaScript debugger has
connected. You might therefore choose to set this to suspend=n.

b. Uncomment and edit the following line.

#openidm.script.javascript.sources=/Eclipse/workspace/External JavaScript Source/

http://www.eclipse.org/downloads/
http://www.eclipse.org/downloads/
http://wiki.eclipse.org/JSDT

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 151

Adjust /Eclipse/workspace/External JavaScript Source/ to match the absolute path to this folder
including the trailing / character. On Windows, also use forward slashes, such as C:/Eclipse/
workspace/External JavaScript Source/.

Each time OpenIDM loads a new script, it then creates or overwrites the file in the External
 JavaScript Source directory. Before toggling breakpoints, be sure to refresh the source
manually in Eclipse so you have the latest version.

5. Prepare the Eclipse debugger to allow you to set breakpoints.

In the Eclipse Debug perspective, select the Breakpoints tab, and then click the Add Script Load
Breakpoint icon to open the list of scripts.

In the Add Script Load Breakpoint window, select your scripts, and then click OK.

6. Start OpenIDM, and connect the debugger.

To create a new debug, configuration click Run > Debug Configurations... > Remote JavaScript >
New button, and then set the port to 9888 as shown above.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 152

Appendix G. Scheduler Reference

OpenIDM lets you schedule many tasks and events including reconciliation and synchronization, but
also arbitrary events by use of scheduler objects.

OpenIDM supports cron-like syntax to schedule events and tasks, based on expressions supported by
the Quartz Scheduler that OpenIDM bundles.

If you use configuration files to schedule tasks and events, then the scheduler files are located in
the openidm/conf directory. By convention, OpenIDM uses file names of the form scheduler-schedule-
name.json. OpenIDM dynamically picks up changes to scheduled tasks and events both, during
initialization and also during runtime.

Scheduler Configuration Objects

Scheduler configuration objects take the following form.

{
 "enabled" : true,
 "type" : "cron",
 "startTime" : "optional time",
 "endTime" : "optional time",
 "schedule" : "cron expression",
 "timeZone" : "optional time zone",
 "invokeService" : "service identifier",
 "invokeContext" : "service specific context info"
}

The following simple example prints Hello World to the OpenIDM log, /openidm/logs/openidm0.log.X, each
minute.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 153

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 0/1 * * * ?",
 "invokeService": "script",
 "invokeContext": {
 "script": {
 "type": "text/javascript",
 "source": "java.lang.System.out.println('Hello World’);"
 },
 "input": {
 "edit": 26
 }
 }
}

Scheduler configuration objects take the following properties.

enabled

Set to true to enable the scheduler. When set to false, OpenIDM considers the scheduler
configuration object dormant, and therefore does not let it be triggered or executed.

Rather than change the configuration or cron expressions, set enabled to false for task and event
schedulers when you want to retain their configuration, but do not want them used.

type

Currently OpenIDM supports only cron.

startTime (optional)

Used to start the schedule some time in the future. If omitted or set to a time in the past, the task
or event is scheduled starting immediately.

endTime (optional)

Used to plan the end of scheduling.

schedule

Takes cron expression syntax.

timeZone (optional)

If not set, OpenIDM uses the system time zone.

invokeService

Defines the type of scheduled event or action. OpenIDM accepts the following values.

• provisioner

• script

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 154

• sync

invokeContext

Specifies contextual information, such as the JavaScript to invoke. The discovery engine
provides two mechanisms, reconciliation and synchronization. Both require that you specify the
invokeContext.

The following example invokes reconciliation.

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 0/1 * * * ?",
 "invokeService": "sync",
 "invokeContext": {
 "action": "reconcile",
 "mapping": "systemLdapAccount_managedUser"
 }
}

For reconciliation tasks, you can add the mapping definition inline rather than define it in openidm/
conf/sync.json.

The following example shows a scheduler for LiveSync.

{
 "enabled": true,
 "type": "cron",
 "schedule": "0 0/1 * * * ?",
 "invokeService": "provisioner",
 "invokeContext": {
 "action": "liveSync",
 "source": "system/OpenDJ/__ACCOUNT__"
 }
}

Actual configuration differs from these examples depending on your configuration.

G.1. Scheduled Task Use Cases
OpenIDM lets you schedule not only reconciliation and synchronization, but also lets you use
scheduling to trigger scripts, collect and run reports, trigger workflows, perform custom logging, and
so forth. You can find a set of samples in the openidm/samples/schedules directory.

G.2. Cron Expressions
The Quartz Scheduler accepts expressions like those of the UNIX cron command. The syntax is
documented extensively in the online Quartz CronTrigger Tutorial.

http://www.quartz-scheduler.org/documentation/quartz-1.x/tutorials/crontrigger

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 155

G.3. Checking For Quartz Updates
The Quartz Scheduler can check for updates over the Internet on the Quartz project website, and
report available updates in the OpenIDM log. The option is set in openidm/conf/system.properties By
default, this option is turned off, and should remain off in production.
system.properties:org.quartz.scheduler.skipUpdateCheck = true

G.4. Service Implementer Notes
Services that can be scheduled implement ScheduledService. The service PID is used as a basis for the
service identifier in schedule definitions.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 156

Appendix H. Router Service Reference

The OpenIDM router service provides the uniform interface to all objects in OpenIDM: managed
objects, system objects, configuration objects, and so on.

H.1. Configuration
The router object as shown in conf/router.json defines an array of filter objects.

{
 "filters": [filter object, ...]
}

The required filters array defines a list of filters to be processed on each router request. Filters are
processed in the order they are specified in this array.

H.1.1. Filter Objects

Filter objects are defined as follows.

{
 "pattern": string,
 "methods": [string, ...],
 "condition": script object,
 "onRequest": script object,
 "onResponse": script object,
 "onFailure": script object
}

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 157

"pattern"

string, optional

Specifies a regular expression pattern matching the JSON pointer of the object to trigger scripts.
If not specified, all identifiers (including null) match.

"methods"

array of strings, optional

One or more methods for which the script(s) should be triggered. Supported methods are:
"create", "read", "update", "delete", "patch", "query", "action". If not specified, then all methods are
matched.

"condition"

script object, optional

Specifies a script that is called first to determine if the script should be triggered. If the condition
yields "true", then the other script(s) are executed. If not specified, the script(s) are called
unconditionally.

"onRequest"

script object, optional

Specifies a script to execute before the request is dispatched to the resource. If the script throws
an exception, the method is is not performed, and a client error response is provided.

"onResponse"

script object, optional

Specifies a script to execute after the request is successfully dispatched to the resource and a
response is returned. Throwing an exception from this script does not undo the method already
performed.

"onFailure"

script object, optional

Specifies a script to execute if the request resulted in an exception being thrown. Throwing an
exception from this script does not undo the method already performed.

H.1.2. Script Execution Sequence

All "onRequest" and "onResponse" scripts are executed in a sorted sequence: first the "onRequest"
scripts in a top down manner, then the "onResponse" in a bottom up way!

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 158

client -> filter 1 onRequest -> filter 2 onRequest -> resource
client <- filter 1 onResponse <- filter 2 onResponse <- resource

Here is an example of a router.json file and how the scritps would be executed:

{
 "filters" : [
 {
 "onRequest" : {
 "type" : "text/javascript",
 "file" : "script/router-authz.js"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 1');"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onRequest" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('requestFilter 2');"
 }
 },
 {
 "pattern" : "^managed/user/.*",
 "methods" : [
 "read"
],
 "onResponse" : {
 "type" : "text/javascript",
 "source" : "java.lang.System.out.println('responseFilter 2');"
 }
 }
]
}

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 159

Will produce a log like:

requestFilter 1
requestFilter 2
responseFilter 2
responseFilter 1

H.1.3. Script Scope

Scripts are provided with the following scope.

{
 "openidm": openidm-functions object,
 "request": resource-request object,
 "response": resource-response object,
 "exception": exception object
}

"openidm"

openidm-functions object

Provides access to OpenIDM resources.

"request"

resource-request object

The resource-request context, which has one or more parent context. Provided in scope of
"condition", "onRequest", "onResponse" and "onException" scripts.

"response"

openidm-functions object

The response to the resource-request. Only provided in the scope of the "onResponse" script.

"exception"

exception object

The exception value that was thrown as a result of processing the request. Only provided in the
scope of the "onException" script.

An exception object is defined as follows.

https://wikis.forgerock.org/confluence/display/json/resource-request

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 160

{
 "error": integer,
 "reason": string,
 "detail": string
}

"error"

integer

The numeric code of the exception.

"reason"

string

The short reason phrase of the exception.

"detail"

string

The detailed message for the exception.

H.2. Example
The following example executes a script after a managed user object is created or updated.

{
 "filters": [
 {
 "pattern": "^managed/user/.*",
 "methods": [
 "create",
 "update"
],
 "onResponse": {
 "type": "text/javascript",
 "file": "scripts/afterUpdateUser.js"
 }
 }
]
}

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 161

Appendix I. Embedded Jetty Configuration

OpenIDM 2.0.3 includes an embedded Jetty web server.

To configure the embedded Jetty server, edit openidm/conf/jetty.xml. OpenIDM delegates all connector
configuration to jetty.xml. OSGi and PAX web specific settings for connector configuration therefore
do not have an effect. This lets you take advantage of all Jetty capabilities, as the web server is not
configured through an abstraction that might limit some of the options.

The Jetty configuration can reference configuration properties from OpenIDM, such key store details,
from OpenIDM's boot.properties configuration file.

I.1. Using OpenIDM Configuration Properties in the Jetty
Configuration
OpenIDM exposes a Param class that you can use in jetty.xml to include OpenIDM configuration. The
Param class exposes Bean properties for common Jetty settings and generic property access for other,
arbitrary settings.

I.1.1. Accessing Explicit Bean Properties

To retrieve an explicit Bean property, use the following syntax in jetty.xml.

<Get class="org.forgerock.openidm.jetty.Param" name="<bean property name>"/>

For example, to set a Jetty property for keystore password:

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 162

<Set name="password">
 <Get class="org.forgerock.openidm.jetty.Param" name="keystorePassword"/>
</Set>

Also see the bundled jetty.xml for further examples.

The following explicit Bean properties are available.

keystoreType

Maps to openidm.keystore.type

keystoreProvider

Maps to openidm.keystore.provider

keystoreLocation

Maps to openidm.keystore.location

keystorePassword

Maps to openidm.keystore.password

keystoreKeyPassword

Maps to openidm.keystore.key.password, or the key store password if not set

truststoreLocation

Maps to openidm.truststore.location, or the key store location if not set

truststorePassword

Maps to openidm.truststore.password, or the key store password if not set

I.1.2. Accessing Generic Properties

<Call class="org.forgerock.openidm.jetty.Param" name="getProperty">
 <Arg>org.forgerock.openidm.some.sample.property</Arg>
</Call>

I.2. Jetty Default Settings
By default the embedded Jetty server uses the following settings.

• An HTTP connector, listening on port 8080

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 163

• An SSL connector, listening on port 8443

• Same key store/trust store settings as OpenIDM

• Trivial sample realm, openidm/security/realm.properties to add users

The default settings are intended for evaluation only. Adjust them according to your production
requirements.

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 164

Index

A
Architecture, 1
Audit logs, 92
Authentication, 70

Internal users, 70, 78
Managed users, 70
Roles, 72

Authorization, 70, 72

B
Best practices, 76, 102
Business processes, 83

C
Configuration

Email, 99
Files, 108
Objects, 8
REST API, 9
Validating, 6

Connectors, 15
Examples, 25
Generating configurations, 33
Object types, 21
Remote, 16

Correlation queries, 53

E
Encryption, 7, 76, 78

F
File layout, 108

L
LiveSync, 40

Scheduling, 58

M
Mappings, 3, 43

Hooks for scripting, 54

Scheduled reconciliation, 57

O
Objects

Audit objects, 129
Configuration objects, 8
Links, 129
Managed objects, 3, 41, 70, 115, 138

Customizing, 123
Identifiers, 138
Passwords, 61

Object types, 114
Script access, 115, 144
System objects, 3, 129

OpenICF, 15

P
Passwords, 61, 78
Ports

8080, 113
8443, 113
8444, 113
Disabling, 79

R
Reconciliation, 3, 40

Scheduling, 58
Resources, 15
REST API, 9, 138

Listing configuration objects, 9
Roles, 72
Router service, 156

S
Scheduler, 58, 152

Configuration, 58
Examples, 59

Scripting, 143
Functions, 144

Security, 76
Authentication, 76
Encryption, 76, 78
SSL, 76

Sending mail, 99
Server logs, 14
Starting OpenIDM, 5

Integrator's Guide OpenIDM 2.0.3 (2018-01-24T14:53:51.524)
Copyright © 2011-2017 ForgeRock AS. All rights reserved. 165

Stopping OpenIDM, 5
Synchronization, 3, 40, 130

Actions, 48
Conditions, 44
Connectors, 42
Correlation queries, 53
Creating attributes, 44, 47
Direct (push), 40
Encryption, 46
Filtering, 45
Mappings, 43
Passwords, 64

With Active Directory, 66
With OpenDJ, 64

Reusing links, 47
Scheduling, 58
Situations, 48
Transforming attributes, 44

T
Troubleshooting, 104

W
Workflow, 83

	Integrator's Guide
	Table of Contents
	Preface
	1. Who Should Use this Guide
	2. Formatting Conventions
	3. Accessing Documentation Online
	4. Using the ForgeRock.org Site

	Chapter 1. Architectural Overview
	1.1. OpenIDM Modular Framework
	1.2. Infrastructure Modules
	1.3. Core Services
	1.4. Access Layer

	Chapter 2. Starting & Stopping OpenIDM
	2.1. Startup & Shutdown
	2.2. Command-Line Tools

	Chapter 3. Configuration Options
	3.1. About Configuration Objects
	3.2. When Changing the Configuration
	3.3. Configuring OpenIDM Over REST

	Chapter 4. Configuring Server Logs
	Chapter 5. Connecting to External Resources
	5.1. About OpenIDM & OpenICF
	5.2. Accessing Remote Connectors
	5.3. Configuring Connectors
	5.4. Connector Configuration Examples
	5.4.1. XML File Connector
	5.4.2. Generic LDAP Connector
	5.4.3. Active Directory Connector
	5.4.4. CSV File Connector
	5.4.5. Scripted SQL Connector

	5.5. Creating Default Connector Configurations

	Chapter 6. Configuring Synchronization
	6.1. Types of Synchronization
	6.2. Flexible Data Model
	6.3. Basic Data Flow Configuration
	6.3.1. Using Encrypted Values
	6.3.2. Constructing & Manipulating Attributes
	6.3.3. Reusing Links

	6.4. Synchronization Situations & Actions
	6.4.1. Synchronization Situations
	6.4.2. Source Reconciliation
	6.4.3. Target Reconciliation
	6.4.4. Synchronization Actions

	6.5. Correlation Queries
	6.5.1. Managed Object as Correlation Query Target
	6.5.2. System Object as Correlation Query Target

	6.6. Advanced Data Flow Configuration
	6.7. Alternative Mappings

	Chapter 7. Scheduling Synchronization
	7.1. Scheduler Configuration
	7.2. Scheduler Examples

	Chapter 8. Managing Passwords
	8.1. Enforcing Password Policy
	8.2. Password Synchronization

	Chapter 9. Managing Authentication, Authorization & RBAC
	9.1. OpenIDM Users
	9.1.1. Internal Users
	9.1.2. Managed Users

	9.2. Authentication
	9.3. Roles
	9.4. Authorization

	Chapter 10. Securing & Hardening OpenIDM
	10.1. Use SSL and HTTPS
	10.2. Encrypt Data Internally & Externally
	10.3. Use Message Level Security
	10.4. Replace Default Security Settings
	10.5. Secure Jetty
	10.6. Protect Sensitive REST Interface URLs
	10.7. Protect Sensitive Files & Directories
	10.8. Obfuscate Bootstrap Information
	10.9. Remove or Protect Development & Debug Tools
	10.10. Protect the OpenIDM Repository
	10.11. Adjust Log Levels
	10.12. Set Up Restart At System Boot

	Chapter 11. Integrating Business Processes & Workflow
	11.1. About BPMN 2.0 & Activity Tools
	11.2. Known Issues & Limitations
	11.3. Invoking Activiti Workflows
	11.4. Example Activiti Workflows With OpenIDM
	11.4.1. Example Email Notification Workflow
	11.4.2. Example Sunset Workflow Triggered By Reconciliation

	Chapter 12. Using Audit Logs
	12.1. Audit Log Types
	12.2. Audit Log File Formats
	12.3. Audit Configuration
	12.3.1. Event Types

	12.4. Generating Reports

	Chapter 13. Sending Email
	13.1. Sending Mail Over REST
	13.2. Sending Mail From a Script

	Chapter 14. OpenIDM Project Best Practices
	14.1. Implementation Phases
	14.1.1. Initiation
	14.1.2. Definition
	14.1.3. Design
	14.1.4. Build
	14.1.5. Production

	Chapter 15. Troubleshooting
	15.1. OpenIDM Stopped in Background
	15.2. Internal Server Error During Reconciliation or Synchronization
	15.3. The scr list Command Shows Sync Service As Unsatisfied
	15.4. JSON Parsing Error
	15.5. System Not Available
	15.6. Bad Connector Host Reference in Provisioner Configuration
	15.7. Missing Name Attribute

	Appendix A. File Layout
	Appendix B. Ports Used
	Appendix C. Data Models & Objects Reference
	C.1. Accessing Objects
	C.2. Managed Objects
	C.2.1. Managed Object Schema
	C.2.1.1. Managed Object Reserved Properties
	C.2.1.2. Managed Object Schema Validation
	C.2.1.3. Managed Object Derived Properties

	C.2.2. Data Consistency
	C.2.3. Managed Object Triggers
	C.2.3.1. State Triggers
	C.2.3.2. Object Storage Triggers
	C.2.3.3. Property Storage Triggers
	C.2.3.4. Storage Trigger Sequences

	C.2.4. Managed Object Encryption
	C.2.5. Managed Object Configuration
	C.2.6. Custom Managed Objects
	C.2.6.1. Setting Up a Managed Object Type
	C.2.6.2. Manipulating Managed Objects Declaratively
	C.2.6.3. Manipulating Managed Objects Programmatically
	C.2.6.3.1. Creating Objects
	C.2.6.3.2. Updating Objects
	C.2.6.3.3. Patching Objects
	C.2.6.3.4. Deleting Objects
	C.2.6.3.5. Reading Objects
	C.2.6.3.6. Querying Object Sets

	C.2.7. Accessing Managed Objects Through the REST API

	C.3. Configuration Objects
	C.3.1. When To Use Custom Configuration Objects
	C.3.2. Custom Configuration Object Naming Conventions
	C.3.3. Mapping Configuration Objects To Configuration Files
	C.3.4. Configuration Objects File & REST Payload Formats
	C.3.5. Accessing Configuration Objects Through the REST API
	C.3.6. Accessing Configuration Objects Programmatically
	C.3.7. Creating Objects
	C.3.8.
	C.3.9. Deleting Objects
	C.3.10. Reading Objects

	C.4. System Objects
	C.5. Audit Objects
	C.6. Links

	Appendix D. Synchronization Reference
	D.1. Object-Mapping Objects
	D.1.1. Property Objects
	D.1.2. Policy Objects
	D.1.2.1. Script Object

	D.2. Links
	D.3. Queries
	D.4. Reconciliation
	D.5. REST API

	Appendix E. REST API Reference
	E.1. URI Scheme
	E.2. Object Identifiers
	E.3. Content Negotiation
	E.4. Conditional Operations
	E.5. Supported Methods

	Appendix F. Scripting Reference
	F.1. Configuration
	F.2. Examples
	F.3. Function Reference
	F.3.1. openidm.create(id, value)
	F.3.2. openidm.read(id)
	F.3.3. openidm.update(id, rev, value)
	F.3.4. openidm.delete(id, rev)
	F.3.5. openidm.query(id, params)
	F.3.6. openidm.action(id, params, value)
	F.3.7. openidm.encrypt(value, cipher, alias)
	F.3.8. openidm.decrypt(value)

	F.4. Places to Trigger Scripts
	F.5. Debugging OpenIDM Scripts

	Appendix G. Scheduler Reference
	G.1. Scheduled Task Use Cases
	G.2. Cron Expressions
	G.3. Checking For Quartz Updates
	G.4. Service Implementer Notes

	Appendix H. Router Service Reference
	H.1. Configuration
	H.1.1. Filter Objects
	H.1.2. Script Execution Sequence
	H.1.3. Script Scope

	H.2. Example

	Appendix I. Embedded Jetty Configuration
	I.1. Using OpenIDM Configuration Properties in the Jetty Configuration
	I.1.1. Accessing Explicit Bean Properties
	I.1.2. Accessing Generic Properties

	I.2. Jetty Default Settings

	Index

